1
|
Yin X, Dai F, Ran D, Zhang Y, Qu Z, Zheng S. Cysteine protease cathepsin B promotes lysosome integrity to extend the lifespan of alternative day fasting worms. Aging Cell 2024; 23:e14286. [PMID: 39046045 PMCID: PMC11561666 DOI: 10.1111/acel.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative day fasting (ADF) has been shown to enhance the lifespan of animals. However, human trials evaluating the efficacy of ADF have only recently emerged, presenting challenges due to the extreme nature of this dietary regimen. To better understand the effects of ADF, we investigated its impact using Caenorhabditis elegans as a model organism. Our findings reveal that ADF extends the lifespan of worms nourished on animal-based protein source, while those fed with plant-based protein as the primary protein source do not experience such benefits. Remarkably, initiating ADF during midlife is sufficient to prolong lifespan, whereas implementation during youth results in developmental damage, and in older age, fails to provide additional extension effects. Furthermore, we discovered that midlife ADF up-regulates the expression of two cysteine protease cathepsin B genes, cpr-2 and cpr-5, which preserve lysosomal integrity and enhance its function in digesting aggregated proteins, as well as enhancing lipid metabolism and ameliorating neurodegenerative disease markers and phenomena during aging. This suggests that midlife ADF has long lasting anti-aging effects and may delay the onset of related diseases, specifically in animals consuming animal-based protein source. These findings offer valuable insights into the effects of ADF and provide guidance for future research and potential applications in individuals.
Collapse
Affiliation(s)
- Xue Yin
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Fangzhou Dai
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Dongyang Ran
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Yutong Zhang
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Zhi Qu
- School of Nursing and HealthHenan UniversityKaifengChina
| | - Shanqing Zheng
- School of Basic Medical SciencesHenan UniversityKaifengChina
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineMedical School of Henan UniversityKaifengChina
- The Zhongzhou Laboratory for Integrative BiologyZhengzhouHenanChina
| |
Collapse
|
2
|
Chi WY, Lee GH, Tang MJ, Chen BH, Lin WL, Fu TF. Disturbed intracellular folate homeostasis impairs autophagic flux and increases hepatocytic lipid accumulation. BMC Biol 2024; 22:146. [PMID: 38956599 PMCID: PMC11220954 DOI: 10.1186/s12915-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.
Collapse
Affiliation(s)
- Wan-Yu Chi
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Holzapfel R, Prell A, Schumacher F, Perschin V, Friedmann Angeli JP, Kleuser B, Stigloher C, Fazeli G. Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles. Eur J Cell Biol 2024; 103:151411. [PMID: 38582051 DOI: 10.1016/j.ejcb.2024.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Collapse
Affiliation(s)
- Rebecca Holzapfel
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Core-Facility BioSupraMol, Pharma-MS subunit, Freie Universität Berlin, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Gholamreza Fazeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Morse J, Wang D, Mei S, Whitham D, Hladun C, Darie CC, Sintim HO, Wang M, Leung K. Chloride Homeostasis Regulates cGAS-STING Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588475. [PMID: 38645072 PMCID: PMC11030317 DOI: 10.1101/2024.04.08.588475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cGAS-STING signaling pathway has emerged as a key mediator of inflammation. However, the roles of chloride homeostasis on this pathway are unclear. Here, we uncovered a correlation between chloride homeostasis and cGAS-STING signaling. We found that dysregulation of chloride homeostasis attenuates cGAS-STING signaling in a lysosome-independent manner. Treating immune cells with chloride channel inhibitors attenuated 2'3'-cGAMP production by cGAS and also suppressed STING polymerization, leading to reduced cytokine production. We also demonstrate that non-selective chloride channel blockers can suppress the NPC1 deficiency-induced, hyper-activated STING signaling in skin fibroblasts derived from Niemann Pick disease type C (NPC) patients. Our findings reveal that chloride homeostasis majorly affects cGAS-STING pathway and suggest a provocative strategy to dampen STING-mediated inflammation via targeting chloride channels.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danna Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Serena Mei
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danielle Whitham
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - KaHo Leung
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| |
Collapse
|
6
|
Li L, Liu X, Yang S, Li M, Wu Y, Hu S, Wang W, Jiang A, Zhang Q, Zhang J, Ma X, Hu J, Zhao Q, Liu Y, Li D, Hu J, Yang C, Feng W, Wang X. The HEAT repeat protein HPO-27 is a lysosome fission factor. Nature 2024; 628:630-638. [PMID: 38538795 DOI: 10.1038/s41586-024-07249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.
