1
|
Breitfelder AK, Schrödl W, Baums CG, Alber G, Müller U. The immunoglobulin M-degrading enzyme of Streptococcus suis (Ide Ssuis) leads to long-lasting inhibition of the activation of porcine IgM-secreting B cells. Vet Res 2024; 55:114. [PMID: 39313819 PMCID: PMC11421183 DOI: 10.1186/s13567-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Streptococcus suis (S. suis) is one of the most important porcine pathogens, causing severe pathologies such as meningitis or polyarthritis. It is also a very successful colonizer of mucosal surfaces. The IgM-degrading enzyme of S. suis (IdeSsuis) specifically cleaves porcine IgM, which results in complement evasion. On the basis of our previous finding that IdeSsuis also cleaves the IgM B cell receptor in vitro, we verified IgM B cell receptor cleavage ex vivo in whole regional lymph nodes and investigated the working hypothesis that this IgM B cell receptor cleavage results in a long-lasting impaired B cell function. The number of IgM-secreting cells was determined via ELISpot analysis after porcine peripheral blood mononuclear cells had initially been treated with different recombinant S. suis proteins and subsequently stimulated with interleukin-2 and the toll-like receptor 7/8 ligand R848. Compared with treatment with medium or recombinant muramidase-released protein, treatment with rIdeSsuis but also with a cleavage-deficient variant led to a reduction in the number of IgM-secreting cells as well as the level of secreted IgM. Flow cytometry analysis confirmed that the IgM B cell receptor was cleaved only by rIdeSsuis, and the receptor recovered to pretreatment levels on day 2 after treatment. Flow cytometry analysis of B and T cells incubated with fluorescein-labelled recombinant proteins revealed that different rIdeSsuis variants bind specifically to B cells, most prominently the cleavage-deficient variant. Our results indicate that in vitro interference of rIdeSsuis with the IgM B cell receptor results in long-lasting impaired IgM secretion by B cells after toll-like receptor activation. Further studies are warranted to prove that the modulation of B cell function by IdeSsuis could play a role in vivo.
Collapse
Affiliation(s)
- Annika Katharina Breitfelder
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Sah JP, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of Zhu-Tokita-Takenouchi-Kim syndrome reveals indispensable SON functions in organ development and hematopoiesis. JCI Insight 2024; 9:e175053. [PMID: 38290089 PMCID: PMC10972584 DOI: 10.1172/jci.insight.175053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, including leukopenia and immunoglobulin deficiency, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency shifted cell fate more toward the myeloid lineage but compromised lymphoid lineage development by reducing genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency caused inappropriate activation of erythroid genes and impaired erythropoiesis. These findings highlight the importance of the full gene expression of Son in multiple organs. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, South Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - James M. Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Jay Prakash Sah
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | | | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | - Anna G. Sorace
- Department of Radiology and
- O’Neal Comprehensive Cancer Center, and
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, and
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| |
Collapse
|
3
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of ZTTK syndrome reveals indispensable SON functions in organ development and hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567732. [PMID: 38014320 PMCID: PMC10680872 DOI: 10.1101/2023.11.19.567732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency inclines cell fate toward the myeloid lineage but compromises lymphoid lineage development by reducing key genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency causes inappropriate activation of erythroid genes and impaired erythroid maturation. These findings highlight the importance of the full gene dosage of Son in organ development and hematopoiesis. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, Korea
| | - James M Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seth N. Lee
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
T cell and B cell antigen receptors share a conserved core transmembrane structure. Proc Natl Acad Sci U S A 2022; 119:e2208058119. [PMID: 36409917 PMCID: PMC9860311 DOI: 10.1073/pnas.2208058119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The B cell and T cell antigen receptors (BCR and TCR) share a common architecture in which variable dimeric antigen-binding modules assemble with invariant dimeric signaling modules to form functional receptor complexes. In the TCR, a highly conserved T cell receptor αβ (TCRαβ) transmembrane (TM) interface forms a rigid structure around which its three dimeric signaling modules assemble through well-characterized polar interactions. Noting that the key features stabilizing this TCRαβ TM interface also appear with high evolutionary conservation in the TM sequences of the membrane immunoglobulin (mIg) heavy chains that form the BCR's homodimeric antigen-binding module, we asked whether the BCR contained an analogous TM structure. Using an unbiased biochemical and computational modeling approach, we found that the mouse IgM BCR forms a core TM structure that is remarkably similar to that of the TCR. This structure is reinforced by a network of interhelical hydrogen bonds, and our model is nearly identical to the arrangement observed in the just-released cryo-electron microscopy (cryo-EM) structures of intact human BCRs. Our biochemical analysis shows that the integrity of this TM structure is vital for stable assembly with the BCR signaling module CD79AB in the B cell endoplasmic reticulum, and molecular dynamics simulations indicate that BCRs of all five isotypes can form comparable structures. These results demonstrate that, despite their many differences in composition, complexity, and ligand type, TCRs and BCRs rely on a common core TM structure that has been shaped by evolution for optimal receptor assembly and stability in the cell membrane.
