1
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Uryvaeva IV, Mikaelyan AS, Dashenkova NO, Marshak TL. Chromothripsis in Hepatocarcinogenesis: The Role of a Micronuclear Aberration and Polyploidy. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018050163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Hintzsche H, Hemmann U, Poth A, Utesch D, Lott J, Stopper H. Fate of micronuclei and micronucleated cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:85-98. [PMID: 28342454 DOI: 10.1016/j.mrrev.2017.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/24/2023]
Abstract
The present review describes available evidence about the fate of micronuclei and micronucleated cells. Micronuclei are small, extranuclear chromatin bodies surrounded by a nuclear envelope. The mechanisms underlying the formation of micronuclei are well understood but not much is known about the potential fate of micronuclei and micronucleated cells. Many studies with different experimental approaches addressed the various aspects of the post-mitotic fate of micronuclei and micronucleated cells. These studies are reviewed here considering four basic possibilities for potential fates of micronuclei: degradation of the micronucleus or the micronucleated cell, reincorporation into the main nucleus, extrusion from the cell, and persistence in the cytoplasm. Two additional fates need to be considered: premature chromosome condensation/chromothripsis and the elimination of micronucleated cells by apoptosis, yielding six potential fates for micronuclei and/or micronucleated cells. The available data is still limited, but it can be concluded that degradation and extrusion of micronuclei might occur in rare cases under specific conditions, reincorporation during the next mitosis occurs more frequently, and the majority of the micronuclei persist without alteration at least until the next mitosis, possibly much longer. Overall, the consequences of micronucleus formation on the cellular level are still far from clear, but they should be investigated further because micronucleus formation may contribute to the initial and later steps of malignant cell transformation, by causing gain or loss of genetic material in the daughter cells and by the possibility of massive chromosome rearrangement in chromosomes entrapped within a micronucleus by the mechanisms of chromothripsis and chromoanagenesis.
Collapse
Affiliation(s)
- Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany; Bavarian Health and Food Safety Authority, Erlangen, Germany.
| | - Ulrike Hemmann
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | | |
Collapse
|
4
|
Donley N, Smith L, Thayer MJ. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15. PLoS Genet 2015; 11:e1004923. [PMID: 25569254 PMCID: PMC4287527 DOI: 10.1371/journal.pgen.1004923] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 result in delayed replication and structural instability of human chromosome 15. Characterization of this locus identified long, RNA transcripts that are retained in the nucleus and form a “cloud” on one homolog of chromosome 15. We also found that this locus displays asynchronous replication that is coordinated with other random monoallelic genes on chromosome 15. We have named this locus ASynchronous replication and Autosomal RNA on chromosome 15, or ASAR15. Previously, we found that disruption of the ASAR6 lincRNA gene results in delayed replication, delayed mitotic condensation and structural instability of human chromosome 6. Previous studies in the mouse found that deletion of the Xist gene, from the X chromosome in adult somatic cells, results in a delayed replication and instability phenotype that is indistinguishable from the phenotype caused by disruption of either ASAR6 or ASAR15. In addition, delayed replication and chromosome instability were detected following structural rearrangement of many different human or mouse chromosomes. These observations suggest that all mammalian chromosomes contain similar cis-acting loci. Thus, under this scenario, all mammalian chromosomes contain four distinct types of essential cis-acting elements: origins, telomeres, centromeres and “inactivation/stability centers”, all functioning to promote proper replication, segregation and structural stability of each chromosome. Mammalian cells replicate their DNA along each chromosome during a precise temporal replication program. In this report, we used a novel “chromosome-engineering” strategy to identify a DNA element that controls this replication-timing program of human chromosome 15. Characterization of this element indicated that it encodes large non-protein-coding RNAs that are retained in the nucleus and form a “cloud” on one copy of chromosome 15. Previously, we found that structural rearrangements of a similar element on human chromosome 6 causes delayed replication and structural instability of chromosome 6. Mammalian chromosomes are known to contain three distinct types of essential DNA elements that promote proper chromosome function. Thus, every chromosome contains: 1) origins of replication, which are responsible for proper initiation of DNA synthesis; 2) centromeres, which are responsible for proper chromosome separation during cell division; and 3) telomeres, which are responsible for replication and protection of the ends of linear chromosomes. Our work supports a model in which all mammalian chromosomes contain a fourth type of essential DNA element, the “inactivation/stability center”, which is responsible for proper DNA replication timing and structural stability of each chromosome.
