1
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
2
|
Adamson B, Brittain N, Walker L, Duncan R, Luzzi S, Rescigno P, Smith G, McGill S, Burchmore RJ, Willmore E, Hickson I, Robson CN, Bogdan D, Jimenez-Vacas JM, Paschalis A, Welti J, Yuan W, McCracken SR, Heer R, Sharp A, de Bono JS, Gaughan L. The catalytic subunit of DNA-PK regulates transcription and splicing of AR in advanced prostate cancer. J Clin Invest 2023; 133:e169200. [PMID: 37751307 PMCID: PMC10645393 DOI: 10.1172/jci169200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.
Collapse
Affiliation(s)
- Beth Adamson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Nicholas Brittain
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Laura Walker
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ruaridh Duncan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Sara Luzzi
- Newcastle University Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Graham Smith
- Newcastle University Bioinformatics Support Unit, Medical School, Newcastle Upon Tyne, United Kingdom
| | - Suzanne McGill
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J.S. Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Willmore
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ian Hickson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Craig N. Robson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Denisa Bogdan
- The Institute for Cancer Research, London, United Kingdom
| | | | - Alec Paschalis
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Welti
- The Institute for Cancer Research, London, United Kingdom
| | - Wei Yuan
- The Institute for Cancer Research, London, United Kingdom
| | - Stuart R. McCracken
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
- Division of Surgery, Imperial College London, London, United Kingdom
| | - Adam Sharp
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann S. de Bono
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
3
|
Wang Y, Li W, Ye B, Bi X. Chemical and Biological Strategies for Profiling Protein-Protein Interactions in Living Cells. Chem Asian J 2023; 18:e202300226. [PMID: 37089007 PMCID: PMC10946512 DOI: 10.1002/asia.202300226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Protein-protein interactions (PPIs) play critical roles in almost all cellular signal transduction events. Characterization of PPIs without interfering with the functions of intact cells is very important for basic biology study and drug developments. However, the ability to profile PPIs especially those weak/transient interactions in their native states remains quite challenging. To this end, many endeavors are being made in developing new methods with high efficiency and strong operability. By coupling with advanced fluorescent microscopy and mass spectroscopy techniques, these strategies not only allow us to visualize the subcellular locations and monitor the functions of protein of interest (POI) in real time, but also enable the profiling and identification of potential unknown interacting partners in high-throughput manner, which greatly facilitates the elucidation of molecular mechanisms underlying numerous pathophysiological processes. In this review, we will summarize the typical methods for PPIs identification in living cells and their principles, advantages and limitations will also be discussed in detail.
Collapse
Affiliation(s)
- You‐Yu Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityVictoria3086Australia
| | - Bang‐Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Xiao‐Bao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| |
Collapse
|
4
|
Yamada K, Soga F, Tokunaga S, Nagaoka H, Ozawa T, Kishi H, Takashima E, Sawasaki T. GATS tag system is compatible with biotin labelling methods for protein analysis. Sci Rep 2023; 13:10243. [PMID: 37353572 PMCID: PMC10290147 DOI: 10.1038/s41598-023-36858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
Polypeptide tags and biotin labelling technologies are widely used for protein analyses in biochemistry and cell biology. However, many peptide tag epitopes contain lysine residues (or amino acids) that are masked after biotinylation. Here, we propose the GATS tag system without a lysine residue and with high sensitivity and low non-specific binding using a rabbit monoclonal antibody against Plasmodium falciparum glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (PfGAMA). From 14 monoclonal clones, an Ra3 clone was selected as it recognized an epitope-TLSVGVQNTF-without a lysine residue; this antibody and epitope tag set was called the GATS tag system. Surface plasmon resonance analysis showed that the tag system had a high affinity of 8.71 × 10-9 M. GATS tag indicated a very low background with remarkably high sensitivity and specificity in immunoblotting using the lysates of mammalian cells. It also showed a high sensitivity for immunoprecipitation and immunostaining of cultured human cells. The tag system was highly sensitive in both biotin labelling methods for proteins using NHS-Sulfo-biotin and BioID (proximity-dependent biotin identification) in the human cells, as opposed to a commercially available tag system having lysine residues, which showed reduced sensitivity. These results showed that the GATS tag system is suitable for methods such as BioID involving labelling lysine residues.