Collapse
|
5
|
Huse K, Bai B, Hilden VI, Bollum LK, Våtsveen TK, Munthe LA, Smeland EB, Irish JM, Wälchli S, Myklebust JH. Mechanism of CD79A and CD79B Support for IgM+ B Cell Fitness through B Cell Receptor Surface Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2042-2053. [PMID: 36426942 PMCID: PMC9643646 DOI: 10.4049/jimmunol.2200144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022]
Abstract
The BCR consists of surface-bound Ig and a heterodimeric signaling unit comprised of CD79A and CD79B. Upon cognate Ag recognition, the receptor initiates important signals for B cell development and function. The receptor also conveys Ag-independent survival signals termed tonic signaling. Although the requirement of a CD79A/CD79B heterodimer for BCR complex assembly and surface expression is well established based on mice models, few studies have investigated this in human mature B cells. In this study, we found that human tonsillar B cells with high surface expression of IgM or IgG had potentiated BCR signaling compared with BCRlow cells, and high IgM expression in germinal center B cells was associated with reduced apoptosis. We explored the mechanism for IgM surface expression by CRISPR/Cas9-induced deletion of CD79A or CD79B in four B lymphoma cell lines. Deletion of either CD79 protein caused loss of surface IgM in all cell lines and reduced fitness in three. From two cell lines, we generated stable CD79A or CD79B knockout clones and demonstrated that loss of CD79A or CD79B caused a block in N-glycan maturation and accumulation of immature proteins, compatible with retention of BCR components in the endoplasmic reticulum. Rescue experiments with CD79B wild-type restored surface expression of CD79A and IgM with mature glycosylation, whereas a naturally occurring CD79B G137S mutant disrupting CD79A/CD79B heterodimerization did not. Our study highlights that CD79A and CD79B are required for surface IgM expression in human B cells and illuminates the importance of the IgM expression level for signaling and fitness.
Collapse
Affiliation(s)
- Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Baoyan Bai
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Norway
| | - Vera Irene Hilden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lise K Bollum
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thea K Våtsveen
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Div. of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Ludvig A Munthe
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Div. of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Erlend B Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonathan Michael Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Cancer Treatment, Oslo University Hospital, Oslo, Norway
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Characterization of interactions within the Igα/Igβ transmembrane domains of the human B-cell receptor provides insights into receptor assembly. J Biol Chem 2022; 298:101843. [PMID: 35307351 PMCID: PMC9018394 DOI: 10.1016/j.jbc.2022.101843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The B-cell receptor (BCR), a complex comprised of a membrane-associated immunoglobulin and the Igα/β heterodimer, is one of the most important immune receptors in humans and controls B-cell development, activity, selection, and death. BCR signaling plays key roles in autoimmune diseases and lymphoproliferative disorders, yet, despite the clinical significance of this protein complex, key regions (i.e., the transmembrane domains) have yet to be structurally characterized. The mechanism for BCR signaling also remains unclear and has been variously described by the mutually exclusive cross-linking and dissociation activation models. Common to these models is the significance of local plasma membrane composition, which implies that interactions between BCR transmembrane domains (TMDs) play a role in receptor functionality. Here we used an in vivo assay of TMD oligomerization called GALLEX alongside spectroscopic and computational methods to characterize the structures and interactions of human Igα and Igβ TMDs in detergent micelles and natural membranes. We observed weak self-association of the Igβ TMD and strong self-association of the Igα TMD, which scanning mutagenesis revealed was entirely stabilized by an E–X10–P motif. We also demonstrated strong heterotypic interactions between the Igα and Igβ TMDs both in vitro and in vivo, which scanning mutagenesis and computational models suggest is multiconfigurational but can accommodate distinct interaction sites for self-interactions and heterotypic interactions of the Igα TMD. Taken together, these results demonstrate that the TMDs of the human BCR are sites of strong protein–protein interactions that may direct BCR assembly, endoplasmic reticulum retention, and immune signaling.
