1
|
Flaum E, Prakash M. Curved crease origami and topological singularities enable hyperextensibility of L. olor. Science 2024; 384:eadk5511. [PMID: 38843314 DOI: 10.1126/science.adk5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/12/2024] [Indexed: 06/15/2024]
Abstract
Fundamental limits of cellular deformations, such as hyperextension of a living cell, remain poorly understood. Here, we describe how the single-celled protist Lacrymaria olor, a 40-micrometer cell, is capable of reversibly and repeatably extending its necklike protrusion up to 1200 micrometers in 30 seconds. We discovered a layered cortical cytoskeleton and membrane architecture that enables hyperextensions through the folding and unfolding of cellular-scale origami. Physical models of this curved crease origami display topological singularities, including traveling developable cones and cytoskeletal twisted domain walls, which provide geometric control of hyperextension. Our work unravels how cell geometry encodes behavior in single cells and provides inspiration for geometric control in microrobotics and deployable architectures.
Collapse
Affiliation(s)
- Eliott Flaum
- Graduate Program in Biophysics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Manu Prakash
- Graduate Program in Biophysics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biology (courtesy), Stanford University, Stanford, CA, USA
- Department of Oceans (courtesy), Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Bondoc-Naumovitz KG, Laeverenz-Schlogelhofer H, Poon RN, Boggon AK, Bentley SA, Cortese D, Wan KY. Methods and Measures for Investigating Microscale Motility. Integr Comp Biol 2023; 63:1485-1508. [PMID: 37336589 PMCID: PMC10755196 DOI: 10.1093/icb/icad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Motility is an essential factor for an organism's survival and diversification. With the advent of novel single-cell technologies, analytical frameworks, and theoretical methods, we can begin to probe the complex lives of microscopic motile organisms and answer the intertwining biological and physical questions of how these diverse lifeforms navigate their surroundings. Herein, we summarize the main mechanisms of microscale motility and give an overview of different experimental, analytical, and mathematical methods used to study them across different scales encompassing the molecular-, individual-, to population-level. We identify transferable techniques, pressing challenges, and future directions in the field. This review can serve as a starting point for researchers who are interested in exploring and quantifying the movements of organisms in the microscale world.
Collapse
Affiliation(s)
| | | | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Alexander K Boggon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Samuel A Bentley
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Dario Cortese
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| |
Collapse
|
4
|
Flaum E, Prakash M. Curved crease origami and topological singularities at a cellular scale enable hyper-extensibility of Lacrymaria olor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551915. [PMID: 37577489 PMCID: PMC10418517 DOI: 10.1101/2023.08.04.551915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic cells undergo dramatic morphological changes during cell division, phagocytosis and motility. Fundamental limits of cellular morphodynamics such as how fast or how much cellular shapes can change without harm to a living cell remain poorly understood. Here we describe hyper-extensibility in the single-celled protist Lacrymaria olor, a 40 μm cell which is capable of reversible and repeatable extensions (neck-like protrusions) up to 1500 μm in 30 seconds. We discover that a unique and intricate organization of cortical cytoskeleton and membrane enables these hyper-extensions that can be described as the first cellular scale curved crease origami. Furthermore, we show how these topological singularities including d-cones and twisted domain walls provide a geometrical control mechanism for the deployment of membrane and microtubule sheets as they repeatably spool thousands of time from the cell body. We lastly build physical origami models to understand how these topological singularities provide a mechanism for the cell to control the hyper-extensile deployable structure. This new geometrical motif where a cell employs curved crease origami to perform a physiological function has wide ranging implications in understanding cellular morphodynamics and direct applications in deployable micro-robotics.
Collapse
Affiliation(s)
- Eliott Flaum
- Graduate Program in Biophysics
- Department of Bioengineering
- Stanford University
| | - Manu Prakash
- Graduate Program in Biophysics
- Department of Bioengineering
- Department of Biology (courtesy)
- Department of Oceans (courtesy)
- Stanford University
| |
Collapse
|
5
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
6
|
Junker AD, Woodhams LG, Soh AWJ, O’Toole ET, Bayly PV, Pearson CG. Basal bodies bend in response to ciliary forces. Mol Biol Cell 2022; 33:ar146. [PMID: 36287828 PMCID: PMC9727800 DOI: 10.1091/mbc.e22-10-0468-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating.
