1
|
Tsai FC, Koenderink GH. Shape control of lipid bilayer membranes by confined actin bundles. SOFT MATTER 2015; 11:8834-8847. [PMID: 26395896 DOI: 10.1039/c5sm01583a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In living cells, lipid membranes and biopolymers determine each other's conformation in a delicate force balance. Cellular polymers such as actin filaments are strongly confined by the plasma membrane in cell protrusions such as lamellipodia and filopodia. Conversely, protrusion formation is facilitated by actin-driven membrane deformation and these protrusions are maintained by dense actin networks or bundles of actin filaments. Here we investigate the mechanical interplay between actin bundles and lipid bilayer membranes by reconstituting a minimal model system based on cell-sized liposomes with encapsulated actin filaments bundled by fascin. To address the competition between the deformability of the membrane and the enclosed actin bundles, we tune the bundle stiffness (through the fascin-to-actin molar ratio) and the membrane rigidity (through protein decoration). Using confocal microscopy and quantitative image analysis, we show that actin bundles deform the liposomes into a rich set of morphologies. For liposomes having a small membrane bending rigidity, the actin bundles tend to generate finger-like membrane protrusions that resemble cellular filopodia. Stiffer bundles formed at high crosslink density stay straight in the liposome body, whereas softer bundles formed at low crosslink density are bent and kinked. When the membrane has a large bending rigidity, membrane protrusions are suppressed. In this case, membrane enclosure forces the actin bundles to organize into cortical rings, to minimize the energy cost associated with filament bending. Our results highlight the importance of taking into account mechanical interactions between the actin cytoskeleton and the membrane to understand cell shape control.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- FOM Institute AMOLF, Systems Biophysics Department, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Gijsje Hendrika Koenderink
- FOM Institute AMOLF, Systems Biophysics Department, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Vetter R, Wittel FK, Herrmann HJ. Morphogenesis of filaments growing in flexible confinements. Nat Commun 2014; 5:4437. [PMID: 25026967 DOI: 10.1038/ncomms5437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/18/2014] [Indexed: 01/28/2023] Open
Abstract
Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements--perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.
Collapse
Affiliation(s)
- R Vetter
- Computational Physics for Engineering Materials, IfB, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| | - F K Wittel
- Computational Physics for Engineering Materials, IfB, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| | - H J Herrmann
- Computational Physics for Engineering Materials, IfB, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Osmolyte permeability in molluscan red cells is regulated by Ca2+ and membrane protein phosphorylation: The present perspective. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jez.1402680215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Politis AD, Pierce SK. Specific protein phosphorylation occurs in molluscan red blood cell ghosts in response to hypoosmotic stress. J Membr Biol 1991; 124:169-77. [PMID: 1762142 DOI: 10.1007/bf01870461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of cellular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in 32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist, chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus, contribute to hypoosmotic cell volume regulation.
