1
|
Zhang H, Sun L, Liu J, Wang J, Meng L, Gao Y, Li J, Zhou Q. Immune-related gene signature improves prognosis prediction in patients with breast cancer and associates it with tumor immunity and inflammatory response. BMC Womens Health 2024; 24:446. [PMID: 39113010 PMCID: PMC11304607 DOI: 10.1186/s12905-024-03289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND The prognostic potential of immune-related genes, particularly immune checkpoint inhibitors (ICIs) and long non-coding RNAs (lncRNAs), is gaining attention for evaluating the prognosis of breast cancer patients. METHODS We analyzed 23 datasets to identify 15 ICI-related mRNAs and 5 immune-related lncRNAs, creating a robust immune score (IS). This score was used to classify patients into high and low IS groups and assess their survival outcomes. RESULTS Patients with high IS showed significantly poorer overall survival (OS) and progression-free survival (PFS) compared to those with low IS. Multivariate Cox regression analysis confirmed IS as an independent prognostic factor. Additionally, high IS was associated with higher mutation loads and neoantigen profiles, while low IS correlated with enhanced immune cell infiltration. CONCLUSIONS The immune score developed from ICI-related mRNAs and lncRNAs effectively predicts the prognosis of breast cancer patients and highlights the differential immune and inflammatory responses between patients with varying levels of immune score. This underscores the relevance of IS in guiding therapeutic decisions and tailoring patient management strategies in clinical settings.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Lu Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Jingjing Liu
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Jing Wang
- Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Lingchao Meng
- Department of Pathology, Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Yuan Gao
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jingwu Li
- Department of Breast Center, Tangshan People's Hospital, Tangshan, Hebei, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, Hebei, 063001, China.
| | - Qi Zhou
- Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, Hebei, 063001, China.
| |
Collapse
|
2
|
Giulietti M, Piva F, Cecati M, Maggio S, Guescini M, Saladino T, Scortichini L, Crocetti S, Caramanti M, Battelli N, Romagnoli E. Effects of Eribulin on the RNA Content of Extracellular Vesicles Released by Metastatic Breast Cancer Cells. Cells 2024; 13:479. [PMID: 38534323 DOI: 10.3390/cells13060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs) are small lipid particles secreted by almost all human cells into the extracellular space. They perform the essential function of cell-to-cell communication, and their role in promoting breast cancer progression has been well demonstrated. It is known that EVs released by triple-negative and highly aggressive MDA-MB-231 breast cancer cells treated with paclitaxel, a microtubule-targeting agent (MTA), promoted chemoresistance in EV-recipient cells. Here, we studied the RNA content of EVs produced by the same MDA-MB-231 breast cancer cells treated with another MTA, eribulin mesylate. In particular, we analyzed the expression of different RNA species, including mRNAs, lncRNAs, miRNAs, snoRNAs, piRNAs and tRNA fragments by RNA-seq. Then, we performed differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and miRNA-target identification. Our findings demonstrate the possible involvement of EVs from eribulin-treated cells in the spread of chemoresistance, prompting the design of strategies that selectively target tumor EVs.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Tiziana Saladino
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Laura Scortichini
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Sonia Crocetti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Miriam Caramanti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Nicola Battelli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Emanuela Romagnoli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| |
Collapse
|
3
|
Solaimuthu B, Khatib A, Tanna M, Karmi A, Hayashi A, Abu Rmaileh A, Lichtenstein M, Takoe S, Jolly MK, Shaul YD. The exostosin glycosyltransferase 1/STAT3 axis is a driver of breast cancer aggressiveness. Proc Natl Acad Sci U S A 2024; 121:e2316733121. [PMID: 38215181 PMCID: PMC10801894 DOI: 10.1073/pnas.2316733121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.
Collapse
Affiliation(s)
- Balakrishnan Solaimuthu
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Anees Khatib
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Mayur Tanna
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Abdelrahman Karmi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Arata Hayashi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Areej Abu Rmaileh
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Suranjana Takoe
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur760010, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore560012, India
| | - Yoav David Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| |
Collapse
|
4
|
Zhang Y, Huang Y, Wang B, Shi W, Hu X, Wang Y, Guo Y, Xie H, Xiao W, Li J. Integrated Omics Reveal the Molecular Characterization and Pathogenic Mechanism of Rosacea. J Invest Dermatol 2024; 144:33-42.e2. [PMID: 37437773 DOI: 10.1016/j.jid.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 07/14/2023]
Abstract
Recent efforts have described the transcriptomic landscape of rosacea. However, little is known about its proteomic characteristics. In this study, the proteome and phosphoproteome of lesional skin, paired nonlesional skin, and healthy skin were analyzed by liquid chromatography coupled with tandem mass spectrometry. The molecular characteristics and potential pathogenic mechanism of rosacea were demonstrated by integrating the proteome, phosphoproteome, and previous transcriptome. The proteomic data revealed a significant upregulation of inflammation- and axon extension-related proteins in lesional skin and nonlesional skin versus in healthy skin, implying an inflammatory and nerve-hypersensitive microenvironment in rosacea skin. Of these, axon-related proteins (DPYSL2 and DBNL) were correlated with the Clinician's Erythema Assessment score, and neutrophil-related proteins (ELANE and S100A family) were correlated with the Investigator's Global Assessment score. Moreover, comorbidity-related proteins were differentially expressed in rosacea; of these, SNCA was positively correlated with Clinician's Erythema Assessment score, implying a potential correlation between rosacea and comorbidities. Subsequently, the integrated proteome and transcriptome demonstrated consistent immune disturbances at both the transcriptional and protein levels. The integrative analysis of the proteome and phosphoproteome revealed the key transcription factor network and kinase network that drive the dysregulation of immunity and vasculature in rosacea. In conclusion, our multiomics analysis enables more comprehensive insight into rosacea and offers an opportunity for, to our knowledge, previously unreported treatment strategies.