1
|
Baumann C, Zhang X, Viveiros MM, De La Fuente R. Pericentric major satellite transcription is essential for meiotic chromosome stability and spindle pole organization. Open Biol 2023; 13:230133. [PMID: 37935356 PMCID: PMC10645078 DOI: 10.1098/rsob.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| |
Collapse
|
2
|
Yang LL, Li YC, Xia TJ, Li S, Feng X, Li C, Xie FY, Ou XH, Ma JY. Dynamic of centromere associated RNAs and the centromere loading of DNA repair proteins in growing oocytes. Front Genet 2023; 14:1131698. [PMID: 37035744 PMCID: PMC10080056 DOI: 10.3389/fgene.2023.1131698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Mammalian centromeres are generally composed of dispersed repeats and the satellites such as α-satellites in human and major/minor satellites in mouse. Transcription of centromeres by RNA polymerase II is evolutionary conserved and critical for kinetochore assembly. In addition, it has been found that the transcribed satellite RNAs can bind DNA repair proteins such as MRE11 and PRKDC, and excessively expressed satellite RNAs could induce genome instability and facilitate tumorigenesis. During the maturation of female oocyte, centromeres are critical for accurate segregation of homologous chromosomes and sister chromatids. However, the dynamics of oocyte centromere transcription and whether it associated with DNA repair proteins are unknown. In this study, we found the transcription of centromeres is active in growing oocytes but it is silenced when oocytes are fully grown. DNA repair proteins like Mlh1, Mre11 and Prkdc are found associated with the minor satellites and this association can be interfered by RNA polymerase II inhibitor α-amanitin. When the growing oocyte is in vitro matured, Mlh1/Mre11/Prkdc foci would release from centromeres to the ooplasm. If the oocytes are treated with Mre11 inhibitor Mirin, the meiosis resumption of growing oocytes with Mre11 foci can be suppressed. These data revealed the dynamic of centromeric transcription in oocytes and its potential association with DNA repair proteins, which provide clues about how oocytes maintain centromere stability and assemble kinetochores.
Collapse
Affiliation(s)
- Lin-Li Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yan-Chu Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tian-Jin Xia
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Sen Li
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chao Li
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yun Xie
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Xiang-Hong Ou, ; Jun-Yu Ma,
| | - Jun-Yu Ma
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Xiang-Hong Ou, ; Jun-Yu Ma,
| |
Collapse
|
3
|
Wu T, Dong J, Fu J, Kuang Y, Chen B, Gu H, Luo Y, Gu R, Zhang M, Li W, Dong X, Sun X, Sang Q, Wang L. The mechanism of acentrosomal spindle assembly in human oocytes. Science 2022; 378:eabq7361. [DOI: 10.1126/science.abq7361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic spindle assembly ensures proper chromosome segregation in oocytes. However, the mechanisms behind spindle assembly in human oocytes remain largely unknown. We used three-dimensional high-resolution imaging of more than 2000 human oocytes to identify a structure that we named the human oocyte microtubule organizing center (huoMTOC). The proteins TACC3, CCP110, CKAP5, and DISC1 were found to be essential components of the huoMTOC. The huoMTOC arises beneath the oocyte cortex and migrates adjacent to the nuclear envelope before nuclear envelope breakdown (NEBD). After NEBD, the huoMTOC fragments and relocates on the kinetochores to initiate microtubule nucleation and spindle assembly. Disrupting the huoMTOC led to spindle assembly defects and oocyte maturation arrest. These results reveal a physiological mechanism of huoMTOC-regulated spindle assembly in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruihuan Gu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Wu T, Gu H, Luo Y, Wang L, Sang Q. Meiotic defects in human oocytes: Potential causes and clinical implications. Bioessays 2022; 44:e2200135. [PMID: 36207289 DOI: 10.1002/bies.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Meiotic defects cause abnormal chromosome segregation leading to aneuploidy in mammalian oocytes. Chromosome segregation is particularly error-prone in human oocytes, but the mechanisms behind such errors remain unclear. To explain the frequent chromosome segregation errors, recent investigations have identified multiple meiotic defects and explained how these defects occur in female meiosis. In particular, we review the causes of cohesin exhaustion, leaky spindle assembly checkpoint (SAC), inherently unstable meiotic spindle, fragmented kinetochores or centromeres, abnormal aurora kinases (AURK), and clinical genetic variants in human oocytes. We mainly focus on meiotic defects in human oocytes, but also refer to the potential defects of female meiosis in mouse models.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Pajpach F, Wu T, Shearwin-Whyatt L, Jones K, Grützner F. Flavors of Non-Random Meiotic Segregation of Autosomes and Sex Chromosomes. Genes (Basel) 2021; 12:genes12091338. [PMID: 34573322 PMCID: PMC8471020 DOI: 10.3390/genes12091338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Segregation of chromosomes is a multistep process occurring both at mitosis and meiosis to ensure that daughter cells receive a complete set of genetic information. Critical components in the chromosome segregation include centromeres, kinetochores, components of sister chromatid and homologous chromosomes cohesion, microtubule organizing centres, and spindles. Based on the cytological work in the grasshopper Brachystola, it has been accepted for decades that segregation of homologs at meiosis is fundamentally random. This ensures that alleles on chromosomes have equal chance to be transmitted to progeny. At the same time mechanisms of meiotic drive and an increasing number of other examples of non-random segregation of autosomes and sex chromosomes provide insights into the underlying mechanisms of chromosome segregation but also question the textbook dogma of random chromosome segregation. Recent advances provide a better understanding of meiotic drive as a prominent force where cellular and chromosomal changes allow autosomes to bias their segregation. Less understood are mechanisms explaining observations that autosomal heteromorphism may cause biased segregation and regulate alternating segregation of multiple sex chromosome systems or translocation heterozygotes as an extreme case of non-random segregation. We speculate that molecular and cytological mechanisms of non-random segregation might be common in these cases and that there might be a continuous transition between random and non-random segregation which may play a role in the evolution of sexually antagonistic genes and sex chromosome evolution.
Collapse
Affiliation(s)
- Filip Pajpach
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Tianyu Wu
- Department of Central Laboratory, Clinical Laboratory, Jing’an District Centre Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Keith Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
- Correspondence:
| |
Collapse
|