Collapse
|
7
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
|
9
|
Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, Csepregi L, Kitamura D, Reddy ST. Molecular Design, Optimization, and Genomic Integration of Chimeric B Cell Receptors in Murine B Cells. Front Immunol 2019; 10:2630. [PMID: 31798579 PMCID: PMC6868064 DOI: 10.3389/fimmu.2019.02630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapies based on the integration of synthetic antigen receptors comprise a powerful strategy for the treatment of diverse diseases, most notably T cells engineered to express chimeric antigen receptors (CAR) for targeted cancer therapy. In addition to T lymphocytes, B lymphocytes may also represent valuable immune cells that can be engineered for therapeutic purposes such as protein replacement therapy or recombinant antibody production. In this article, we report a promising concept for the molecular design, optimization, and genomic integration of a novel class of synthetic antigen receptors, chimeric B cell receptors (CBCR). We initially optimized CBCR expression and detection by modifying the extracellular surface tag, the transmembrane regions and intracellular signaling domains. For this purpose, we stably integrated a series of CBCR variants using CRISPR-Cas9 into immortalized B cell hybridomas. Subsequently, we developed a reliable and consistent pipeline to precisely introduce cassettes of several kb size into the genome of primary murine B cells also using CRISPR-Cas9 induced HDR. Finally, we were able to show the robust surface expression and antigen recognition of a synthetic CBCR in primary B cells. We anticipate CBCRs and our approach for engineering primary B cells will be a valuable tool for the advancement of future B cell- based immune cell therapies.
Collapse
Affiliation(s)
- Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Bonati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Microbiology and Immunology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
10
|
A symmetric geometry of transmembrane domains inside the B cell antigen receptor complex. Proc Natl Acad Sci U S A 2019; 116:13468-13473. [PMID: 31209055 PMCID: PMC6613136 DOI: 10.1073/pnas.1907481116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific activation of B lymphocytes via the binding of antigen to their B cell antigen receptor (BCR) is of central importance for the establishment of humoral immunity and a successful vaccination. A better understanding of the antigen sensing process of B cells requires insight into the structure of the BCR comprising the mIg molecule and the Igα/Igβ heterodimer in a 1:1 complex. How a symmetric molecule such as the mIg molecule is asymmetrically associated with only one Igα/Igβ heterodimer has been a puzzle. We suggest that inside the lipid bilayer the BCR forms a symmetric Igα-mHC:mHC-Igβ complex. Our results give insight into the BCR structure and the B cell activation mechanism. B lymphocytes have the ability to sense thousands of structurally different antigens and produce cognate antibodies against these molecules. For this they carry on their surface multiple copies of the B cell antigen receptor (BCR) comprising the membrane-bound Ig (mIg) molecule and the Igα/Igβ heterodimer functioning as antigen binding and signal transducing components, respectively. The mIg is a symmetric complex of 2 identical membrane-bound heavy chains (mHC) and 2 identical light chains. How the symmetric mIg molecule is asymmetrically associated with only one Igα/Igβ heterodimer has been a puzzle. Here we describe that Igα and Igβ both carry on one side of their α-helical transmembrane domain a conserved amino acid motif. By a mutational analysis in combination with a BCR rebuilding approach, we show that this motif is required for the retention of unassembled Igα or Igβ molecules inside the endoplasmic reticulum and the binding of the Igα/Igβ heterodimer to the mIg molecule. We suggest that the BCR forms within the lipid bilayer of the membrane a symmetric Igα-mHC:mHC-Igβ complex that is stabilized by an aromatic proline-tyrosine interaction. Outside the membrane this symmetry is broken by the disulfide-bridged dimerization of the extracellular Ig domains of Igα and Igβ. However, symmetry of the receptor can be regained by a dimerization of 2 BCR complexes as suggested by the dissociation activation model.
