1
|
Chung S, Knox-Johnson IG, Gazzard SE, Song R, Le NH, Cullen-McEwen LA, Bertram JF, Purcell AW, Braun A. The Validation of Antibodies Suitable for Flow Cytometric Analysis and Immunopeptidomics of Peptide-MHC Complexes in the Outbred Swiss Albino Mouse Strain. Methods Protoc 2025; 8:43. [PMID: 40407470 PMCID: PMC12101307 DOI: 10.3390/mps8030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
Antigen presentation on major histocompatibility complex (MHC) molecules is central to the initiation of immune responses, and a lot of our understanding about the antigen processing and presentation pathway has been gained through studies in mice. MHC molecules are the most genetically diverse genes; consequently, mouse strains differ substantially in their MHC make up and resulting antigen presentation. Swiss mice are commonly used in pharmacological research, yet our understanding of antigen presentation in this strain is surprisingly limited. Here, we have tested a range of anti-MHC antibodies and present a range of clones suitable to analyse MHC class I and class II molecules in Swiss mice who have the H2-q MHC haplotype. Moreover, we demonstrate using immunopeptidomics that clones 28-12-8, 34-1-2, MKD6, and N22 are also suited to isolate MHC class I and class II ligands in this mouse strain. Thus, this work also establishes a first experimental account of the H2-q-derived thymus and spleen immunopeptidome in Swiss mice which bears strong resemblance with ligands isolated from the H2-d MHC haplotype of Balb/C mice. The analysis of source proteins shows common but also organ- and function-specific antigen presentation in line with the involvement of the thymus in tolerance induction and the function of the spleen as a site of immune responses.
Collapse
Affiliation(s)
- Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| | - Isambard G. Knox-Johnson
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| | - Sarah E. Gazzard
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; (S.E.G.); (L.A.C.-M.); (J.F.B.)
| | - Runqiu Song
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| | - Ngoc H. Le
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| | - Luise A. Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; (S.E.G.); (L.A.C.-M.); (J.F.B.)
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; (S.E.G.); (L.A.C.-M.); (J.F.B.)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| | - Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (S.C.); (I.G.K.-J.); (R.S.); (N.H.L.)
| |
Collapse
|
2
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
3
|
A previously unappreciated polymorphism in the beta chain of I-A s expressed in autoimmunity-prone SJL mice: Combined impact on antibody, CD4 T cell recognition and MHC class II dimer structural stability. Mol Immunol 2022; 143:17-26. [PMID: 34995990 PMCID: PMC9261112 DOI: 10.1016/j.molimm.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/14/2023]
Abstract
In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the β chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.
Collapse
|
4
|
Lantz O, Teyton L. Identification of T cell antigens in the 21st century, as difficult as ever. Semin Immunol 2022; 60:101659. [PMID: 36183497 PMCID: PMC10332289 DOI: 10.1016/j.smim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identifying antigens recognized by T cells is still challenging, particularly for innate like T cells that do not recognize peptides but small metabolites or lipids in the context of MHC-like molecules or see non-MHC restricted antigens. The fundamental reason for this situation is the low affinity of T cell receptors for their ligands coupled with a level of degeneracy that makes them bind to similar surfaces on antigen presenting cells. Herein we will describe non-exhaustively some of the methods that were used to identify peptide antigens and briefly mention the high throughput methods more recently proposed for that purpose. We will then present how the molecules recognized by innate like T cells (NKT, MAIT and γδ T cells) were discovered. We will show that serendipity was instrumental in many cases.
Collapse
Affiliation(s)
- Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Born WK, O'Brien RL. Becoming aware of γδ T cells. Adv Immunol 2022; 153:91-117. [PMID: 35469596 DOI: 10.1016/bs.ai.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery that B cells and αβ T cells exist was predictable: These cells gave themselves away through their products and biological effects. In contrast, there was no reason to anticipate the existence of γδ T cells. Even the accidental discovery of a novel TCR-like gene (later named γ) that did not encode TCR α or β proteins did not immediately change this. TCR-like γ had no obvious function, and its early expression in the thymus encouraged speculation about a possible role in αβ T cell development. However, the identification of human PBL-derived cell-lines which expressed CD3 in complex with the TCR-like γ protein, but not the αβ TCR, first indicated that a second T cell-type might exist, and the TCR-like γ chain was observed to co-precipitate with another protein. Amid speculation about a possible second TCR, this potential dimeric partner was named δ. To determine if the δ protein was indeed TCR-like, we undertook to sequence it. Meanwhile, a fourth TCR-like gene was discovered and provisionally named x. TCR-like x had revealed itself through genomic rearrangements early in T cell development, and was an attractive candidate for the gene encoding δ. The observation that δ protein sequences matched the predicted amino acid sequences encoded by the x gene, as well as serological cross-reactivity, confirmed that the TCR-like x gene indeed encoded the δ protein. Thus, the γδ heterodimer was established as a second TCR, and the cells that express it (the γδ T cells) consequently represented a third lymphocyte-population with the potential of recognizing diverse antigens. Soon, it became clear that γδ T cells are widely distributed and conserved among the vertebrate species, implying biological importance. Consistently, early functional studies revealed their roles in host resistance to pathogens, tissue repair, immune regulation, metabolism, organ physiology and more. Albeit discovered late, γδ T cells have repeatedly proven to play a distinct and often critical immunological role, and now generate much interest.
Collapse
Affiliation(s)
- Willi K Born
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.