Collapse
Affiliation(s)
- A D Politis
- Department of Zoology, University of Maryland, College Park 20742
| | | |
Collapse
|
5
|
Cohen WD. The cytoskeletal system of nucleated erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 130:37-84. [PMID: 1778729 DOI: 10.1016/s0074-7696(08)61501-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- W D Cohen
- Department of Biological Sciences, Hunter College of CUNY, New York 10021
| |
Collapse
|
6
|
Cohen WD, Cohen MF, Tyndale-Biscoe CH, VandeBerg JL, Ralston GB. The cytoskeletal system of mammalian primitive erythrocytes: studies in developing marsupials. CELL MOTILITY AND THE CYTOSKELETON 1990; 16:133-45. [PMID: 2376068 DOI: 10.1002/cm.970160207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Seeking to resolve conflicting literature on cytoskeletal structure in mammalian "primitive" generation erythrocytes, we have utilized the circulating blood of developing marsupials. In young of the Tammar Wallaby (Macropus eugenii) and the Gray Short-tailed Opossum (Monodelphis domestica), relatively large, nucleated primitive erythrocytes constituted nearly 100% of the circulating population at birth (= day 0) and in fetuses (Tammar) several days before birth. These cells were discoidal or elliptical, and flattened except for a nuclear bulge. Their cytoskeletal system, consisting of a marginal band of microtubules enclosed within a cell surface-associated network (membrane skeleton), closely resembled that of non-mammalian vertebrate erythrocytes. By day 2 or 3, much smaller anucleate erythrocytes of "definitive" morphology, lacking marginal bands, appeared in abundance. These accounted for greater than 90% of the circulating population of both species by day 6-8. Non-nucleated erythrocytes of a different type, constituting 1-6% of the cells in most blood samples up to day 7, were identified as anucleate primitives on the basis of size, shape, and presence of a marginal band. Thus, loss of erythrocyte nuclei in mammals appears to begin earlier than generally recognized, i.e., in the primitive generation. Counts of these anucleate primitives in young of various ages implicated nucleated primitives as their probable source. Pointed erythrocytes, occasionally found in younger neonates of both species, occurred in greatest number in fetuses (Tammar) prior to birth. This is in accord with previous work on non-mammalian vertebrates suggesting that such cells are morphogenetic intermediates. The results confirm the long-suspected similarity between mammalian primitive erythrocytes and the nucleated erythrocytes of all non-mammalian vertebrates.
Collapse
Affiliation(s)
- W D Cohen
- Department of Biological Sciences, Hunter College of C.U.N.Y., New York
| | | | | | | | | |
Collapse
|
7
|
Marc J, Mineyuki Y, Palevitz BA. A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules. PLANTA 1989; 179:530-540. [PMID: 24201776 DOI: 10.1007/bf00397592] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/1989] [Accepted: 07/18/1989] [Indexed: 06/02/2023]
Abstract
The generation of the unique radial array of microtubules (MTs) in stomatal guard cells raises questions about the location and activities of relevant MT-organizing centers. By using tubulin immunofluorescence microscopy, we studied the pattern of depolymerization and reassembly of MTs in guard cells of Allium cepa L. Chilling at 0°C reduces the MTs to small remnants that surround the nuclear surface of cells in the early postcytokinetic stage, or form a dense layer along the central portion of the ventral wall in older guard cells. A rapid reassembly on rewarming restores either MTs extending from the nuclear surface randomly throughout the cytoplasm in very young cells, or an array of MTs radiating from the dense layer at the ventral wall later in development. A similar pattern of depolymerization and reassembly is achieved by incubation with 100 μM colchicine followed by a brief irradiation with ultraviolet (UV) light. Incubation with 200 μM colchicine leads to a complete depolymerization that leaves only a uniform, diffuse cytoplasmic fluorescence. Nonetheless, UV irradiation of developing guard cells induces the regeneration of a dense layer of MTs at the ventral wall. The layer is again positioned centrally along the wall, even if the nucleus has been displaced by centrifugation in the presence of cytochalasin D. Neither the regenerated layer nor the perinuclear MTs seen earlier are related to the staining pattern of serum 5051, which reportedly binds to centrosomal material in animal and plant cells. The results support the view that, soon after cytokinesis, a planar MT-organizing zone is established in the cortex along the central portion of the ventral wall, which then generates the radial MT array.
Collapse
Affiliation(s)
- J Marc
- Department of Botany, University of Georgia, 30602, Athens, GA, USA
| | | | | |
Collapse
|
8
|
Ginsburg MF, Twersky LH, Cohen WD. Cellular morphogenesis and the formation of marginal bands in amphibian splenic erythroblasts. CELL MOTILITY AND THE CYTOSKELETON 1989; 12:157-68. [PMID: 2653647 DOI: 10.1002/cm.970120305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The spleen of Ambystoma mexicanum (axolotl) larvae develops as a closed sac containing differentiating nucleated erythrocytes, and is typically isolated from the general circulation for about 10 days post-hatching. Beginning 3-4 days posthatching, it can be removed intact for examination of the morphology and cytoskeletal structure of the erythropoietic cells. In the smallest (earliest) spleens, spheroidal cells predominate, while older ones contain a preponderance of cells exhibiting the flattened elliptical morphology typical of all non-mammalian vertebrate erythrocytes. Most striking in the splenic erythroid population are cells with singly or doubly pointed morphology. Though common in the developing spleen and circulation of young larvae, pointed cells are less frequently encountered in the circulation of older larvae, indicating that they are intermediate stages in the differentiation of spheroids to flattened ellipsoids. This is supported by structural observations on cytoskeletons prepared from the splenic cells. Incomplete singly and doubly pointed marginal bands of microtubules are observed, many of which contain a pair of centrioles within or close to a pointed end, suggestive of organizing center function. The observations are consistent with a sequence of changes in cell morphology from spherical to doubly pointed to singly pointed to flattened ellipse, causally linked to stages of marginal band biogenesis.