Collapse
Affiliation(s)
- Anthony D. Junker
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Louis G. Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Adam W. J. Soh
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eileen T. O’Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302
| | - Philip V. Bayly
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,*Address correspondence to: Chad G. Pearson ()
| |
Collapse
|
7
|
Soh AWJ, Woodhams LG, Junker AD, Enloe CM, Noren BE, Harned A, Westlake CJ, Narayan K, Oakey JS, Bayly PV, Pearson CG. Intracellular connections between basal bodies promote the coordinated behavior of motile cilia. Mol Biol Cell 2022; 33:br18. [PMID: 35767367 DOI: 10.1091/mbc.e22-05-0150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell's cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliate Tetrahymena thermophila by the underlying BB and cortical cytoskeletal network. To visualize the behavior of individual cilia in live, immobilized Tetrahymena cells, we developed Delivered Iron Particle Ubiety Live Light (DIPULL) microscopy. Quantitative and computer analyses of ciliary dynamics reveal that BB connections control ciliary waveform and coordinate ciliary beating. Loss of BB connections reduces cilia-dependent fluid flow forces.
Collapse
Affiliation(s)
- Adam W J Soh
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Anthony D Junker
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Cassidy M Enloe
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Benjamin E Noren
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Adam Harned
- Center for Molecular Microscopy and Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Kedar Narayan
- Center for Molecular Microscopy and Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - John S Oakey
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Philip V Bayly
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Chad G Pearson
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| |
Collapse
|
8
|
Soh AWJ, Pearson CG. Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates. J Eukaryot Microbiol 2022; 69:e12880. [PMID: 34897878 PMCID: PMC9188629 DOI: 10.1111/jeu.12880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of efficient fluid flow is crucial for organismal development and homeostasis, sexual reproduction, and motility. Multi-ciliated cells possess fields of motile cilia that beat in synchrony to propel fluid. Ciliary arrays are remarkably conserved in their organization and function. Ciliates have polarized multi-ciliary arrays (MCAs) to promote fluid flow for cell motility. The ciliate cortex is decorated with hundreds of basal bodies (BB) forming linear rows along the cell's anterior-posterior axis. BBs scaffold and position cilia to form the organized ciliary array. Nascent BBs assemble at the base of BBs. As nascent BBs mature, they integrate into the cortical BB and cytoskeletal network and nucleate their own cilium. The organization of MCAs is balanced between cortical stability and cortical dynamism. The cortical cytoskeletal network both establishes and maintains a stable organization of the MCA in the face of mechanical forces exerted by ciliary beating. At the same time, MCA organization is plastic, such that it remodels for optimal ciliary mobility during development and in response to environmental conditions. Such plasticity promotes effective feeding and ecological behavior required for these organisms. Together, these properties allow an organism to effectively sense, adapt to, and move through its environment.