| | - Rebecca L O'Brien
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
6
|
Whittington KB, Prislovsky A, Beaty J, Albritton L, Radic M, Rosloniec EF. CD8 + T Cells Expressing an HLA-DR1 Chimeric Antigen Receptor Target Autoimmune CD4 + T Cells in an Antigen-Specific Manner and Inhibit the Development of Autoimmune Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:16-26. [PMID: 34819392 PMCID: PMC8702470 DOI: 10.4049/jimmunol.2100643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Ag-specific immunotherapy is a long-term goal for the treatment of autoimmune diseases; however developing a means of therapeutically targeting autoimmune T cells in an Ag-specific manner has been difficult. Through the engineering of an HLA-DR1 chimeric Ag receptor (CAR), we have produced CD8+ CAR T cells that target CD4+ T cells in an Ag-specific manner and tested their ability to inhibit the development of autoimmune arthritis in a mouse model. The DR1 CAR molecule was engineered to contain CD3ζ activation and CD28 signaling domains and a covalently linked autoantigenic peptide from type II collagen (CII; DR1-CII) to provide specificity for targeting the autoimmune T cells. Stimulation of the DR1-CII CAR T cells by an anti-DR Ab induced cytokine production, indicating that the DR1-CAR functions as a chimeric molecule. In vitro CTL assays using cloned CD4+ T cells as target cells demonstrated that the DR1-CII CAR T cells efficiently recognize and kill CD4+ T cells that are specific for the CII autoantigen. The CTL function was highly specific, as no killing was observed using DR1-restricted CD4+ T cells that recognize other Ags. When B6.DR1 mice, in which autoimmune arthritis had been induced, were treated with the DR1-CII CAR T cells, the CII-specific autoimmune CD4+ T cell response was significantly decreased, autoantibody production was suppressed, and the incidence and severity of the autoimmune arthritis was diminished. These data demonstrate that HLA-DR CAR T cells have the potential to provide a highly specific therapeutic approach for the treatment of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Jacob Beaty
- Department of Medicine, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Lorraine Albritton
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Edward F. Rosloniec
- Veterans Affairs Medical Center, Memphis TN 38104,Department of Medicine, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163,Department of Pathology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
7
|
Biomedical Applications of Biogenic Zinc Oxide Nanoparticles Manufactured from Leaf Extracts of Calotropis gigantea (L.) Dryand. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00746-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
White J, O'Brien RL, Born WK. BW5147 and Derivatives for the Study of T Cells and their Antigen Receptors. Arch Immunol Ther Exp (Warsz) 2020; 68:15. [PMID: 32419056 DOI: 10.1007/s00005-020-00579-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Like B cells, T cells can be immortalized through hybridization with lymphoma cells, a technique that has been particularly useful in the study of the T cell receptors (TCR) for antigen. In T cell hybridizations, the AKR mouse strain-derived thymus lymphoma BW5147 is by far the most popular fusion line. However, the full potential of this technology had to await inactivation of the productively rearranged TCR-α and -β genes in the lymphoma. BWα-β-, the TCR-gene deficient variant of the original lymphoma, which has become the fusion line of choice for αβ T cells, is now available with numerous modifications, enabling the investigation of many aspects of TCR-mediated responses and TCR-structure. Unexpectedly, inactivating BW's functional TCR-α gene also rendered the lymphoma more permissive for the expression of TCR-γδ, facilitating the study of γδ T cells, their TCRs, and their TCR-mediated reactivity.
Collapse
Affiliation(s)
- Janice White
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, 80045, USA
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Marrack P. Obsessive-Compulsive Behavior Isn't Necessarily a Bad Thing. Annu Rev Immunol 2020; 38:1-21. [PMID: 31594433 DOI: 10.1146/annurev-immunol-072319-033325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αβ receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.
Collapse
Affiliation(s)
- Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA; .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
10
|
Kuczma MP, Szurek EA, Cebula A, Chassaing B, Jung YJ, Kang SM, Fox JG, Stecher B, Ignatowicz L. Commensal epitopes drive differentiation of colonic T regs. SCIENCE ADVANCES 2020; 6:eaaz3186. [PMID: 32494613 PMCID: PMC7164940 DOI: 10.1126/sciadv.aaz3186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/23/2020] [Indexed: 05/29/2023]
Abstract
The gut microbiome is the largest source of intrinsic non-self-antigens that are continuously sensed by the immune system but typically do not elicit lymphocyte responses. CD4+ T cells are critical to sustain uninterrupted tolerance to microbial antigens and to prevent intestinal inflammation. However, clinical interventions targeting commensal bacteria-specific CD4+ T cells are rare, because only a very limited number of commensal-derived epitopes have been identified. Here, we used a new approach to study epitopes and identify T cell receptors expressed by CD4+Foxp3+ (Treg) cells specific for commensal-derived antigens. Using this approach, we found that antigens from Akkermansia muciniphila reprogram naïve CD4+ T cells to the Treg lineage, expand preexisting microbe specific Tregs, and limit wasting disease in the CD4+ T cell transfer model of colitis. These data suggest that the administration of specific commensal epitopes may help to widen the repertoire of specific Tregs that control intestinal inflammation.
Collapse
Affiliation(s)
- Michal P. Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta A. Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- INSERM U1016, Team “Mucosal microbiota in chronic inflammatory diseases”, Paris, France
- Université de Paris, Paris, France
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Bennett NR, Jarvis CM, Alam MM, Zwick DB, Olson JM, Nguyen HVT, Johnson JA, Cook ME, Kiessling LL. Modular Polymer Antigens To Optimize Immunity. Biomacromolecules 2019; 20:4370-4379. [PMID: 31609600 DOI: 10.1021/acs.biomac.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subunit vaccines can have excellent safety profiles, but their ability to give rise to robust immune responses is often compromised. For glycan-based vaccines, insufficient understanding of B and T cell epitope combinations that yield optimal immune activation hinders optimization. To determine which antigen features promote desired IgG responses, we synthesized epitope-functionalized polymers using ring-opening metathesis polymerization (ROMP) and assessed the effect of B and T cell epitope loading. The most robust responses were induced by polymers with a high valency of B and T cell epitopes. Additionally, IgG responses were greater for polymers with T cell epitopes that are readily liberated upon endosomal processing. Combining these criteria, we used ROMP to generate a nontoxic, polymeric antigen that elicited stronger antibody responses than a comparable protein conjugate. These findings highlight principles for designing synthetic antigens that elicit strong IgG responses against inherently weak immune targets such as glycans.
Collapse
|
12
|
Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019; 71:513-518. [PMID: 31418051 PMCID: PMC6790186 DOI: 10.1007/s00251-019-01127-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022]
Abstract
Demonstration that immature CD4 + 8+ thymocytes contain T cell precursors that are subjected to positive and negative selection was the major step towards understanding how the adaptive immune system acquires the ability to distinguish foreign or abnormal (mutated or infected) self-cells from normal (healthy) cells. In the present review, the roles of TCR, CD4, CD8, and MHC molecules in intrathymic selection and some of the crucial experiments that contributed to the solution of the great immunological puzzle of self/nonself discrimination are described in an historical perspective. Recently, these experiments were highlighted by the immunological community by awarding the 2016 Novartis Prize for Immunology to Philippa Marrack, John Kappler, and Harald von Boehmer.