Collapse
Affiliation(s)
- Letao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xilu Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Yanwei Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Siqi Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junbing Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junyan Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiaohong Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yubing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Southwest United Graduate School, Kunming, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Bose S, de Heus C, Kennedy ME, Wang F, Jentsch TJ, Klumperman J, Stauber T. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl -/H + Exchanger ClC-7. Biomolecules 2023; 13:1799. [PMID: 38136669 PMCID: PMC10742274 DOI: 10.3390/biom13121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
ClC-7 is a ubiquitously expressed voltage-gated Cl-/H+ exchanger that critically contributes to lysosomal ion homeostasis. Together with its β-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration. Interestingly, not all osteopetrosis-causing CLCN7 mutations from patients are associated with a loss of ion transport. Some rather result in an acceleration of voltage-dependent ClC-7 activation. Recently, a gain-of-function variant, ClC-7Y715C, that yields larger ion currents upon heterologous expression, was identified in two patients with neurodegeneration, organomegaly and albinism. However, neither the patients nor a mouse model that carried the equivalent mutation developed osteopetrosis, although expression of ClC-7Y715C induced the formation of enlarged intracellular vacuoles. Here, we investigated how, in transfected cells with mutant ClC-7, the substitution of this tyrosine impinged on the morphology and function of lysosomes. Combinations of the tyrosine mutation with mutations that either uncouple Cl- from H+ counter-transport or strongly diminish overall ion currents were used to show that increased ClC-7 Cl-/H+ exchange activity is required for the formation of enlarged vacuoles by membrane fusion. Degradation of endocytosed material was reduced in these compartments and resulted in an accumulation of lysosomal storage material. In cells expressing the ClC-7 gain-of-function mutant, autophagic clearance was largely impaired, resulting in a build-up of autophagic material.
Collapse
Affiliation(s)
- Shroddha Bose
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cecilia de Heus
- Center for Molecular Medicine/Cell Biology, University Medical Center (UMC), 3584 CX Utrecht, The Netherlands
| | - Mary E. Kennedy
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Fan Wang
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Judith Klumperman
- Center for Molecular Medicine/Cell Biology, University Medical Center (UMC), 3584 CX Utrecht, The Netherlands
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Coppola MA, Gavazzo P, Zanardi I, Tettey-Matey A, Liantonio A, Fong P, Pusch M. Distinct ClC-6 and ClC-7 Cl - sensitivities provide insight into ClC-7's role in lysosomal Cl - homeostasis. J Physiol 2023; 601:5635-5653. [PMID: 37937509 PMCID: PMC10842065 DOI: 10.1113/jp285431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
ClC-6 and ClC-7 are closely related, intracellular Cl- /H+ antiporters belonging to the CLC family of channels and transporters. They localize to acidic late endosomes and lysosomes and probably function in ionic homeostasis of these contiguous compartments. ClC-7 transport function requires association with the accessory protein Ostm1, whereas ClC-6 transport does not. To elucidate their roles in endo-lysosomes, we measured Cl- - and pH-dependences of over-expressed wild-type ClC-6 and ClC-7, as well as disease-associated mutants, using high-resolution recording protocols. Lowering extracellular Cl- (corresponding to luminal Cl- in endo-lysosomes) reduced ClC-6 currents, whereas it increased transport activity of ClC-7/Ostm1. Low extracellular Cl- activated ClC-7/Ostm 1 under acidic extracellular conditions, as well as under conditions of low intracellular chloride. Activation is conserved in ClC-7Y713C , a variant displaying disrupted PI(3,5)P2 inhibition. Detailed biophysical analysis of disease-associated ClC-6 and ClC-7 gain-of-function (GoF) variants, ClC-6Y553C and ClC-7Y713C , and the ClC-7Y577C and ClC-6Y781C correlates, identified additional functional nuances distinguishing ClC-6 and ClC-7. ClC-7Y577C recapitulated GoF produced by ClC-6Y553C . ClC-6Y781C displayed transport activation qualitatively similar to ClC-7Y713C , although current density did not differ from that of wild-type