Collapse
|
11
|
Friess MD, Pluhackova K, Böckmann RA. Structural Model of the mIgM B-Cell Receptor Transmembrane Domain From Self-Association Molecular Dynamics Simulations. Front Immunol 2018; 9:2947. [PMID: 30619307 PMCID: PMC6304377 DOI: 10.3389/fimmu.2018.02947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Antigen binding to B-cell antigen receptors (BCRs) followed by signaling initiates the humoral immune response. The signaling is intimately coupled to nanoclustering of BCRs and their sorting to specific membrane domains, a process that is ruled by interactions between the BCR transmembrane domain and lipids. While the structure of the extracellular domains of BCRs has been resolved, little is known about the configuration of the constituting four immunoglobulin domains spanning the membrane. Here, we modeled the structure of the transmembrane (TM) domain of the IgM B-cell receptor using self-assembly coarse-grained molecular dynamics simulations. The obtained quaternary structure was validated against available experimental data and atomistic simulations. The IgM-BCR-TM domain configuration shows a 1:1 stoichiometry between the homodimeric membrane-bound domain of IgM (mIgM) and a Ig-α/Ig-β heterodimer. The mIgM homodimer is based on an asymmetric association of two mIgM domains. We show that a specific site of the Ig-α/Ig-β heterodimer is responsible for the association of IgM-BCRs with lipid rafts. Our results further suggest that this site is blocked in small-sized IgM-BCR clusters. The BCR TM structure provides a molecular basis for the previously suggested dissociation activation model of B-cell receptors. Self-assembly molecular dynamics simulations at the coarse-grained scale here proved as a versatile tool in the study of receptor complexes.
Collapse
Affiliation(s)
- Mario D Friess
- Department of Biology, Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Department of Biology, Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Department of Biology, Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Liu X, Li YS, Shinton SA, Rhodes J, Tang L, Feng H, Jette CA, Look AT, Hayakawa K, Hardy RR. Zebrafish B Cell Development without a Pre-B Cell Stage, Revealed by CD79 Fluorescence Reporter Transgenes. THE JOURNAL OF IMMUNOLOGY 2017; 199:1706-1715. [PMID: 28739882 DOI: 10.4049/jimmunol.1700552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022]
Abstract
CD79a and CD79b proteins associate with Ig receptors as integral signaling components of the B cell Ag receptor complex. To study B cell development in zebrafish, we isolated orthologs of these genes and performed in situ hybridization, finding that their expression colocalized with IgH-μ in the kidney, which is the site of B cell development. CD79 transgenic lines were made by linking the promoter and upstream regulatory segments of CD79a and CD79b to enhanced GFP to identify B cells, as demonstrated by PCR analysis of IgH-μ expression in sorted cells. We crossed these CD79-GFP lines to a recombination activating gene (Rag)2:mCherry transgenic line to identify B cell development stages in kidney marrow. Initiation of CD79:GFP expression in Rag2:mCherry+ cells and the timing of Ig H and L chain expression revealed simultaneous expression of both IgH-μ- and IgL-κ-chains, without progressing through the stage of IgH-μ-chain alone. Rag2:mCherry+ cells without CD79:GFP showed the highest Rag1 and Rag2 mRNAs compared with CD79a and CD79b:GFP+ B cells, which showed strongly reduced Rag mRNAs. Thus, B cell development in zebrafish does not go through a Raghi CD79+IgH-μ+ pre-B cell stage, different from mammals. After the generation of CD79:GFP+ B cells, decreased CD79 expression occurred upon differentiation to Ig secretion, as detected by alteration from membrane to secreted IgH-μ exon usage, similar to in mammals. This confirmed a conserved role for CD79 in B cell development and differentiation, without the requirement of a pre-B cell stage in zebrafish.
