1
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
2
|
Wang L, Wang Y, Ke Z, Wang Z, Guo Y, Zhang Y, Zhang X, Guo Z, Wan B. Liquid-liquid phase separation: a new perspective on respiratory diseases. Front Immunol 2024; 15:1444253. [PMID: 39391315 PMCID: PMC11464301 DOI: 10.3389/fimmu.2024.1444253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is integral to various biological processes, facilitating signal transduction by creating a condensed, membrane-less environment that plays crucial roles in diverse physiological and pathological processes. Recent evidence has underscored the significance of LLPS in human health and disease. However, its implications in respiratory diseases remain poorly understood. This review explores current insights into the mechanisms and biological roles of LLPS, focusing particularly on its relevance to respiratory diseases, aiming to deepen our understanding and propose a new paradigm for studying phase separation in this context.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
He L, Wang Q, Wang X, Zhou F, Yang C, Li Y, Liao L, Zhu Z, Ke F, Wang Y. Liquid-liquid phase separation is essential for reovirus viroplasm formation and immune evasion. J Virol 2024; 98:e0102824. [PMID: 39194247 PMCID: PMC11406895 DOI: 10.1128/jvi.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhou
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wang Y, Ma C, Wang S, Wu H, Chen X, Ma J, Wang L, Qiu HJ, Sun Y. Advances in the immunoescape mechanisms exploited by alphaherpesviruses. Front Microbiol 2024; 15:1392814. [PMID: 38962133 PMCID: PMC11221368 DOI: 10.3389/fmicb.2024.1392814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Alphaherpesviruses, categorized as viruses with linear DNA composed of two complementary strands, can potentially to induce diseases in both humans and animals as pathogens. Mature viral particles comprise of a core, capsid, tegument, and envelope. While herpesvirus infection can elicit robust immune and inflammatory reactions in the host, its persistence stems from its prolonged interaction with the host, fostering a diverse array of immunoescape mechanisms. In recent years, significant advancements have been achieved in comprehending the immunoescape tactics employed by alphaherpesviruses, including pseudorabies virus (PRV), herpes simplex virus (HSV), varicella-zoster virus (VZV), feline herpesvirus (FeHV), equine herpesvirus (EHV), and caprine herpesvirus type I (CpHV-1). Researchers have unveiled the intricate adaptive mechanisms existing between viruses and their natural hosts. This review endeavors to illuminate the research advancements concerning the immunoescape mechanisms of alphaherpesviruses by delineating the pertinent proteins and genes involved in virus immunity. It aims to furnish valuable insights for further research on related mechanisms and vaccine development, ultimately contributing to virus control and containment efforts.
Collapse
Affiliation(s)
- Yimin Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuanqi Chen
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Zhou Y, Tian X, Wang S, Gao M, Zhang C, Ma J, Cheng X, Bai L, Qin HB, Luo MH, Qin Q, Jiang B, Lan K, Zhang J. Palmitoylation of KSHV pORF55 is required for Golgi localization and efficient progeny virion production. PLoS Pathog 2024; 20:e1012141. [PMID: 38626263 PMCID: PMC11051623 DOI: 10.1371/journal.ppat.1012141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/26/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.
Collapse
Affiliation(s)
- Yaru Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiali Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Hai-Bin Qin
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Baishan Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Giraud G, Rodà M, Huchon P, Michelet M, Maadadi S, Jutzi D, Montserret R, Ruepp MD, Parent R, Combet C, Zoulim F, Testoni B. G-quadruplexes control hepatitis B virus replication by promoting cccDNA transcription and phase separation in hepatocytes. Nucleic Acids Res 2024; 52:2290-2305. [PMID: 38113270 PMCID: PMC10954475 DOI: 10.1093/nar/gkad1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Phase separation regulates fundamental processes in gene expression and is mediated by the local concentration of proteins and nucleic acids, as well as nucleic acid secondary structures such as G-quadruplexes (G4s). These structures play fundamental roles in both host gene expression and in viral replication due to their peculiar localisation in regulatory sequences. Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is an episomal minichromosome whose persistence is at the basis of chronic infection. Identifying the mechanisms controlling its transcriptional activity is indispensable to develop new therapeutic strategies against chronic hepatitis B. The aim of this study was to determine whether G4s are formed in cccDNA and regulate viral replication. Combining biochemistry and functional studies, we demonstrate that cccDNA indeed contains ten G4s structures. Furthermore, mutations disrupting two G4s located in the enhancer I HBV regulatory region altered cccDNA transcription and viral replication. Finally, we showed for the first time that cccDNA undergoes phase separation in a G4-dependent manner to promote its transcription in infected hepatocytes. Altogether, our data give new insight in the transcriptional regulation of the HBV minichromosome that might pave the way for the identification of novel targets to destabilize or silence cccDNA.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Mélanie Rodà
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Pélagie Huchon
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
- Université Claude-Bernard Lyon I, 69003 Lyon, France
| | - Maud Michelet
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Sarah Maadadi
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 lyon, france; université claude-bernard lyon i, 69003 Lyon, France
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, WC2R 2LS London, UK
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors 69367Lyon, France
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, WC2R 2LS London, UK
| | - Romain Parent
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Christophe Combet
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
- Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Service, Hospices Civils de Lyon, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| |
Collapse
|
7
|
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol 2024; 436:168380. [PMID: 38061626 DOI: 10.1016/j.jmb.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.
Collapse
|
8
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
9
|
Zhou S, Deng H. Induction of membraneless organelles as a strategy for HIV-1 post-nuclear entry steps. J Mol Cell Biol 2023; 15:mjad013. [PMID: 36857294 PMCID: PMC10262190 DOI: 10.1093/jmcb/mjad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Affiliation(s)
- Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
12
|
Chung WC, Ahn JH, Song MJ. Liquid-liquid phase separation drives herpesvirus assembly in the cytoplasm. J Cell Biol 2023; 222:e202211015. [PMID: 36542408 PMCID: PMC9779906 DOI: 10.1083/jcb.202211015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a fundamental mechanism to compartmentalize biomolecules into membraneless organelles. In this issue, Zhou et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202201088), report that MHV-68 ORF52 undergoes LLPS to form cytoplasmic virion assembly compartments, regulating the spatiotemporal compartmentalization of viral components.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Department of Microbiology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|