Collapse
Affiliation(s)
- Nathan Donley
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Leslie Smith
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Mathew J. Thayer
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
5
|
Thayer MJ. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. Bioessays 2012; 34:760-70. [PMID: 22706734 DOI: 10.1002/bies.201200035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.
Collapse
Affiliation(s)
- Mathew J Thayer
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
6
|
Carr AM, Paek AL, Weinert T. DNA replication: failures and inverted fusions. Semin Cell Dev Biol 2011; 22:866-74. [PMID: 22020070 DOI: 10.1016/j.semcdb.2011.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
DNA replication normally follows the rules passed down from Watson and Crick: the chromosome duplicates as dictated by its antiparallel strands, base-pairing and leading and lagging strand differences. Real-life replication is more complicated, fraught with perils posed by chromosome damage for one, and by transcription of genes and by other perils that disrupt progress of the DNA replication machinery. Understanding the replication fork, including DNA structures, associated replisome and its regulators, is key to understanding how cells overcome perils and minimize error. Replication fork error leads to genome rearrangements and, potentially, cell death. Interest in the replication fork and its errors has recently gained added interest by the results of deep sequencing studies of human genomes. Several pathologies are associated with sometimes-bizarre genome rearrangements suggestive of elaborate replication fork failures. To try and understand the links between the replication fork, its failure and genome rearrangements, we discuss here phases of fork behavior (stall, collapse, restart and fork failures leading to rearrangements) and analyze two examples of instability from our own studies; one in fission yeast and the other in budding yeast.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, UK.
| | | | | |
Collapse
|
7
|
Stevens JB, Abdallah BY, Regan SM, Liu G, Bremer SW, Ye CJ, Heng HH. Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation. Mol Cytogenet 2010; 3:20. [PMID: 20959006 PMCID: PMC2974731 DOI: 10.1186/1755-8166-3-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022] Open
Abstract
Mitotic cell death is an important form of cell death, particularly in cancer. Chromosome fragmentation is a major form of mitotic cell death which is identifiable during common cytogenetic analysis by its unique phenotype of progressively degraded chromosomes. This morphology however, can appear similar to the morphology of premature chromosome condensation (PCC) and thus, PCC has been at times confused with chromosome fragmentation. In this analysis the phenomena of chromosome fragmentation and PCC are reviewed and their similarities and differences are discussed in order to facilitate differentiation of the similar morphologies. Furthermore, chromosome pulverization, which has been used almost synonymously with PCC, is re-examined. Interestingly, many past reports of chromosome pulverization are identified here as chromosome fragmentation and not PCC. These reports describe broad ranging mechanisms of pulverization induction and agree with recent evidence showing chromosome fragmentation is a cellular response to stress. Finally, biological aspects of chromosome fragmentation are discussed, including its application as one form of non-clonal chromosome aberration (NCCA), the driving force of cancer evolution.
Collapse
Affiliation(s)
- Joshua B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Batoul Y Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Sarah M Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Steven W Bremer
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Christine J Ye
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
8
|
Abstract
The p53 tumor suppressor inhibits the proliferation of cells which undergo prolonged activation of the mitotic checkpoint. However, the function of this antiproliferative response is not well defined. Here we report that p53 suppresses structural chromosome instability following mitotic arrest in human cells. In both HCT116 colon cancer cells and normal human fibroblasts, DNA breaks occurred during mitotic arrest in a p53-independent manner, but p53 was required to suppress the proliferation and structural chromosome instability of the resulting polyploid cells. In contrast, cells made polyploid without mitotic arrest exhibited neither significant structural chromosome instability nor p53-dependent cell cycle arrest. We also observed that p53 suppressed both the frequency and structural chromosome instability of spontaneous polyploids in HCT116 cells. Furthermore, time-lapse videomicroscopy revealed that polyploidization of p53−/− HCT116 cells is frequently accompanied by mitotic arrest. These data suggest that a function of the p53-dependent postmitotic response is the prevention of structural chromosome instability following prolonged activation of the mitotic checkpoint. Accordingly, our study suggests a novel mechanism of tumor suppression for p53, as well as a potential role for p53 in the outcome of antimitotic chemotherapy.