Collapse
Affiliation(s)
- Xingjun Liu
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA 19111.,DNA Sequencing and Genomic Core, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | - Hui Feng
- The Center for Cancer Research, Boston University School of Medicine, Boston, MA 02118
| | - Cicely A Jette
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84103; and
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | |
Collapse
|
13
|
Role of plasma cells in Waldenström macroglobulinaemia. Pathology 2017; 49:337-345. [DOI: 10.1016/j.pathol.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
|
14
|
Slinger E, Thijssen R, Kater AP, Eldering E. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia 2017; 31:2601-2607. [PMID: 28462919 DOI: 10.1038/leu.2017.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
The clinical success of B-cell receptor (BCR) signaling pathway inhibitors in chronic lymphocytic leukemia (CLL) is attributed to inhibition of adhesion in and migration towards the lymph node. Proliferation of CLL cells is restricted to this protective niche, but the underlying mechanism(s) is/are not known. Treatment with BCR pathway inhibitors results in rapid reductions of total clone size, while CLL cell survival is not affected, which points towards inhibition of proliferation. In vitro, BCR stimulation does not induce proliferation of CLL, but triggering via Toll-like receptor, tumor necrosis factor or cytokine receptors does. Here, we investigated the effects of clinically applied inhibitors that target BCR signaling, in the context of proliferation triggered either via CD40L/IL-21 or after CpG stimulation. CD40L/IL-21-induced proliferation could be inhibited by idelalisib and ibrutinib. We demonstrate this was due to blockade of CD40L-induced ERK-signaling. Targeting JAKs, but not SYK, blocked CD40L/IL-21-induced proliferation. In contrast, PI3K, BTK as well as SYK inhibition prevented CpG-induced proliferation. Knockdown experiments showed that CD40L/IL-21 did not co-opt upstream BCR components such as CD79A, in contrast to CpG-induced proliferation. Our data indicate that currently applied BTK/PI3K inhibitors target antigen-independent proliferation in CLL, and suggest that targeting of JAK and/or SYK might be clinically useful.
Collapse
Affiliation(s)
- E Slinger
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - R Thijssen
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - A P Kater
- Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - E Eldering
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Jeon YH, Choi YS. Follicular Helper T (Tfh) Cells in Autoimmune Diseases and Allograft Rejection. Immune Netw 2016; 16:219-32. [PMID: 27574501 PMCID: PMC5002448 DOI: 10.4110/in.2016.16.4.219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Production of high affinity antibodies for antigens is a critical component for the immune system to fight off infectious pathogens. However, it could be detrimental to our body when the antigens that B cells recognize are of self-origin. Follicular helper T, or Tfh, cells are required for the generation of germinal center reactions, where high affinity antibody-producing B cells and memory B cells predominantly develop. As such, Tfh cells are considered as targets to prevent B cells from producing high affinity antibodies against self-antigens, when high affinity autoantibodies are responsible for immunopathologies in autoimmune disorders. This review article provides an overview of current understanding of Tfh cells and discusses it in the context of animal models of autoimmune diseases and allograft rejections for generation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yun-Hui Jeon
- Department of Biological Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Youn Soo Choi
- Transplant Research Institute, Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Biological Sciences, Seoul National University Graduate School, Seoul 03080, Korea.; Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
16
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
17
|
Hempel RJ, Bannantine JP, Stabel JR. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis. PLoS One 2016; 11:e0153932. [PMID: 27093613 PMCID: PMC4836751 DOI: 10.1371/journal.pone.0153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.
Collapse
Affiliation(s)
- Randy J. Hempel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - John P. Bannantine
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - Judith R. Stabel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
18
|
Membrane immunoglobulin expressed by retroviral vector gene transfer mimics partial function of the B-cell receptor in vivo. SCIENCE CHINA-LIFE SCIENCES 2015; 59:49-58. [DOI: 10.1007/s11427-015-4931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023]
|
19
|
Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b. Blood 2015; 125:949-58. [DOI: 10.1182/blood-2014-07-587840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
B-cell malignancies were efficiently recognized by T cells expressing high-affinity alloHLA-restricted TCRs specific for CD79b. Aberrant expression of CD79b in non–B cells caused unwanted reactivity, rendering CD79b unsuitable for TCR-based immunotherapies.
Collapse
|
20
|
Banham GD, Clatworthy MR. B-cell biomarkers in transplantation - from genes to therapy. ACTA ACUST UNITED AC 2015; 85:82-92. [DOI: 10.1111/tan.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- G. D. Banham
- Department of Medicine; University of Cambridge School of Clinical Medicine; Cambridge UK
| | - M. R. Clatworthy
- Department of Medicine; University of Cambridge School of Clinical Medicine; Cambridge UK
| |
Collapse
|
21
|
Abstract
The B-cell antigen receptor (BCR) is one of the most abundant receptors on the surface of B cells with roughly 100,000-200,000 copies per cell. Signaling through the BCR is crucial for the activation and differentiation of B cells. Unlike other receptors, the BCR can be activated by a large set of structurally different ligands, but the molecular mechanism of BCR activation is still a matter of controversy. Although dominant for a long time, the cross-link model (CLM) of BCR activation is not supported by recent studies of the nanoscale organization of the BCR on the surface of resting B cells. In contrast to the prediction of CLM, the numerous BCR complexes on these cells are not randomly distributed monomers but rather form oligomers which reside within membrane confinements. This finding is more in line with the dissociation activation model (DAM), wherein B-cell activation is accompanied by an opening of the auto-inhibited BCR oligomers instead of a cross-linking of the BCR monomers. In this review, we discuss in detail the new findings and their implications for BCR signaling.