Collapse
Affiliation(s)
- Paweł Kisielow
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl St. 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
13
|
Neunkirchner A, Kratzer B, Köhler C, Smole U, Mager LF, Schmetterer KG, Trapin D, Leb-Reichl V, Rosloniec E, Naumann R, Kenner L, Jahn-Schmid B, Bohle B, Valenta R, Pickl WF. Genetic restriction of antigen-presentation dictates allergic sensitization and disease in humanized mice. EBioMedicine 2018; 31:66-78. [PMID: 29678672 PMCID: PMC6014064 DOI: 10.1016/j.ebiom.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immunoglobulin(Ig)E-associated allergies result from misguided immune responses against innocuous antigens. CD4+ T lymphocytes are critical for initiating and perpetuating that process, yet the crucial factors determining whether an individual becomes sensitized towards a given allergen remain largely unknown. OBJECTIVE To determine the key factors for sensitization and allergy towards a given allergen. METHODS We here created a novel human T cell receptor(TCR) and human leucocyte antigen (HLA)-DR1 (TCR-DR1) transgenic mouse model of asthma, based on the human-relevant major mugwort (Artemisia vulgaris) pollen allergen Art v 1 to examine the critical factors for sensitization and allergy upon natural allergen exposure via the airways in the absence of systemic priming and adjuvants. RESULTS Acute allergen exposure led to IgE-independent airway hyperreactivity (AHR) and T helper(Th)2-prone lung inflammation in TCR-DR1, but not DR1, TCR or wildtype (WT) control mice, that was alleviated by prophylactic interleukin(IL)-2-αIL-2 mAb complex-induced expansion of Tregs. Chronic allergen exposure sensitized one third of single DR1 transgenic mice, however, without impacting on lung function. Similar treatment led to AHR and Th2-driven lung pathology in >90% of TCR-DR1 mice. Prophylactic and therapeutic expansion of Tregs with IL-2-αIL-2 mAb complexes blocked the generation and boosting of allergen-specific IgE associated with chronic allergen exposure. CONCLUSIONS We identify genetic restriction of allergen presentation as primary factor dictating allergic sensitization and disease against the major pollen allergen from the weed mugwort, which frequently causes sensitization and disease in humans. Furthermore, we demonstrate the importance of the balance between allergen-specific T effector and Treg cells for modulating allergic immune responses.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Kratzer
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cordula Köhler
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas F Mager
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus G Schmetterer
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Edward Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, 38163, TN, USA; Memphis Veterans Affairs Medical Center, 38104, TN, USA; Department of Pathology, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Ronald Naumann
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lukas Kenner
- Department of Laboratory Animal Pathology, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Falta MT, Tinega AN, Mack DG, Bowerman NA, Crawford F, Kappler JW, Pinilla C, Fontenot AP. Metal-specific CD4+ T-cell responses induced by beryllium exposure in HLA-DP2 transgenic mice. Mucosal Immunol 2016; 9:218-28. [PMID: 26129650 PMCID: PMC4698108 DOI: 10.1038/mi.2015.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/16/2015] [Indexed: 02/04/2023]
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disorder that is associated with the accumulation of beryllium (Be)-specific CD4(+) T cells into the lung. Genetic susceptibility is linked to HLA-DPB1 alleles that possess a glutamic acid at position 69 (βGlu69), and HLA-DPB1*02:01 is the most prevalent βGlu69-containing allele. Using HLA-DP2 transgenic (Tg) mice, we developed a model of CBD that replicates the major features of the human disease. Here we characterized the T-cell receptor (TCR) repertoire of Be-responsive CD4(+) T cells derived from the lungs of Be oxide-exposed HLA-DP2 Tg mice. The majority of Be-specific T-cell hybridomas expressed TCR Vβ6, and a subset of these hybridomas expressed identical or nearly identical β-chains that were paired with different α-chains. We delineated mimotopes that bind to HLA-DP2 and form a complex recognized by Be-specific CD4(+) T cells in the absence of Be. These Be-independent peptides possess an arginine at p5 and a tryptophan at p7 that surround the Be-binding site within the HLA-DP2 acidic pocket and likely induce charge and conformational changes that mimic those induced by the Be(2+) cation. Collectively, these data highlight the interplay between peptides and Be in the generation of an adaptive immune response in metal-induced hypersensitivity.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Natalie A. Bowerman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Frances Crawford
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206 USA
| | - John W. Kappler
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206 USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121 USA
| | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
,Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
15
|
Abstract
The mammalian immune system has evolved to respond to pathogenic, environmental, and cellular changes in order to maintain the health of the host. These responses include the comparatively primitive innate immune response, which represents a rapid and relatively nonspecific reaction to challenge by pathogens and the more complex cellular adaptive immune response. This adaptive response evolves with the pathogenic challenge, involves the cross talk of several cell types, and is highly specific to the pathogen due to the liberation of peptide antigens and their presentation on the surface of affected cells. Together these two forms of immunity provide a surveillance mechanism for the system-wide scrutiny of cellular function, environment, and health. As such the immune system is best understood at a systems biology level, and studies that combine gene expression, protein expression, and liberation of peptides for antigen presentation can be combined to provide a detailed understanding of immunity. This chapter details our experience in identifying peptide antigens and combining this information with more traditional proteomics approaches to understand the generation of immune responses on a holistic level.
Collapse
|
16
|
Massilamany C, Gangaplara A, Basavalingappa RH, Rajasekaran RA, Khalilzad-Sharghi V, Han Z, Othman S, Steffen D, Reddy J. Localization of CD8 T cell epitope within cardiac myosin heavy chain-α334-352 that induces autoimmune myocarditis in A/J mice. Int J Cardiol 2015; 202:311-21. [PMID: 26422020 DOI: 10.1016/j.ijcard.2015.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiac myosin heavy chain-α (Myhc), an intracellular protein expressed in the cardiomyocytes, has been identified as a major autoantigen in cardiac autoimmunity. In our studies with Myhc334-352-induced experimental autoimmune myocarditis in A/J mice (H-2a), we discovered that Myhc334-352, supposedly a CD4 T cell epitope, also induced antigen-specific CD8 T cells that transfer disease to naive animals. METHODS AND RESULTS In our efforts to identify the CD8 T cell determinants, we localized Myhc338-348 within the full length-Myhc334-352, leading to four key findings. (1) By acting as a dual epitope, Myhc338-348 induces both CD4 and CD8 T cell responses. (2) In a major histocompatibility complex (MHC) class I-stabilization assay, Myhc338-348 was found to bind H-2Dd-but not H-2Kk or H-2Ld-alleles. (3) The CD8 T cell response induced by Myhc338-348 was antigen-specific, as evaluated by MHC class I/H-2Dd dextramer staining. The antigen-sensitized T cells predominantly produced interferon-γ, the critical cytokine of effector cytotoxic T lymphocytes. (4) Myhc338-348 was found to induce myocarditis in immunized animals as determined by histology and magnetic resonance microscopy imaging. CONCLUSIONS Our data provide new insights as to how different immune cells can recognize the same antigen and inflict damage through different mechanisms.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Rajkumar A Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Zhongji Han
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Shadi Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
17
|
Bennett NR, Zwick DB, Courtney AH, Kiessling LL. Multivalent Antigens for Promoting B and T Cell Activation. ACS Chem Biol 2015; 10:1817-24. [PMID: 25970017 DOI: 10.1021/acschembio.5b00239] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficacious vaccines require antigens that elicit productive immune system activation. Antigens that afford robust antibody production activate both B and T cells. Elucidating the antigen properties that enhance B-T cell communication is difficult with traditional antigens. We therefore used ring-opening metathesis polymerization to access chemically defined, multivalent antigens containing both B and T cell epitopes to explore how antigen structure impacts B cell and T cell activation and communication. The bifunctional antigens were designed so that the backbone substitution level of each antigenic epitope could be quantified using (19)F NMR. The T cell peptide epitope was appended so that it could be liberated in B cells via the action of the endosomal protease cathepsin D, and this design feature was critical for T cell activation. Antigens with high BCR epitope valency induce greater BCR-mediated internalization and T cell activation than did low valency antigens, and these high-valency polymeric antigens were superior to protein antigens. We anticipate that these findings can guide the design of more effective vaccines.