Collapse
Affiliation(s)
- Adam W. J. Soh
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
9
|
Bouhouche K, Valentine MS, Le Borgne P, Lemullois M, Yano J, Lodh S, Nabi A, Tassin AM, Van Houten JL. Paramecium, a Model to Study Ciliary Beating and Ciliogenesis: Insights From Cutting-Edge Approaches. Front Cell Dev Biol 2022; 10:847908. [PMID: 35359441 PMCID: PMC8964087 DOI: 10.3389/fcell.2022.847908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Cilia are ubiquitous and highly conserved extensions that endow the cell with motility and sensory functions. They were present in the first eukaryotes and conserved throughout evolution (Carvalho-Santos et al., 2011). Paramecium has around 4,000 motile cilia on its surface arranged in longitudinal rows, beating in waves to ensure movement and feeding. As with cilia in other model organisms, direction and speed of Paramecium ciliary beating is under bioelectric control of ciliary ion channels. In multiciliated cells of metazoans as well as paramecia, the cilia become physically entrained to beat in metachronal waves. This ciliated organism, Paramecium, is an attractive model for multidisciplinary approaches to dissect the location, structure and function of ciliary ion channels and other proteins involved in ciliary beating. Swimming behavior also can be a read-out of the role of cilia in sensory signal transduction. A cilium emanates from a BB, structurally equivalent to the centriole anchored at the cell surface, and elongates an axoneme composed of microtubule doublets enclosed in a ciliary membrane contiguous with the plasma membrane. The connection between the BB and the axoneme constitutes the transition zone, which serves as a diffusion barrier between the intracellular space and the cilium, defining the ciliary compartment. Human pathologies affecting cilia structure or function, are called ciliopathies, which are caused by gene mutations. For that reason, the molecular mechanisms and structural aspects of cilia assembly and function are actively studied using a variety of model systems, ranging from unicellular organisms to metazoa. In this review, we will highlight the use of Paramecium as a model to decipher ciliary beating mechanisms as well as high resolution insights into BB structure and anchoring. We will show that study of cilia in Paramecium promotes our understanding of cilia formation and function. In addition, we demonstrate that Paramecium could be a useful tool to validate candidate genes for ciliopathies.
Collapse
Affiliation(s)
- K. Bouhouche
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - P. Le Borgne
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - M. Lemullois
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. Yano
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - S. Lodh
- Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - A. Nabi
- Luminex, Austin, TX, United States
| | - A. M. Tassin
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. L. Van Houten
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
10
|
Abstract
Piwi-bound small RNAs induce programmed DNA elimination in the ciliated protozoan Tetrahymena. Using the phenomenon called codeletion, this process can be reprogrammed to induce ectopic DNA elimination at basically any given genomic location. Here, we describe the usage of codeletion for genetic studies in Tetrahymena and for investigations of the molecular mechanism of Piwi-directed programmed DNA elimination.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1016/j.cub.2021.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
12
|
Valentine M, Van Houten J. Using Paramecium as a Model for Ciliopathies. Genes (Basel) 2021; 12:genes12101493. [PMID: 34680887 PMCID: PMC8535419 DOI: 10.3390/genes12101493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023] Open
Abstract
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the advent of molecular technologies, it became clear that there was not only great conservation of ciliary structure but also of the genes coding for ciliary structure and function. It is this conservation and the legacy of past research that allow us to use Paramecium as a model for cilia and ciliary diseases called ciliopathies. However, there would be no compelling reason to study Paramecium as this model if there were no new insights into cilia and ciliopathies to be gained. In this review, we present studies that we believe will do this. For example, while the literature continues to state that immotile cilia are sensory and motile cilia are not, we will provide evidence that Paramecium cilia are clearly sensory. Other examples show that while a Paramecium protein is highly conserved it takes a different interacting partner or conducts a different ion than expected. Perhaps these exceptions will provoke new ideas about mammalian systems.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA;
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
13
|
Plastic cell morphology changes during dispersal. iScience 2021; 24:102915. [PMID: 34430806 PMCID: PMC8367785 DOI: 10.1016/j.isci.2021.102915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through plastic motility-associated changes to cell morphology and motile cilia.
Collapse
|
14
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
15
|
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M, Furuta K, Oiwa K, Tamura A, Tsukita S. Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol 2021; 220:212042. [PMID: 33929515 PMCID: PMC8094116 DOI: 10.1083/jcb.202010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
Collapse
Affiliation(s)
- Shogo Nakayama
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshinori Namba
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Konishi
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Takagishi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Elisa Herawati
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tomoki Nishida
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Shuji Ishihara
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Ken'ya Furuta
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Kazuhiro Oiwa
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
16
|
Usami FM, Arata M, Shi D, Oka S, Higuchi Y, Tissir F, Takeichi M, Fujimori T. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J Cell Sci 2021; 134:jcs.257006. [PMID: 33468623 DOI: 10.1242/jcs.257006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.
Collapse
Affiliation(s)
- Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Graduate School of Science, Nagoya University, Nagoya, 464-8601 Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology Unit, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan .,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| |
Collapse
|