Collapse
|
22
|
Sigalov AB. Unusual biophysics of immune signaling-related intrinsically disordered proteins. SELF NONSELF 2014; 1:271-281. [PMID: 21487502 DOI: 10.4161/self.1.4.13641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered (ID) regions, the regions that lack a well-defined three-dimensional structure under physiological conditions, are preferentially located in the cytoplasmic segments of plasma membrane proteins, many of which are known to be involved in cell signaling. This is in line with our studies that demonstrated that cytoplasmic domains of signaling subunits of immune receptors, including those of ζ, CD3ε, CD3δ and CD3γ chains of T cell receptor, Igα and Igβ chains of B cell receptor as well as the Fc receptor γ chain represent a novel class of ID proteins (IDPs). The domains all have one or more copies of an immunoreceptor tyrosine-based activation motif, tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. Our studies of these IDPs revealed several unusual biophysical phenomena, including (1) the specific dimerization of disordered protein molecules, (2) the fast and slow dimerization equilibrium, depending on the protein, (3) no disorder-to-order transition and the lack of significant chemical shift and peak intensity changes upon dimerization or interaction with a well-folded partner protein and (4) the dual mode of binding to model membranes (with and without folding), depending on the lipid bilayer stability. Here, I highlight several of these studies that not only facilitate a rethinking process of the fundamental paradigms in protein biophysics but also open new perspectives on the molecular mechanisms involved in receptor signaling.
Collapse
|
23
|
Clatworthy MR. B-cell regulation and its application to transplantation. Transpl Int 2013; 27:117-28. [PMID: 23909582 DOI: 10.1111/tri.12160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/08/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
There has been increasing interest in the role played by B cells and their associated antibody in the immune response to an allograft, driven by the need to undertake antibody-incompatible transplantation and evidence suggesting that B cells play a role in acute T-cell-mediated rejection and in acute and chronic antibody-mediated rejection. This review focuses on the molecular events, both activating and inhibitory, which control B-cell activation, and considers how this information might inform therapeutic strategies. Potential targets include the BAFF (B-cell-activating factor belonging to the tumour necrosis factor family) and CD40-CD40L pathways and inhibitory molecules, such as CD22 and FcγRIIB. B cells can also play an immunomodulatory role via interleukin (IL)10 production and may contribute to transplant tolerance. The expansion of allograft-specific IL10-producing B cells may be an additional therapeutic goal. Thus, the treatment paradigm required in transplantation has shifted from that of simple B-cell depletion, to that of a more subtle, differential manipulation of different B-cell subsets.
Collapse
|
24
|
Li R, Wang T, Bird S, Zou J, Dooley H, Secombes CJ. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1404-15. [PMID: 23454429 PMCID: PMC4034164 DOI: 10.1016/j.fsi.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/16/2023]
Abstract
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Helen Dooley
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Corresponding author. Tel.: +44 1224 278272; fax: +44 (0)1224 272396.
| |
Collapse
|
25
|
Huang X, Takata K, Sato Y, Tanaka T, Ichimura K, Tamura M, Oka T, Yoshino T. Downregulation of the B-cell receptor signaling component CD79b in plasma cell myeloma: a possible post transcriptional regulation. Pathol Int 2011; 61:122-9. [PMID: 21355953 DOI: 10.1111/j.1440-1827.2010.02634.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CD79 molecule, encoded by the CD79a and CD79b genes, is a signaling unit of the B-cell receptor complex, which transmits signals of B-cell activation, growth, and differentiation. They are B-cell-specific and expressed at most stages of B-cell development. Although plasma cells have been believed to lack these gene products, the regulation of CD79 expression in plasma cells is still controversial. In particular, the regulation of CD79b expression remains unclear. We sought to examine CD79b expression in normal and neoplastic plasma cells by immunohistochemical analysis. Out of the 23 clinical samples and 11 cell lines of plasma cell myeloma (PCM), none of the clinical samples and only 1 of 11 cell lines expressed CD79b immunohistologically, whereas non-neoplastic plasma cells in reactive hyperplastic lymph nodes exhibited loss of CD79b protein expression. This finding is quite different from our previous report on CD79a. Not only immunocytochemistry, but also RT-PCR and Western blot analysis of PCM cell lines gave identical results. Interestingly, we detected mRNA transcripts of CD79b in PCM cell lines, although protein translation was lacking. These findings suggest that expression of CD79b is downregulated in both plasma cells and plasma cell myeloma, and this process is possibly under post transcriptional regulation.