Collapse
Affiliation(s)
- Nitasha R. Bennett
- Department of Chemistry, ‡Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel B. Zwick
- Department of Chemistry, ‡Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Adam H. Courtney
- Department of Chemistry, ‡Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Department of Chemistry, ‡Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in Spleen and Are Potent APCs. THE JOURNAL OF IMMUNOLOGY 2015; 195:71-9. [PMID: 26034175 DOI: 10.4049/jimmunol.1500055] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022]
Abstract
In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells. We demonstrated that ABCs present Ag to T cells, in vitro and in vivo, better than do follicular B cells (FO cells). Our data indicate that ABCs express higher levels of the chemokine receptor CCR7, have higher responsiveness to CCL21 and CCL19 than do FO cells, and are localized at the T/B cell border in spleen. Using multiphoton microscopy, we show that, in vivo, CD11c(+) B cells form significantly more stable interactions with T cells than do FO cells. Together, these data identify a previously undescribed role for ABCs as potent APCs and suggest another potential mechanism by which these cells can influence immune responses and/or the development of autoimmunity.
Collapse
Affiliation(s)
- Anatoly V Rubtsov
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206;
| | - Kira Rubtsova
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - John W Kappler
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Philippa Marrack
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
19
|
Reinherz EL, Wang JH. Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol 2015; 36:300-6. [PMID: 25818864 PMCID: PMC4420642 DOI: 10.1016/j.it.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/03/2023]
Abstract
A 1983 Immunology Today rostrum hypothesized that each T cell has two recognition units: a T cell receptor (TCR) complex, which binds antigen associated with a polymorphic region of a MHC molecule (pMHC), and a CD4 or CD8 molecule that binds to a conserved region of that same MHC gene product (class II or I, respectively). Structural biology has since precisely revealed those bidentate pMHC interactions. TCRαβ ligates the membrane-distal antigen-binding MHC platform, whereas CD8 clamps a membrane-proximal MHCI α3 domain loop and CD4 docks to a hydrophobic crevice between MHCII α2 and β2 domains. Here, we review how MHC class-restricted binding impacts signaling and lineage commitment, discussing TCR force-driven conformational transitions that may optimally expose the co-receptor docking site on MHC.
Collapse
Affiliation(s)
- Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Jia-huai Wang
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Zhan X, Slobod KS, Jones BG, Sealy RE, Takimoto T, Boyd K, Surman S, Russell CJ, Portner A, Hurwitz JL. Sendai virus recombinant vaccine expressing a secreted, unconstrained respiratory syncytial virus fusion protein protects against RSV in cotton rats. Int Immunol 2014; 27:229-36. [PMID: 25477211 DOI: 10.1093/intimm/dxu107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/27/2014] [Indexed: 11/14/2022] Open
Abstract
The respiratory syncytial virus (RSV) is responsible for as many as 199000 annual deaths worldwide. Currently, there is no standard treatment for RSV disease and no vaccine. Sendai virus (SeV) is an attractive pediatric vaccine candidate because it elicits robust and long-lasting virus-specific B cell and T cell activities in systemic and mucosal tissues. The virus serves as a gene delivery system as well as a Jennerian vaccine against its close cousin, human parainfluenza virus type 1. Here we describe the testing of a recombinant SeV (SeVRSV-Fs) that expresses an unconstrained, secreted RSV-F protein as a vaccine against RSV in cotton rats. After a single intranasal immunization of cotton rats with SeVRSV-Fs, RSV-specific binding and neutralizing antibodies were generated. These antibodies exhibited cross-reactivity with both RSV A and B isolates. RSV-F-specific IFN-γ-producing T cells were also activated. The SeVRSV-Fs vaccine conferred protection against RSV challenge without enhanced immunopathology. In total, results showed that an SeV recombinant that expresses RSV F in an unconstrained, soluble form can induce humoral and cellular immunity that protects against infection with RSV.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Present Address: Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karen S Slobod
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Present Address: Department of Technical Development, Novartis Vaccines, Cambridge, MA 02139, USA
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toru Takimoto
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Present Address: Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kelli Boyd
- Animal Resource Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Present Address: Division of Animal Care, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sherri Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Allen Portner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
22
|
Rudraraju R, Sealy RE, Surman SL, Thomas PG, Dayton BH, Hurwitz JL. Non-random lymphocyte distribution among virus-infected cells of the respiratory tract. Viral Immunol 2014; 26:378-84. [PMID: 24328934 DOI: 10.1089/vim.2013.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rules of T cell positioning within virus-infected respiratory tract tissues are poorly understood. We therefore marked cervical lymph node or spleen cells from Sendai virus (SeV) primed mice and transferred lymphocytes to animals infected with SeV expressing an enhanced green fluorescent protein (SeV-eGFP). Confocal imaging showed that when T cells entered a field of infected respiratory tract epithelium, they assumed a spatial distribution that maximized distances between each donor cell and its nearest neighbor. We therefore hypothesized that lymphocytes repelled one another by altering their chemokine/cytokine microenvironment. Subsequent in vitro tests confirmed that when SeV-primed lymphocytes were co-cultured with infected respiratory tract stroma, there was a profound upregulation of chemokines including RANTES, CXCL9, CXCL10, and CCL2. Based on these data, we propose that newly resident lymphocytes within virus-infected respiratory tract tissues may create halos of chemokines/cytokines to mark their territories; lymphocyte cross-talk may then inhibit cell overlap and redundancy to expedite virus clearance.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
23
|
Kubota K, Iwabuchi K. Phenotypic changes in growth-arrested T cell hybrids: a possible avenue to produce functional T cell hybridoma. Front Immunol 2014; 5:229. [PMID: 24904579 PMCID: PMC4032879 DOI: 10.3389/fimmu.2014.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/05/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Koichi Kubota
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara , Kanagawa , Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara , Kanagawa , Japan
| |
Collapse
|
24
|
Rudraraju R, Jones BG, Surman SL, Sealy RE, Thomas PG, Hurwitz JL. Respiratory tract epithelial cells express retinaldehyde dehydrogenase ALDH1A and enhance IgA production by stimulated B cells in the presence of vitamin A. PLoS One 2014; 9:e86554. [PMID: 24466150 PMCID: PMC3899288 DOI: 10.1371/journal.pone.0086554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022] Open
Abstract