Collapse
Affiliation(s)
- Kohdai Yamada
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Fumiya Soga
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Soh Tokunaga
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, Advanced Antibody Drug Development Center, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, Advanced Antibody Drug Development Center, University of Toyama, Toyama, 930-0194, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
5
|
Zheng X, Tran JR, Zheng Y. CscoreTool-M infers 3D sub-compartment probabilities within cell population. Bioinformatics 2023; 39:btad314. [PMID: 37166448 PMCID: PMC10206090 DOI: 10.1093/bioinformatics/btad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
MOTIVATION Computational inference of genome organization based on Hi-C sequencing has greatly aided the understanding of chromatin and nuclear organization in three dimensions (3D). However, existing computational methods fail to address the cell population heterogeneity. Here we describe a probabilistic-modeling-based method called CscoreTool-M that infers multiple 3D genome sub-compartments from Hi-C data. RESULTS The compartment scores inferred using CscoreTool-M represents the probability of a genomic region locating in a specific sub-compartment. Compared to published methods, CscoreTool-M is more accurate in inferring sub-compartments corresponding to both active and repressed chromatin. The compartment scores calculated by CscoreTool-M also help to quantify the levels of heterogeneity in sub-compartment localization within cell populations. By comparing proliferating cells and terminally differentiated non-proliferating cells, we show that the proliferating cells have higher genome organization heterogeneity, which is likely caused by cells at different cell-cycle stages. By analyzing 10 sub-compartments, we found a sub-compartment containing chromatin potentially related to the early-G1 chromatin regions proximal to the nuclear lamina in HCT116 cells, suggesting the method can deconvolve cell cycle stage-specific genome organization among asynchronously dividing cells. Finally, we show that CscoreTool-M can identify sub-compartments that contain genes enriched in housekeeping or cell-type-specific functions. AVAILABILITY AND IMPLEMENTATION https://github.com/scoutzxb/CscoreTool-M.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| |
Collapse
|
6
|
Sim J, Lee A, Kim D, Kim KL, Park BJ, Park KM, Kim K. A Combination of Bio-Orthogonal Supramolecular Clicking and Proximity Chemical Tagging as a Supramolecular Tool for Discovery of Putative Proteins Associated with Laminopathic Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208088. [PMID: 36843266 DOI: 10.1002/smll.202208088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Indexed: 05/25/2023]
Abstract
Protein mutations alter protein-protein interactions that can lead to a number of illnesses. Mutations in lamin A (LMNA) have been reported to cause laminopathies. However, the proteins associated with the LMNA mutation have mostly remained unexplored. Herein, a new chemical tool for proximal proteomics is reported, developed by a combination of proximity chemical tagging and a bio-orthogonal supramolecular latching based on cucurbit[7]uril (CB[7])-based host-guest interactions. As this host-guest interaction acts as a noncovalent clickable motif that can be unclicked on-demand, this new chemical tool is exploited for reliable detection of the proximal proteins of LMNA and its mutant that causes laminopathic dilated cardiomyopathy (DCM). Most importantly, a comparison study reveals, for the first time, mutant-dependent alteration in LMNA proteomic environments, which allows to identify putative laminopathic DCM-linked proteins including FOXJ3 and CELF2. This study demonstrates the feasibility of this chemical tool for reliable proximal proteomics, and its immense potential as a new research platform for discovering biomarkers associated with protein mutation-linked diseases.
Collapse
Affiliation(s)
- Jaehwan Sim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ara Lee
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dasom Kim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyung Lock Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, 42471, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Giambruno R, Nicassio F. Proximity-dependent biotinylation technologies for mapping RNA-protein interactions in live cells. Front Mol Biosci 2022; 9:1062448. [PMID: 36452457 PMCID: PMC9702341 DOI: 10.3389/fmolb.2022.1062448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
Proximity ligation technologies are extremely powerful tools for unveiling RNA-protein interactions occurring at different stages in living cells. These approaches mainly rely on the inducible activity of enzymes (biotin ligases or peroxidases) that promiscuously biotinylate macromolecules within a 20 nm range. These enzymes can be either fused to an RNA binding protein or tethered to any RNA of interest and expressed in living cells to biotinylate the amino acids and nucleic acids of binding partners in proximity. The biotinylated molecules can then be easily affinity purified under denaturing conditions and analyzed by mass spectrometry or next generation sequencing. These approaches have been widely used in recent years, providing a potent instrument to map the molecular interactions of specific RNA-binding proteins as well as RNA transcripts occurring in mammalian cells. In addition, they permit the identification of transient interactions as well as interactions among low expressed molecules that are often missed by standard affinity purification strategies. This review will provide a brief overview of the currently available proximity ligation methods, highlighting both their strengths and shortcomings. Furthermore, it will bring further insights to the way these technologies could be further used to characterize post-transcriptional modifications that are known to regulate RNA-protein interactions.