Collapse
Affiliation(s)
- M F Ginsburg
- Department of Biological Sciences, Hunter College of the City University of New York, NY 10021
| | | | | |
Collapse
|
9
|
Affiliation(s)
- E Lazarides
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|
10
|
Kim S, Magendantz M, Katz W, Solomon F. Development of a differentiated microtubule structure: formation of the chicken erythrocyte marginal band in vivo. J Biophys Biochem Cytol 1987; 104:51-9. [PMID: 3793761 PMCID: PMC2117030 DOI: 10.1083/jcb.104.1.51] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The microtubules of mature nucleated erythrocytes are organized into a marginal band that is confined to a single plane at the periphery and that contains essentially the same number of microtubule profiles in each individual cell. Developing erythrocytes can be isolated in homogeneous and synchronously developing populations from chicken embryos. For these reasons, these cells offer a particularly accessible system for study of the pathway leading to a specific microtubule structure in a normal, terminally differentiated animal cell. Along this developmental course, striking changes occur in the properties of the microtubules. Between the postmitotic cell and the formation of the band, a novel arrangement is found: bundles of laterally associated microtubules in each cell, coursing through the cytoplasm but not confined to the periphery. The microtubule organizing centers evident at early stages disappear by the time the band forms. The microtubules in early cells are readily depolymerized by drugs, but that drug sensitivity is lost in the mature cells. The microtubule arrangement of mature cells is faithfully recapitulated after reversible depolymerization, while that of the immature cells is not. Finally, as the band forms, the microtubules and microfilaments increasingly become coaligned. In sum, the microtubules of immature cells have many properties in common with those of cultured cells, but during maturation those properties change. The results suggest that lateral interactions become increasingly important in stabilizing and organizing the microtubules. The properties of marginal band microtubules, and comparable properties of axonal microtubules, may reflect differences between the requirements for cytoskeletal structures of cycling cells and terminally differentiated cells.
Collapse
|
11
|
Vorobjev IA, Nadezhdina ES. The centrosome and its role in the organization of microtubules. INTERNATIONAL REVIEW OF CYTOLOGY 1987; 106:227-93. [PMID: 3294718 DOI: 10.1016/s0074-7696(08)61714-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Centonze VE, Sloboda RD. A protein factor from Bufo marinus erythrocytes cross-bridges microtubules in vitro. Exp Cell Res 1986; 167:471-83. [PMID: 3095129 DOI: 10.1016/0014-4827(86)90187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A microtubule cross-bridging factor was isolated from erythrocytes of the toad, Bufo marinus. Erythrocytes were lysed and their cytoskeletons disassembled by sonication and high salt extraction. The solubilized proteins were recovered and fractionated using Sephadex G-200 column chromatography. The protein fractions from the column were analysed by SDS-PAGE and pooled into three groups: high molecular weight (HMW) proteins that eluted from the column in the void volume and had a protein composition that included HMW polypeptides; intermediate MW proteins that were shown by SDS-PAGE to contain polypeptides smaller than 120,000 D; and low MW (LMW) proteins that contained polypeptides smaller than 70,000 D. Each group was further fractionated by phosphocellulose (PC) chromatography. The flow-through was recovered, and bound proteins were then eluted by a step gradient of salt (0.2, 0.4, 0.6 and 0.8 M KCl). To assay for microtubule cross-bridging activity, column fractions were incubated with taxol-stabilized microtubules, formed from PC-purified brain tubulin (PC microtubules). Negatively stained samples were examined in the electron microscope for the reconstitution of microtubule bundles with interconnecting cross-bridges. The HMW protein fraction from the G-200 column contained the cross-bridging factor. When these proteins were further fractionated by PC chromatography only the fraction eluted by 0.2 M KCl induced the formation of microtubule bundles with cross-bridges. No other protein fraction isolated by the described method revealed cross-bridges between microtubules in vitro.