Morbidity and mortality due to viral infections are major health concerns, particularly when individuals are vitamin A deficient. Vitamin A deficiency significantly impairs mucosal IgA, a first line of defense against virus at its point of entry. Previous reports have suggested that CD11c(Hi) dendritic cells (DCs) of the gastrointestinal tract produce retinaldehyde dehydrogenase (ALDH1A), which metabolizes vitamin A precursors to retinoic acid to support normal mucosal immunity. Given that the upper respiratory tract (URT) and gastrointestinal tract share numerous characteristics, we asked if the CD11c(Hi) DCs of the URT might also express ALDH1A. To address this question, we examined both CD11c(Hi) test cells and CD11c(Lo/neg) control cells from nasal tissue. Surprisingly, the CD11c(Lo/neg) cells expressed more ALDH1A mRNA per cell than did the CD11c(Hi) cells. Further evaluation of CD11c(Lo/neg) populations by PCR and staining of respiratory tract sections revealed that epithelial cells were robust producers of both ALDH1A mRNA and protein. Moreover, CD11c(Lo/neg) cells from nasal tissue (and a homogeneous respiratory tract epithelial cell line) enhanced IgA production by lipopolysaccharide (LPS)-stimulated splenocyte cultures in the presence of the retinoic acid precursor retinol. Within co-cultures, there was increased expression of MCP-1, IL-6, and GM-CSF, the latter two of which were necessary for IgA upregulation. All three cytokines/chemokines were expressed by the LPS-stimulated respiratory tract epithelial cell line in the absence of splenocytes. These data demonstrate the autonomous potential of respiratory tract epithelial cells to support vitamin A-mediated IgA production, and encourage the clinical testing of intranasal vitamin A supplements in vitamin A deficient populations to improve mucosal immune responses toward respiratory tract pathogens and vaccines.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bart G. Jones
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri L. Surman
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Sealy
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
25
|
Nandakumar S, Kannanganat S, Dobos KM, Lucas M, Spencer JS, Fang S, McDonald MA, Pohl J, Birkness K, Chamcha V, Ramirez MV, Plikaytis BB, Posey JE, Amara RR, Sable SB. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog 2013; 9:e1003705. [PMID: 24130497 PMCID: PMC3795050 DOI: 10.1371/journal.ppat.1003705] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.
Collapse
Affiliation(s)
- Subhadra Nandakumar
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil Kannanganat
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sunan Fang
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa A. McDonald
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristin Birkness
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Venkateswarlu Chamcha
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa V. Ramirez
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bonnie B. Plikaytis
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Suraj B. Sable
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Qian Z, Latham KA, Whittington KB, Miller DC, Brand DD, Rosloniec EF. Engineered regulatory T cells coexpressing MHC class II:peptide complexes are efficient inhibitors of autoimmune T cell function and prevent the development of autoimmune arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 190:5382-91. [PMID: 23630354 DOI: 10.4049/jimmunol.1300024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulatory T cells (Tregs) are critical homeostatic components in preventing the development of autoimmunity, and are a major focus for their therapeutic potential for autoimmune diseases. To enhance the efficacy of Tregs in adoptive therapy, we developed a strategy for generating engineered Tregs that have the capacity to target autoimmune T cells in an Ag-specific manner. Using a retroviral expression system encoding Foxp3 and HLA-DR1 covalently linked to the immunodominant peptide of the autoantigen type II collagen (DR1-CII), naive T cells were engineered to become Tregs that express DR1-CII complexes on their surface. When these cells were tested for their ability to prevent the development of collagen induced arthritis, both the engineered DR1-CII-Foxp3 and Foxp3 only Tregs significantly reduced the severity and incidence of disease. However, the mechanism by which these two populations of Tregs inhibited disease differed significantly. Disease inhibition by the DR1-CII-Foxp3 Tregs was accompanied by significantly lower numbers of autoimmune CII-specific T cells in vivo and lower levels of autoantibodies in comparison with engineered Tregs expressing Foxp3 alone. In addition, the numbers of IFN-γ- and IL-17-expressing T cells in mice treated with DR1-CII-Foxp3 Tregs were also significantly reduced in comparison with mice treated with Foxp3 engineered Tregs or vector control cells. These data indicate that the coexpression of class II autoantigen-peptide complexes on Tregs provides these cells with a distinct capacity to regulate autoimmune T cell responses that differs from that used by conventional Tregs.
Collapse
Affiliation(s)
- Zhaohui Qian
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
27
|
Yang HY, Kim J, Kim SH, Choe CH, Jang YS. Pro-IL-16 is Associated with MHC Class II-Mediated Negative Regulation of Mouse Resting B Cell Activation through MAP Kinases, NF-κB and Skp2-Dependent p27kipRegulation. Scand J Immunol 2013; 77:177-86. [DOI: 10.1111/sji.12026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/09/2012] [Indexed: 12/01/2022]
Affiliation(s)
- H.-Y. Yang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| | - J. Kim
- Jeonju Biomaterials Institute; Jeonju; Korea
| | - S.-H. Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| | | | - Y.-S. Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| |
Collapse
|
28
|
Yin L, Scott-Browne J, Kappler JW, Gapin L, Marrack P. T cells and their eons-old obsession with MHC. Immunol Rev 2013; 250:49-60. [PMID: 23046122 PMCID: PMC3963424 DOI: 10.1111/imr.12004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
T cells bearing receptors made up of α and β chains (TCRs) usually react with peptides bound to major histocompatibility complex proteins (MHC). This bias could be imposed by positive selection, the phenomenon that selects thymocytes to mature into T cells only if the TCRs they bear react with low but appreciable affinity with MHC + peptide combinations in the thymus cortex. However, it is also possible that the polypeptides of TCRs themselves do not have random specificities but rather are biased toward reaction with MHC. Evolution would therefore have selected for a collection of TCR variable elements that are prone to react with MHC. If this were to be so, positive selection would act on thymocytes bearing a pre biased collection of TCRs to pick out those that react to some extent, but not too well, with self MHC + self-peptides. A problem with studies of this evolutionary idea is the fact that there are many TCR variable elements and that these differ considerably in the amino acids with which they contact MHC. However, recent experiments by our group and others suggest that one group of TCR variable elements, those related to the mouse Vβ8 family, has amino acids in their CDR2 regions that consistently bind a particular site on an MHC α-helix. Other groups of variable elements may use different patterns of amino acids to achieve the same goal. Mutation of these amino acids reduces the ability of T cells and thymocytes to react with MHC. These amino acids are present in the variable regions of distantly related species such as sharks and human. Overall the data indicate that TCR elements have indeed been selected by evolution to react with MHC proteins. Many mysteries about TCRs remain to be solved, including the nature of auto-recognition, the basis of MHC allele specificity, and the very nature and complexity of TCRs on mature T cells.