Collapse
Affiliation(s)
- Roberto Giambruno
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
8
|
Tran JR, Zheng X, Adam SA, Goldman RD, Zheng Y. High quality mapping of chromatin at or near the nuclear lamina from small numbers of cells reveals cell cycle and developmental changes of chromatin at the nuclear periphery. Nucleic Acids Res 2022; 50:e117. [PMID: 36130229 PMCID: PMC9723609 DOI: 10.1093/nar/gkac762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
The chromatin associated with the nuclear lamina (NL) is referred to as lamina-associated domains (LADs). Here, we present an adaptation of the tyramide-signal amplification sequencing (TSA-seq) protocol, which we call chromatin pull down-based TSA-seq (cTSA-seq), that can be used to map chromatin regions at or near the NL from as little as 50 000 cells. The cTSA-seq mapped regions are composed of previously defined LADs and smaller chromatin regions that fall within the Hi-C defined B-compartment containing nuclear peripheral heterochromatin. We used cTSA-seq to map chromatin at or near the assembling NL in cultured cells progressing through early G1. cTSA-seq revealed that the distal ends of chromosomes are near or at the reassembling NL during early G1, a feature similar to those found in senescent cells. We expand the use of cTSA-seq to the mapping of chromatin at or near the NL from fixed-frozen mouse cerebellar tissue sections. This mapping reveals a general conservation of NL-associated chromatin and identifies global and local changes during cerebellar development. The cTSA-seq method reported here is useful for analyzing chromatin at or near the NL from small numbers of cells derived from both in vitro and in vivo sources.
Collapse
Affiliation(s)
- Joseph R Tran
- Correspondence may also be addressed to Joseph R. Tran. Tel: +1 410 246 3032; Fax: +1 410 243 6311;
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Ward Building 11-145, 303 E. Chicago Ave. Chicago, IL 60611, USA
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University, Feinberg School of Medicine, Ward Building 11-145, 303 E. Chicago Ave. Chicago, IL 60611, USA
| | - Yixian Zheng
- To whom correspondence should be addressed. Tel: +1 410 246 3032; Fax: +1 410 243 6311;
| |
Collapse
|
9
|
van Schaik T, Liu NQ, Manzo SG, Peric-Hupkes D, de Wit E, van Steensel B. CTCF and cohesin promote focal detachment of DNA from the nuclear lamina. Genome Biol 2022; 23:185. [PMID: 36050765 PMCID: PMC9438259 DOI: 10.1186/s13059-022-02754-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/22/2022] [Indexed: 01/23/2023] Open
Abstract
Background Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome–nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. Results CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. Conclusions These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02754-3.
Collapse
Affiliation(s)
- Tom van Schaik
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ning Qing Liu
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefano G Manzo
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Present address: Annogen, Amsterdam, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Niu W, Spradling AC. Mouse oocytes develop in cysts with the help of nurse cells. Cell 2022; 185:2576-2590.e12. [PMID: 35623357 DOI: 10.1016/j.cell.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.
Collapse
Affiliation(s)
- Wanbao Niu
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Kaczmarczyk LS, Levi N, Segal T, Salmon-Divon M, Gerlitz G. CTCF supports preferentially short lamina-associated domains. Chromosome Res 2022; 30:123-136. [PMID: 35239049 DOI: 10.1007/s10577-022-09686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
12
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Lamina-associated domains: Tethers and looseners. Curr Opin Cell Biol 2022; 74:80-87. [DOI: 10.1016/j.ceb.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
14
|
Measuring Cytological Proximity of Chromosomal Loci to Defined Nuclear Compartments with TSA-seq. Methods Mol Biol 2022; 2532:145-186. [PMID: 35867249 DOI: 10.1007/978-1-0716-2497-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Distinct nuclear structures and bodies are involved in genome intranuclear positioning. Measuring proximity and relative distances of genomic loci to these nuclear compartments, and correlating this chromosome intranuclear positioning with epigenetic marks and functional readouts genome-wide, will be required to appreciate the true extent to which this nuclear compartmentalization contributes to regulation of genome functions. Here we present detailed protocols for TSA-seq, the first sequencing-based method for estimation of cytological proximity of chromosomal loci to spatially discrete nuclear structures, such as nuclear bodies or the nuclear lamina. TSA-seq uses Tyramide Signal Amplification (TSA) of immunostained cells to create a concentration gradient of tyramide-biotin free radicals which decays exponentially as a function of distance from a point-source target. Reaction of these free radicals with DNA deposits tyramide-biotin onto DNA as a function of distance from the point source. The relative enrichment of this tyramide-labeled DNA versus input DNA, revealed by DNA sequencing, can then be used as a "cytological ruler" to infer relative, or even absolute, mean chromosomal distances from immunostained nuclear compartments. TSA-seq mapping is highly reproducible and largely independent of the target protein or antibody choice for labeling a particular nuclear compartment. Our protocols include variations in TSA labeling conditions to provide varying spatial resolution as well as enhanced sensitivity. Our most streamlined protocol produces TSA-seq spatial mapping over a distance range of ~1 micron from major nuclear compartments using ~10-20 million cells.
Collapse
|
15
|
Murray-Nerger LA, Cristea IM. Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends Biochem Sci 2021; 46:832-847. [PMID: 34148760 DOI: 10.1016/j.tibs.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y, Ma J, Belmont AS. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 2021; 31:251-264. [PMID: 33355299 PMCID: PMC7849416 DOI: 10.1101/gr.266239.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|