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, The First Hospital of Changsha, Changsha, China; Changsha Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Luo HL, Lee YC, Chang YL, Hsu WC, Wu YT, Jhan JH, Lin HH, Wu YR, Ke HL, Liu HY. MicroRNA-145-5p suppresses cell proliferation, migration, and invasion in upper tract urothelial carcinoma by targeting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. J Cell Biochem 2023; 124:1324-1345. [PMID: 37475541 DOI: 10.1002/jcb.30449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ting Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ru Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Zhu A, Pei D, Zong Y, Fan Y, Wei S, Xing Z, Song S, Wang X, Gao X. Comprehensive analysis to identify a novel diagnostic marker of lung adenocarcinoma and its immune infiltration landscape. Front Oncol 2023; 13:1199608. [PMID: 37409245 PMCID: PMC10319060 DOI: 10.3389/fonc.2023.1199608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Background Lung cancer continues to be a problem faced by all of humanity. It is the cancer with the highest morbidity and mortality in the world, and the most common histological type of lung cancer is lung adenocarcinoma (LUAD), accounting for about 40% of lung malignant tumors. This study was conducted to discuss and explore the immune-related biomarkers and pathways during the development and progression of LUAD and their relationship with immunocyte infiltration. Methods The cohorts of data used in this study were downloaded from the Gene Expression Complex (GEO) database and the Cancer Genome Atlas Program (TCGA) database. Through the analysis of differential expression analysis, weighted gene co-expression network analysis (WGCNA), and least absolute shrinkage and selection operator(LASSO), selecting the module with the highest correlation with LUAD progression, and then the HUB gene was further determined. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were then used to study the function of these genes. Single-sample GSEA (ssGSEA) analysis was used to investigate the penetration of 28 immunocytes and their relationship with HUB genes. Finally, the receiver operating characteristic curve (ROC) was used to evaluate these HUB genes accurately to diagnose LUAD. In addition, additional cohorts were used for external validation. Based on the TCGA database, the effect of the HUB genes on the prognosis of LUAD patients was assessed using the Kaplan-Meier curve. The mRNA levels of some HUB genes in cancer cells and normal cells were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The turquoise module with the highest correlation with LUAD was identified among the seven modules obtained with WGCNA. Three hundred fifty-four differential genes were chosen. After LASSO analysis, 12 HUB genes were chosen as candidate biomarkers for LUAD expression. According to the immune infiltration results, CD4 + T cells, B cells, and NK cells were high in LUAD sample tissue. The ROC curve showed that all 12 HUB genes had a high diagnostic value. Finally, the functional enrichment analysis suggested that the HUB gene is mainly related to inflammatory and immune responses. According to the RT-qPCR study, we found that the expression of DPYSL2, OCIAD2, and FABP4 in A549 was higher than BEAS-2B. The expression content of DPYSL2 was lower in H1299 than in BEAS-2B. However, the expression difference of FABP4 and OCIAD2 genes in H1299 lung cancer cells was insignificant, but both showed a trend of increase. Conclusions The mechanism of LUAD pathogenesis and progression is closely linked to T cells, B cells, and monocytes. 12 HUB genes(ADAMTS8, CD36, DPYSL2, FABP4, FGFR4, HBA2, OCIAD2, PARP1, PLEKHH2, STX11, TCF21, TNNC1) may participate in the progression of LUAD via immune-related signaling pathways.
Collapse
Affiliation(s)
- Ankang Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongchen Pei
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yan Zong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yan Fan
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Wei
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhisong Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuailin Song
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xingcai Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Depletion of Fumarate Hydratase, an Essential TCA Cycle Enzyme, Drives Proliferation in a Two-Step Model. Cancers (Basel) 2022; 14:cancers14225508. [PMID: 36428601 PMCID: PMC9688661 DOI: 10.3390/cancers14225508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Fumarate hydratase (FH) is an evolutionary conserved TCA cycle enzyme that reversibly catalyzes the hydration of fumarate to L-malate and has a moonlight function in the DNA damage response (DDR). Interestingly, FH has a contradictory cellular function, as it is pro-survival through its role in the TCA cycle, yet its loss can drive tumorigenesis. Here, we found that in both non-cancerous (HEK-293T) and cancerous cell lines (HepG2), the cell response to FH loss is separated into two distinct time frames based on cell proliferation and DNA damage repair. During the early stages of FH loss, cell proliferation rate and DNA damage repair are inhibited. However, over time the cells overcome the FH loss and form knockout clones, indistinguishable from WT cells with respect to their proliferation rate. Due to the FH loss effect on DNA damage repair, we assumed that the recovered cells bear adaptive mutations. Therefore, we applied whole-exome sequencing to identify such mutated genes systematically. Indeed, we identified recurring mutations in genes belonging to central oncogenic signaling pathways, such as JAK/STAT3, which we validated in impaired FH-KO clones. Intriguingly, we demonstrate that these adaptive mutations are responsible for FH-KO cell proliferation under TCA cycle malfunction.
Collapse
|