Collapse
Affiliation(s)
- Lei Yin
- Integrated Department of Immunology, HHMI, National Jewish Health, Denver, CO, USA
| | | | | | | | | |
Collapse
|
29
|
Pulse-chase analysis for studies of MHC class II biosynthesis, maturation, and peptide loading. Methods Mol Biol 2013; 960:411-432. [PMID: 23329504 DOI: 10.1007/978-1-62703-218-6_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulse-chase analysis is a commonly used technique for studying the synthesis, processing and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval ("pulse"), during which all newly synthesized proteins incorporate the label. The cells are then returned to nonradioactive culture medium for various times ("chase"), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells.
Collapse
|
30
|
Abstract
T cell hybridomas are very useful tools to investigate antigen presenting cell (APC) function. They were developed based on the fusion technology that led to monoclonal antibody section. Antigen-specific primary T cells are generated and fused to an immortal thymoma line. Unfused thymoma cells are eliminated by engineered metabolic selection. Antigen-specific hybridomas are identified and may be characterized in detail. Primary T cells are preferable for studies of the regulatory mechanisms intrinsic to T cells, but for study of antigen presentation T cell hybridomas have advantages over primary T cell clones, including their relative uniformity, stability over time, and ready availability in large numbers for extensive antigen presentation experiments.
Collapse
Affiliation(s)
- David H Canaday
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
31
|
Reduced frequencies and heightened CD103 expression among virus-induced CD8(+) T cells in the respiratory tract airways of vitamin A-deficient mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:757-65. [PMID: 22398245 DOI: 10.1128/cvi.05576-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A deficiency (VAD) has profound effects on immune responses in the gut, but its effect on other mucosal responses is less well understood. Sendai virus (SeV) is a candidate human parainfluenza virus type 1 (hPIV-1) vaccine and a candidate vaccine vector for other respiratory viruses. A single intranasal dose of SeV elicits a protective immune response against hPIV-1 within days after vaccination. To define the effect of VAD on acute responses toward SeV, we monitored both antibodies and CD8(+) T cells in mice. On day 10 following SeV infection, there was a trend toward lower antibody activities in the nasal washes of VAD mice than in those of controls, while bronchoalveolar lavage (BAL) fluid and serum antibodies were not reduced. In contrast, there was a dramatic reduction of immunodominant CD8(+) T cell frequencies in the lower respiratory tract (LRT) airways of VAD animals. These T cells also showed unusually high CD103 (the αE subunit of αEβ7) expression patterns. In both VAD and control mice, E-cadherin (the ligand for αEβ7) was better expressed among epithelial cells lining the upper respiratory tract (URT) than in LRT airways. The results support a working hypothesis that the high CD103 expression among T cell populations in VAD mice alters mechanisms of T cell cross talk with URT and LRT epithelial cells, thereby inhibiting T cell migration and egress into the lower airway. Our data emphasize that the consequences of VAD are not limited to gut-resident cells and characterize VAD influences on an immune response to a respiratory virus vaccine.
Collapse
|
32
|
Scott-Browne JP, Crawford F, Young MH, Kappler JW, Marrack P, Gapin L. Evolutionarily conserved features contribute to αβ T cell receptor specificity. Immunity 2011; 35:526-35. [PMID: 21962492 DOI: 10.1016/j.immuni.2011.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/02/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
Abstract
αβ T cell receptors (TCRs) bind specifically to foreign antigens presented by major histocompatibility complex proteins (MHC) or MHC-like molecules. Accumulating evidence indicates that the germline-encoded TCR segments have features that promote binding to MHC and MHC-like molecules, suggesting coevolution between TCR and MHC molecules. Here, we assess directly the evolutionary conservation of αβ TCR specificity for MHC. Sequence comparisons showed that some Vβs from distantly related jawed vertebrates share amino acids in their complementarity determining region 2 (CDR2). Chimeric TCRs containing amphibian, bony fish, or cartilaginous fish Vβs can recognize antigens presented by mouse MHC class II and CD1d (an MHC-like protein), and this recognition is dependent upon the shared CDR2 amino acids. These results indicate that features of the TCR that control specificity for MHC and MHC-like molecules were selected early in evolution and maintained between species that last shared a common ancestor more than 400 million years ago.
Collapse
Affiliation(s)
- James P Scott-Browne
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Phenotypes and functions of persistent Sendai virus-induced antibody forming cells and CD8+ T cells in diffuse nasal-associated lymphoid tissue typify lymphocyte responses of the gut. Virology 2011; 410:429-436. [PMID: 21227475 DOI: 10.1016/j.virol.2010.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/25/2010] [Accepted: 12/13/2010] [Indexed: 11/21/2022]
Abstract
Lymphocytes of the diffuse nasal-associated lymphoid tissue (d-NALT) are uniquely positioned to tackle respiratory pathogens at their point-of-entry, yet are rarely examined after intranasal (i.n.) vaccinations or infections. Here we evaluate an i.n. inoculation with Sendai virus (SeV) for elicitation of virus-specific antibody forming cells (AFCs) and CD8(+) T cells in the d-NALT. Virus-specific AFCs and CD8(+) T cells each appeared by day 7 after SeV inoculation and persisted for 8 months, explaining the long-sustained protection against respiratory virus challenge conferred by this vaccine. AFCs produced IgM, IgG1, IgG2a, IgG2b and IgA, while CD8+ T cells were cytolytic and produced low levels of cytokines. Phenotypic analyses of virus-specific T cells revealed striking similarities with pathogen-specific immune responses in the intestine, highlighting some key features of adaptive immunity at a mucosal site.
Collapse
|
35
|
|
36
|
Abstract
Generation of regulatory T cells (or Treg) derived hybridomas offers a tool to study their antigen specificity. T cells hybridomas are produced by fusing TCR α-β-thymoma BW5147 with highly dividing T cell population. In vitro anergy of Tregs is an obstacle in generation of highly dividing Treg population for their fusion. In this chapter, we describe a simple and efficient method to generate large number of blasting Treg and their successful fusion with thymoma BW5147. The resultant hybridomas lose Treg-specific transcription factor FoxP3, respond to antigenic stimulation by producing IL-2, and thus allow the evaluation of antigen specific, Tregs-derived TCRs.
Collapse
|
37
|
Abstract
Cure rates for a variety of leukemias and lymphomas have improved dramatically over the past several decades, but relapsed disease continues to account for thousands of deaths per year. Viable treatment options for relapsed disease are few, encouraging the development of novel therapies. In the present paper, we describe phytohemagglutinin (PHA), a standard T cell mitogen, as an inhibitor of both T- and B-cell tumors. In vitro studies show that PHA can inhibit incorporation of 3H-thymidine and mediate apoptosis of B- and T-cell tumor lines. The inhibitory effects are enhanced when PHA is used in conjunction with the cell cycle directed drug 5-fluorouracil (5-FU). Phytohemagglutinin treatments can also impede tumor growth in mice while showing no toxic side effects in this animal model.