Collapse
|
13
|
|
14
|
Hogetsu T. Re-formation of microtubules in Closterium ehrenbergii Meneghini after cold-induced depolymerization. PLANTA 1986; 167:437-43. [PMID: 24240358 DOI: 10.1007/bf00391218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/1985] [Accepted: 12/30/1985] [Indexed: 05/26/2023]
Abstract
Immunofluorescence microscopy was used to examine the re-formation of microtubules (MT), after cold-induced depolymerization, in Closterium ehrenbergii. The C. ehrenbergii cells undergo cell division followed by semicell expansion in the dark period of daily light-dark cycles. Five types of MTs, namely the MT ring, hair-like MTs around the nuclei, spindle MTs, radially arranged MTs and transverse wall MTs, appeared and disappeared sequentially during and following cell division. The wall MTs were distributed transversely only in the expanding new semicells. When cells were chilled in ice water, wall MTs in expanding cells were fragmented, and then disappeared as did the other types of MTs, within 5 min. When cells were warmed at 20°C after 2 h chilling, wall MTs and the other types of MTs re-formed. At the early stage of wall-MT re-formation in expanding cells, small, star-like MTs were formed, and then randomly oriented MTs developed in both the expanding new and the old semicells. The MT ring was also re-formed at the boundary between the new and old semicells. There were no obvious MT-organizing centers in the random arrangement. As time passed, the randomly oriented wall MTs in the old semicells disappeared and those in the expanding new semicells gradually assumed a transverse orientation. These results indicate that wall MTs can be rearranged transversely after they have been re-formed and that nucleation of wall MTs is separable from the mechanism for ordering them.
Collapse
Affiliation(s)
- T Hogetsu
- Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, 153, Tokyo, Japan
| |
Collapse
|
15
|
Murphy DB, Grasser WA, Wallis KT. Immunofluorescence examination of beta tubulin expression and marginal band formation in developing chicken erythroblasts. J Cell Biol 1986; 102:628-35. [PMID: 3511076 PMCID: PMC2114065 DOI: 10.1083/jcb.102.2.628] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chicken erythrocyte beta tubulin, a tubulin variant with unique biochemical and assembly properties, is found to be specifically contained in two chicken blood cell types--erythrocytes and thrombocytes. The beta tubulin variant is absent or present in low amounts in a variety of white blood cell types and other body tissues, as determined by immunofluorescence microscopy and a semi-quantitative immunoblotting procedure. During differentiation in the marrow the beta tubulin variant appears suddenly in mid-stage erythroblasts at the onset of hemoglobin synthesis, and forming marginal bands are seen in all subsequent polychromatophilic erythroblast stages. The developmental sequence of events in marginal band formation entails microtubule nucleation at the centrosome, followed by microtubule elongation, consolidation of loose parallel microtubules into a compact bundle, and microtubule association with the cell membrane.