Collapse
|
9
|
|
10
|
Abstract
In recent years, the significance of apoptosis as a process in cell loss from normal tissue and tumours has been critically reviewed. In addition, the general lack of a correlation between radiation or drug-induced apoptosis and cell survival responses (using the clonogenic assay) in tumour cells has been demonstrated. Several different reasons have been discussed by other authors. It is the purpose of this review to argue that there are many different forms of cell death (terminal differentiation, micronucleation, mitotic catastrophe or multinucleation) that, like apoptosis, are regulated by the cell. In this context, apoptosis was the first cell death mechanism associated with active involvement of the cell (signal transduction). Furthermore, a large variety of different in vitro and a few in vivo models published so far show that the form of cell death can shift from, for example, mitotic catastrophe to apoptosis. The shift appears to be a general principle and depends on the cell model examined, the stressor type and the stressor intensity. These considerations help to explain the absence of a simple link between apoptosis and clonogenicity and suggest how to overcome that limitation, which has implications for the significance of apoptosis where the diagnosis and prognosis of cancer are concerned.
Collapse
Affiliation(s)
- M Abend
- Institute of Radiobiology, German Armed Forces, Ernst-von-Bergmann-Kaserne Neuherbergstr. 11, D-80937 Munich, Germany.
| |
Collapse
|
11
|
|
12
|
Kuhn EM, Therman E, Buchler DA. Do individual allocyclic chromosomes in metaphase reflect their interphase domains? Hum Genet 1987; 77:210-3. [PMID: 3679207 DOI: 10.1007/bf00284471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Individual S phase allocyclic chromosomes have been analyzed in Bloom syndrome lymphocytes, in cells with an r(9), and in hypotetraploid Ehrlich mouse ascites cells treated with 1-methyl-2-benzyl hydrazine. On the basis of the following observations, we conclude that such chromosomes more or less reflect their domains in interphase: (1) The S phase allocyclic chromosomes have the same structure as S phase prematurely condensed chromatin (PCC) in fused cells; in other words they form limited areas of chromatin dots; (2) the allocyclic chromosome is the only chromosome in a metaphase plate which synthesizes DNA simultaneously with interphase nuclei; (3) the size of the allocyclic chromosomes is related to the size of the corresponding metaphase chromosome; and (4) the S phase allocyclic chromosomes resemble closely the chromosome domains in interphase made visible with biotinylated human DNA. A variety of evidence shows that most allocyclic chromosomes are simply left behind in their cycle, which presumably is caused by a deletion or inactivation of a hypothetical coiling center situated on each chromosome arm.
Collapse
Affiliation(s)
- E M Kuhn
- Department of Obstetrics and Gynecology, University of Wisconsin Medical School, Mount Sinai Medical Center, Milwaukee 53201
| | | | | |
Collapse
|
13
|
Gustavino B, Vitagliano E, Sottili A, Rizzoni M. A comparison between short-term evolution of micronuclei induced by X-rays and colchicine in root tips of Vicia faba. Mutat Res 1987; 192:109-19. [PMID: 3657839 DOI: 10.1016/0165-7992(87)90106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The short-term evolution of micronuclei derived from acentric fragments and whole chromosomes was studied in root tips of Vicia faba. Micronuclei were induced by X-rays (30 cGy and 120 cGy) and colchicine (10(-5) M and 3 X 10(-4) M). Frequencies of chromosome breakage or loss of micronuclei in interphase and mitotic cells were studied. The DNA content of micronuclei in interphase cells was also measured. Micronuclei derived from whole chromosome showed a higher probability to survive and to undergo mitotic condensation in synchrony with main nuclei than micronuclei derived from an acentric fragment. PCC (Premature Chromosome Condensation) was not observed for both types of micronuclei in Vicia faba, in contrast to the ones reported in mammalian cells in culture.