Collapse
Affiliation(s)
- Sybil S D'Costa
- Department of Immunology, St. Jude Children s Research Hospital, 332 N Lauderdale St, Memphis, TN 38105, USA
| | | |
Collapse
|
38
|
Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci U S A 2010; 107:10978-83. [PMID: 20534455 PMCID: PMC2890771 DOI: 10.1073/pnas.1006545107] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A peptide derived from the insulin B chain contains a major epitope for diabetogenic CD4(+) T cells in the NOD mouse model of type 1 diabetes (T1D). This peptide can fill the binding groove of the NOD MHCII molecule, IA(g7), in a number of ways or "registers." We show here that a diverse set of NOD anti-insulin T cells all recognize this peptide bound in the same register. Surprisingly, this register results in the poorest binding of peptide to IA(g7). The poor binding is due to an incompatibility between the p9 amino acid of the peptide and the unique IA(g7) p9 pocket polymorphisms that are strongly associated with susceptibility to T1D. Our findings suggest that the association of autoimmunity with particular MHCII alleles may be do to poorer, rather than more favorable, binding of the critical self-epitopes, allowing T-cell escape from thymic deletion.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Integrated Department of Immunology, University of Colorado and National Jewish Health, Denver, CO 80206
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, Aurora, CO 80045
| | - Frances Crawford
- Integrated Department of Immunology, University of Colorado and National Jewish Health, Denver, CO 80206
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and
| | - Philippa Marrack
- Integrated Department of Immunology, University of Colorado and National Jewish Health, Denver, CO 80206
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and
| | - George S. Eisenbarth
- Integrated Department of Immunology, University of Colorado and National Jewish Health, Denver, CO 80206
- Barbara Davis Center for Childhood Diabetes, Aurora, CO 80045
| | - John W. Kappler
- Integrated Department of Immunology, University of Colorado and National Jewish Health, Denver, CO 80206
- Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and
| |
Collapse
|
39
|
Rinderknecht CH, Lu N, Crespo O, Truong P, Hou T, Wang N, Rajasekaran N, Mellins ED. I-Ag7 is subject to post-translational chaperoning by CLIP. Int Immunol 2010; 22:705-16. [PMID: 20547545 DOI: 10.1093/intimm/dxq056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several MHC class II alleles linked with autoimmune diseases form unusually low-stability complexes with class II-associated invariant chain peptides (CLIP), leading us to hypothesize that this is an important feature contributing to autoimmune pathogenesis. We recently demonstrated a novel post-endoplasmic reticulum (ER) chaperoning role of the CLIP peptides for the murine class II allele I-E(d). In the current study, we tested the generality of this CLIP chaperone function using a series of invariant chain (Ii) mutants designed to have varying CLIP affinity for I-A(g7). In cells expressing these Ii CLIP mutants, I-A(g7) abundance, turnover and antigen presentation are all subject to regulation by CLIP affinity, similar to I-E(d). However, I-A(g7) undergoes much greater quantitative changes than observed for I-E(d). In addition, we find that Ii with a CLIP region optimized for I-A(g7) binding may be preferentially assembled with I-A(g7) even in the presence of higher levels of wild-type Ii. This finding indicates that, although other regions of Ii interact with class II, CLIP binding to the groove is likely to be a dominant event in assembly of nascent class II molecules with Ii in the ER.
Collapse
|
40
|
Qian Z, Latham KA, Whittington KB, Miller DC, Brand DD, Rosloniec EF. An Autoantigen-Specific, Highly Restricted T Cell Repertoire Infiltrates the Arthritic Joints of Mice in an HLA-DR1 Humanized Mouse Model of Autoimmune Arthritis. THE JOURNAL OF IMMUNOLOGY 2010; 185:110-8. [DOI: 10.4049/jimmunol.1000416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A, Paulsson-Berne G, Hansson GK. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207:1081-93. [PMID: 20439543 PMCID: PMC2867279 DOI: 10.1084/jem.20092243] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/11/2010] [Indexed: 12/25/2022] Open
Abstract
Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100(tg)) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4(+) T cell hybridomas were MHC class II-restricted and expressed a single T cell receptor (TCR) variable (V) beta chain, TRBV31, with different Valpha chains. Immunization of huB100(tg)xLdlr(-/-) mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4(+) T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis.
Collapse
Affiliation(s)
- Andreas Hermansson
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Daniel F.J. Ketelhuth
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Daniela Strodthoff
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Marion Wurm
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Emil M. Hansson
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Antonino Nicoletti
- Institut National de la Santé et de la Recherche Médicale U698, Université Denis Diderot, Paris 75006, France
| | - Gabrielle Paulsson-Berne
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Göran K. Hansson
- Department of Medicine, Center for Molecular Medicine, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-17176, Sweden
| |
Collapse
|
42
|
Paquin Proulx D, Aubin E, Lemieux R, Bazin R. Inhibition of B cell-mediated antigen presentation by intravenous immunoglobulins (IVIg). Clin Immunol 2010; 135:422-9. [PMID: 20138586 DOI: 10.1016/j.clim.2010.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/16/2009] [Accepted: 01/06/2010] [Indexed: 12/01/2022]
Abstract
Previous work from our laboratory revealed that IVIg interacted with intracellular proteins involved in antigen presentation in B cells, suggesting that IVIg might interfere with the process of antigen presentation in these cells. In the present work, we used an in vitro assay with ovalbumin as model antigen and showed that IVIg inhibited both BCR-dependent and BCR-independent antigen presentation. The inhibition could not be explained by a modulation of expression of MHC II molecules expressed on B cells and was shown to occur in an FcgammaRIIb-independent manner, suggesting that the events responsible for the inhibitory effect occur at the intracellular level. This was supported by the observation of a direct correlation between the level of spontaneous internalization of two different proteins (IVIg and HSA) and their inhibitory potential. The inhibition of B cell-mediated antigen presentation reported here may help explain some of the anti-inflammatory effects of IVIg observed in treated patients, such as a decrease in autoantibody production.
Collapse
|
43
|
Zhang L, Jin N, Nakayama M, O'Brien RL, Eisenbarth GS, Born WK. Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. J Autoimmun 2010; 34:478-84. [PMID: 20080388 DOI: 10.1016/j.jaut.2009.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/13/2009] [Indexed: 01/05/2023]
Abstract
The range and physical qualities of molecules that act as ligands for the gammadelta T cell receptors (TCRs) remain uncertain. Processed insulin is recognized by alphabeta T cells, which mediate diabetes in non-obese diabetic (NOD) mice. Here, we present evidence that gammadelta T cells in these mice recognize processed insulin as well. Hybridomas generated from NOD spleen and pancreatic lymph nodes included clones expressing gammadelta TCRs that responded specifically to purified islets of Langerhans and to an insulin peptide, but not to intact insulin. The gammadelta TCRs associated with this type of response are diverse, but a cloned gammadelta TCR was sufficient to transfer the response. The response to the insulin peptide was autonomous as demonstrated by stimulating single responder cells in isolation. This study reveals a novel specificity for gammadelta TCRs, and raises the possibility that gammadelta T cells become involved in islet-specific autoimmunity.