ClC-6. Finally, rClC-7R760Q , homologous to hClC-7R762Q , an osteopetrosis variant with fast gating kinetics, appeared indifferent to extracellular Cl- , identifying altered Cl- sensitivity as a plausible mechanism underlying disease. Collectively, the present studies underscore the distinct roles of ClC-6 and ClC-7 within the context of their respective localization to late endosomes and lysosomes. In particular, we suggest the atypical inhibition of ClC-7 by luminal Cl- serves to limit excessive intraluminal Cl- accumulation. KEY POINTS: ClC-6 and ClC-7 are late endosomal and lysosomal 2 Cl- /1 H+ exchangers, respectively. When targeted to the plasma membrane, both activate slowly at positive voltages. ClC-6 activity is decreased in low extracellular (i.e. luminal) chloride, whereas ClC-7 is activated by low luminal chloride, even at acidic pH. The functional gain-of-function phenotypes of the ClC-6 and ClC-7 disease mutations ClC-6Y553C and ClC-7Y715C are maintained when introduced in their respective homologues, ClC-7Y577C and ClC-6Y781C , with all mutations retaining chloride dependence of the respective wild type (WT). An osteopetrosis mutation of ClC-7 displaying fast gating kinetics (R762Q) was less sensitive to extracellular chloride compared to WT. The opposing substrate dependences of ClC-6 and ClC-7 Cl- / H+ exchangers point to non-overlapping physiological functions, leading us to propose that inhibition of ClC-7 by luminal chloride and protons serves to prevent osmotic stress imposed by hyper-accumulation of chloride.
Collapse
Affiliation(s)
- Maria Antonietta Coppola
- Institute of Biophysics, CNR, Genoa, Italy
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | | | | | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | | |
Collapse
|
9
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Villalobos TV, Ghosh B, DeLeo KR, Alam S, Ricaurte-Perez C, Wang A, Mercola BM, Butsch TJ, Ramos CD, Das S, Eymard ED, Bohnert KA, Johnson AE. Tubular lysosome induction couples animal starvation to healthy aging. NATURE AGING 2023; 3:1091-1106. [PMID: 37580394 PMCID: PMC10501908 DOI: 10.1038/s43587-023-00470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Dietary restriction promotes longevity in several species via autophagy activation. However, changes to lysosomes underlying this effect remain unclear. Here using the nematode Caenorhabditis elegans, we show that the induction of autophagic tubular lysosomes (TLs), which occurs upon dietary restriction or mechanistic target of rapamycin inhibition, is a critical event linking reduced food intake to lifespan extension. We find that starvation induces TLs not only in affected individuals but also in well-fed descendants, and the presence of gut TLs in well-fed progeny is predictive of enhanced lifespan. Furthermore, we demonstrate that expression of Drosophila small VCP-interacting protein, a TL activator in flies, artificially induces TLs in well-fed worms and improves C. elegans health in old age. These findings identify TLs as a new class of lysosomes that couples starvation to healthy aging.
Collapse
Affiliation(s)
- Tatiana V Villalobos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bhaswati Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn R DeLeo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Sanaa Alam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Andrew Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Brennan M Mercola
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tyler J Butsch
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Cara D Ramos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Suman Das
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Eric D Eymard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Alyssa E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Feng X, Liu S, Xu H. Not just protons: Chloride also activates lysosomal acidic hydrolases. J Cell Biol 2023; 222:e202305007. [PMID: 37191899 PMCID: PMC10191866 DOI: 10.1083/jcb.202305007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Lysosomal hydrolases require an acidic lumen for their optimal activities. In this issue, two independent groups (Wu et al. 2023. J. Cell Biol.https://doi.org/10.1083/jcb.202208155; Zhang et al. 2023. J. Cell. Biol.https://doi.org/10.1083/jcb.202210063) report that hydrolase activation also requires high intralysosomal Cl-, which is established by the lysosomal Cl-/H+ exchanger ClC-7.
Collapse
Affiliation(s)
- Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- International School of Medicine, Zhejiang University, Yiwu, China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|