Collapse
Affiliation(s)
- B Gustavino
- Dipartimento di Biologia, Facoltà di Scienze M.F.N., II Università di Roma, Torvergata, Italy
| | | | | | | |
Collapse
|
14
|
Streffer C, Molls M. Cultures of Preimplantation Mouse Embryos: A Model for Radiobiological Studies. ADVANCES IN RADIATION BIOLOGY 1987. [DOI: 10.1016/b978-0-12-035413-9.50008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Zeindl E, Klose J. Effect of radioactive amino acids on chromosomes, viability and two-dimensional protein patterns of cultured mammalian cells. Electrophoresis 1984. [DOI: 10.1002/elps.1150050511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Abstract
The behavior of individual allocyclic chromosomes has been analyzed in lymphocytes of a sister and a brother with Bloom's syndrome. Of 4,633 46 diploid cells, 115 showed allocyclic chromosomes, and 74 of these had 44, 45 or 46 normal metaphase chromosomes accompanied by one or two allocyclic chromosomes. Of 56 tetraploid cells, 9 contained such chromosomes. The allocyclic chromosomes appeared "pulverized" or extended corresponding to S or G2 PCC. We have proposed the hypothesis that individual allocyclic chromosomes do not, as a rule, come from micronuclei, as has often been assumed, but have been left behind in their cycle. This would be caused by a mutation or deletion of a hypothetical coiling center situated near the centromere of each chromosome arm. The following observations agree with our explanation but less well or not at all with the idea of micronuclei: (1) In only 9.6% of the cells does the allocyclic chromosome lie at the edge of the metaphase plate. (2) In 24 cells a part of a chromosome is "pulverized" while the rest is in metaphase. (3) Both a "pulverized" and an extended chromosome were present in the same cell. (4) A "pulverized" acrocentric is often nose-to-nose with a normal D or G chromosome. (5) No allocyclic chromosomes corresponding to G1 PCC have been found in our material. (6) When a ring is replaced by an allocyclic chromosome, it is usually a member of a 46-chromosome complement. Furthermore, the occurrence of allocyclic chromosomes is correlated with that of other chromosome anomalies which do not follow a Poisson distribution. Allocyclic chromosomes are also more frequent (16%) in tetraploid than in diploid cells (2%).
Collapse
|
17
|
Andersen HA. Replication and functions of macronuclear DNA in synchronously growing populations of Tetrahymena pyriformis. ACTA ACUST UNITED AC 1977. [DOI: 10.1007/bf02910452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Huang CC, Ninan TA, Petricciani JC. Extensive chromosome aberrations caused by [3H]thymidine incorporation in a diploid monkey cell line DBS-FRhL-2. IN VITRO 1975; 11:234-8. [PMID: 1176159 DOI: 10.1007/bf02616339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extensive chromosome aberrations were induced in a diploid monkey cell line designated as DBS-FRhL-2 after exposure to [3H]thymidine ([3H]Tdr) for either 30 or 60 min at a dose of 1 muCi per ml of medium. Cultures exposed to [3H]Tdr for a longer period had significantly larger numbers of aberrations than those exposed for a shorter period. The most common type of aberrations were chromatid breaks. The majority of aberrations were observed in cells which were in contact with [3H]Tdr during S phase, especially the middle S. Cells from cultures of early and late passages exposed to [3H]Tdr were affected to a similar extent when chromosomes were examined. No clear relationship between sites of breakage and intensity of labeling could be established.
Collapse
|
19
|
Kürten S, Obe G. Premature chromosme condensation in the bone marrow of Chinese hamster after application of bleomycin in vivo. Mutat Res 1975; 27:285-94. [PMID: 48189 DOI: 10.1016/0027-5107(75)90089-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Chinese hamster bone marrow was used as a test system in vivo to analyse the chromosome-danaging effect of bleomycin. Both chromosome and chromatid aberrations were found. Mitoses with aberrations (Ma) show a linear dose-effect relationship after a recovery time of 24 h, the same hold true for cells with micronuclei (Cm) and for mitoses with premature chromosome condensation (PCC). The dose-effect relationships for Ma, Cm and PCC run parallel to each other with Ma at the highest and PCC at the lowest level (Ma greater than Cm greater than PCC). The time-effect relationships for Ma, Cm and PCC show that after 12 h recovery time there are no PCCs but the highest frequencies of Ma and Cm indicating that most cells are in their first post-treatment mitoses or Gi-phases at this fixation time. In addition to the frequency determinations autoradiographic analysis were performed to clarigy the nature of the PCCs. The results are interpreted as follows: bleomycin induces chromosomal aberrations that in turn give rise to micronuclei by means of lagging chromatin, main and micronuclei eventually become asynchronous in their cell cycles and mitosing main nuclei induce PCC in the micronuclei.
Collapse
|