Collapse
Affiliation(s)
- Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kueng HJ, Manta C, Haiderer D, Leb VM, Schmetterer KG, Neunkirchner A, Byrne RA, Scheinecker C, Steinberger P, Seed B, Pickl WF. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions. FASEB J 2010; 24:1572-82. [PMID: 20056716 DOI: 10.1096/fj.09-137281] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP(+) HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R(+)) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2(+) target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.
Collapse
Affiliation(s)
- Hans J Kueng
- Institute of Immunology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, A-1090 Borschkegasse 8A, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wieten L, van der Zee R, Goedemans R, Sijtsma J, Serafini M, Lubsen NH, van Eden W, Broere F. Hsp70 expression and induction as a readout for detection of immune modulatory components in food. Cell Stress Chaperones 2010; 15:25-37. [PMID: 19472075 PMCID: PMC2866976 DOI: 10.1007/s12192-009-0119-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/19/2009] [Indexed: 02/02/2023] Open
Abstract
Stress proteins such as heat shock proteins (Hsps) are up-regulated in cells in response to various forms of stress, like thermal and oxidative stress and inflammation. Hsps prevent cellular damage and increase immunoregulation by the activation of anti-inflammatory T-cells. Decreased capacity for stress-induced Hsp expression is associated with immune disorders. Thus, therapeutic boosting Hsp expression might restore or enhance cellular stress resistance and immunoregulation. Especially food- or herb-derived phytonutrients may be attractive compounds to restore optimal Hsp expression in response to stress. In the present study, we explored three readout systems to monitor Hsp70 expression in a manner relevant for the immune system and evaluated novel Hsp co-inducers. First, intracellular staining and analysis by flow cytometry was used to detect stress and/or dietary compound induced Hsp70 expression in multiple rodent cell types efficiently. This system was used to screen a panel of food-derived extracts with potent anti-oxidant capacity. This strategy yielded the identity of several new enhancers of stress-induced Hsp70 expression, among them carvacrol, found in thyme and oregano. Second, CD4(+) T-cell hybridomas were generated that specifically recognized an immunodominant Hsp70 peptide. These hybridomas were used to show that carvacrol enhanced Hsp70 levels increased T-cell activation. Third, we generated a DNAJB1-luc-O23 reporter cell line to show that carvacrol increased the transcriptional activation of a heat shock promoter in the presence of arsenite. These assay systems are generally applicable to identify compounds that affect the Hsp level in cells of the immune system.
Collapse
Affiliation(s)
- Lotte Wieten
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Renske Goedemans
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jeroen Sijtsma
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Mauro Serafini
- Antioxidant Research Laboratory, Unit of Human Nutrition, INRAN, Via Ardeatina 546, 00178 Rome, Italy
| | - Nicolette H. Lubsen
- Department of Biomolecular Chemistry, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
46
|
Malhotra S, Kovats S, Zhang W, Coggeshall KM. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J Biol Chem 2009; 284:36202-36212. [PMID: 19858206 PMCID: PMC2794736 DOI: 10.1074/jbc.m109.040089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/14/2009] [Indexed: 11/06/2022] Open
Abstract
The signal transduction events supporting B cell antigen receptor (BCR) endocytosis are not well understood. We have identified a pathway supporting BCR internalization that begins with tyrosine phosphorylation of the adapter protein LAB. Phosphorylated LAB recruits a complex of Grb2-dynamin and the guanine nucleotide exchange factor Vav. Vav is required for activation of the small GTPases Rac1 and Rac2. All these proteins contribute to (and dynamin, Vav, and Rac1/2 are required for) BCR endocytosis and presentation of antigen to T cells. This is the first description of a sequential signal transduction pathway from BCR to internalization and antigen presentation.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antigen Presentation/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Dynamins/genetics
- Dynamins/immunology
- Dynamins/metabolism
- Endocytosis/physiology
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/immunology
- GRB2 Adaptor Protein/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neuropeptides/genetics
- Neuropeptides/immunology
- Neuropeptides/metabolism
- Phosphorylation/physiology
- Proto-Oncogene Proteins c-vav/genetics
- Proto-Oncogene Proteins c-vav/immunology
- Proto-Oncogene Proteins c-vav/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/immunology
- rac GTP-Binding Proteins/metabolism
- rac1 GTP-Binding Protein
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Shikha Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Susan Kovats
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - K Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
47
|
Yang HY, Kim J, Lee KY, Jang YS. Rac/ROS-related protein kinase C and phosphatidylinositol-3-kinase signaling are involved in a negative regulating cascade in B cell activation by antibody-mediated cross-linking of MHC class II molecules. Mol Immunol 2009; 47:706-12. [PMID: 19939451 DOI: 10.1016/j.molimm.2009.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/23/2009] [Indexed: 11/26/2022]
Abstract
In addition to their essential role in antigen presentation, MHC class II molecules have been widely described as receptors associated with signal transduction involved in regulating B cell function. However, their precise function and mechanism in signal transduction are not yet fully elucidated. Our previous studies demonstrated that cross-linking of MHC class II molecules led to the inhibition of resting B cell activation in which various signal molecules were involved. Especially, Rac-associated ROS-dependent MAP kinases, including ERK1/2 and p38, are involved in MHC class II-associated negative signal transduction in the phorbol 12, 13-dibutyrate (PDBU)-treated, but not LPS-treated, resting B cell line, 38B9. In this study, we further illustrated that PKC regulates downstream signal molecules, including MAP kinases and NF-kappaB in PDBU-stimulated resting B cells, together with Rac and ROS. In addition, we found that phosphatidylinositol 3-kinase (PI3K)-dependent activation of ERK/p38 MAP kinases was associated with the signaling procedure in PDBU-induced B cell activation. Collectively, Rac/ROS-related PKC and PI3K signaling are involved in a negative regulation cascade through the cross-linking of MHC class II molecules by anti-MHC class II antibodies in resting B cells.
Collapse
Affiliation(s)
- Hee-Young Yang
- Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Telerman A, Amson R, Demant P, Marrack P. Jean Dausset (1916–2009). Immunity 2009; 31:171-3. [DOI: 10.1016/j.immuni.2009.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Hodes RJ. MHC Restricted Recognition by Cloned T Cells. Int Rev Immunol 2009. [DOI: 10.3109/08830188609056604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
|