Collapse
|
16
|
Centonze VE, Ruben GC, Sloboda RD. Structure and composition of the cytoskeleton of nucleated erythrocytes: III. Organization of the cytoskeleton of Bufo marinus erythrocytes as revealed by freeze-dried platinum-carbon replicas and immunofluorescence microscopy. CELL MOTILITY AND THE CYTOSKELETON 1986; 6:376-88. [PMID: 3093107 DOI: 10.1002/cm.970060404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platinum-carbon (Pt-C) replicas of freeze-dried erythrocyte cytoskeletons of the toad, Bufo marinus, were prepared using a modified Balzers 300 system. Examination in stereo of replicas of the microtubule-containing marginal band revealed filaments projecting from the microtubule walls to form links between adjacent microtubules. These cross-bridging proteins may bundle the microtubules into the configuration of the marginal band (MB) and may also serve to stabilize the structure. The MB appears to have linkages to components of the surface-associated cytoskeleton (SAC). The SAC forms a continuous matrix that spreads across the upper and lower surfaces of the cell adjacent to the plasma membrane and extends around the outer perimeter of the MB. Thus, the SAC encapsulates the MB and the central nucleus. After lysis, the elements of the cytoskeleton remain in a configuration similar to that found in the whole cell. Spectrin (fodrin) and actin were identified by immunofluorescence in the region of the SAC. When labeled with antibodies specific for vimentin and synemin, a network of intermediate filaments can be detected in the region between the nucleus and the MB. These vimentin filaments are also enclosed within the SAC and appear in Pt-C replicas to emerge from the area of the nuclear envelope. As the filaments extend toward the periphery of the cell, they form attachments to the SAC. Attachments of intermediate filaments to both the nucleus and the SAC thus appear to anchor the nucleus in its central position within the cytoskeleton.
Collapse
|
17
|
Miller M, Solomon F. Kinetics and intermediates of marginal band reformation: evidence for peripheral determinants of microtubule organization. J Biophys Biochem Cytol 1984; 99:70s-75s. [PMID: 6746732 PMCID: PMC2275584 DOI: 10.1083/jcb.99.1.70s] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The microtubules of the mature erythrocyte of the chicken are confined to a band at the periphery. Whole-mount electron microscopy after extraction reveals that the number of microtubules in each cell is almost the same. All the microtubules can be depolymerized by incubation in the cold, and the marginal band can be quantitatively and qualitatively reformed by return to 39 degrees C. These properties allow the reformation of the marginal band to be treated as an in vivo microtubule assembly reaction. The kinetics of this reaction and the intermediates detected during reformation suggest a mechanism of microtubule organization that is distinct from that observed in other cell types. Apparently only one or two growing microtubule ends are available for assembly--assembly is only detected at the cell periphery, even at early times--and there is no evidence of the participation of a microtubule-organizing center.
Collapse
|
18
|
Joseph-Silverstein J, Cohen WD. The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells. J Cell Biol 1984; 98:2118-25. [PMID: 6144686 PMCID: PMC2113052 DOI: 10.1083/jcb.98.6.2118] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Marginal bands (MBs) of microtubules are believed to function during morphogenesis of nonmammalian vertebrate erythrocytes, but there has been little evidence favoring a continuing role in mature cells. To test MB function, we prepared dogfish erythrocytes with and without MBs at the same temperature by (a) stabilization of the normally cold-labile MB at 0 degree C by taxol, and (b) inhibition of MB reassembly at room temperature by nocodazole or colchicine. We then compared the responses of these cells to mechanical stress by fluxing them through capillary tubes. Before fluxing , cells with or without MBs had normal flattened elliptical shape. After fluxing , deformation was consistently observed in a much greater percentage of cells lacking MBs. The difference in percent deformation between the two cell types was highly significant. That the MB is an effector of cell shape was further documented in studies of the formation of singly or doubly pointed dogfish erythrocytes that appear during long-term incubation of normal cells at room temperature. On-slide perfusion experiments revealed that the pointed cells contain MBs of corresponding pointed morphology. Incubation of cells with and without MBs showed that they become pointed only when they contain MBs, indicating that the MB acts as a flexible frame which can deform and support the cell surface from within. To test this idea further, cells with and without MBs were exposed to hyperosmotic conditions. Many of the cells without MBs collapsed and shriveled , whereas those with MBs did not. The results support the view that the MB has a continuing function in mature erythrocytes, resisting deformation and/or rapidly returning deformed cells to an efficient equilibrium shape in the circulation.
Collapse
|