Collapse
Affiliation(s)
- Xingang Huang
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Engagement of the B-cell antigen receptor (BCR) or its precursor, the pre-BCR, induces a cascade of biochemical reactions that regulate the differentiation, selection, survival, and activation of B cells. This cascade is initiated by receptor-associated tyrosine kinases that activate multiple downstream signaling pathways. Since it is required for metabolism, cell growth, development, and survival, the activation of phosphoinositide 3-kinase (PI3K)-dependent pathways represents a crucial event of BCR/pre-BCR signaling. The phosphorylated substrates of the PI3K promote specific recruitment of selected signaling proteins to the plasma membrane, where important signaling complexes are formed to mediate the above-mentioned biological processes. Here, we review the principles of PI3K signaling and highlight the role of an important PI3K-driven module in VDJ recombination of immunoglobulin (Ig) genes during early B-cell development as compared with class switch recombination of Ig genes in mature B cells after activation by specific antigens. Furthermore, we discuss the role of PI3K in the survival of mature B cells, which is strictly dependent on BCR expression and basal BCR signaling.
Collapse
Affiliation(s)
- Markus Werner
- Faculty of Biology, Department of Molecular Immunology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
27
|
Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 2010; 237:205-25. [DOI: 10.1111/j.1600-065x.2010.00944.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Mao W, Hunt HD, Cheng HH. Cloning and functional characterization of chicken stem cell antigen 2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:360-368. [PMID: 19945479 DOI: 10.1016/j.dci.2009.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/21/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
Stem cell antigen 2 (SCA2) is a Ly6 family member whose function is largely unknown. To characterize biological properties and tissue distribution of chicken SCA2, SCA2 was expressed in E. coli, purified, and a polyclonal antibody developed. Utilizing the polyclonal antibody, SCA2 is a 13 kDa cell surface protein anchored by a glycosyl-phosphatidylinositol (GPI) moiety. SCA2 is expressed in connective tissues of thymus and bursa based on immunohistochemistry, immunoprecipitation, and western blots. In bursal follicles, SCA2 is specifically expressed on the cortical-medullary epithelial cells (CMEC) surrounded by MHC class II presenting cells. Expression profiles of bursal cells induced by contact with SCA2-expressing cells shows down-regulation of numerous genes including CD79B, B cell linker (BLNK), spleen tyrosine kinase (SYK), and gamma 2-phospholipase C (PLCG2) that are involved in the B cell receptor (BCR) and immune response signaling pathways. These results suggest chicken SCA2 plays a role in regulating B lymphocytes.
Collapse
Affiliation(s)
- Weifeng Mao
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 E. Mount Hope Rd., East Lansing, MI 48823, USA
| | | | | |
Collapse
|
29
|
Zhao XF, Gojo I, York T, Ning Y, Baer MR. Diagnosis of biphenotypic acute leukemia: a paradigmatic approach. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2009; 3:75-86. [PMID: 19918331 PMCID: PMC2776262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/23/2009] [Indexed: 05/28/2023]
Abstract
Biphenotypic acute leukemia (BAL), or acute leukemia with a single population of blasts coexpressing markers of two different lineages, is a rare clinical entity. To define BAL, a scoring system was proposed by the European Group of Immunological Markers for Leukemias (EGIL) in 1995. However, increasing evidence suggests that this system has limitations, as acknowledged by the 2008 World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues. Although substantially improved in relation to the EGIL, the new WHO Classification is still not optimal for guiding the clinical management of patients with BAL. We propose a new paradigmatic approach to defining BAL based on recent clinical studies of BAL and advances in immunologic marker definition and cytogenetics, and applied our new approach to 8 cases of "BAL" among a cohort of 742 new acute leukemias in our Cancer Center. By our new criteria, 6 cases were reclassified as acute lymphoblastic leukemia (ALL), while only 2 were still classified as BAL. Our approach is also supported by analyses of the BAL cases previously reported by other institutions.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged, 80 and over
- Antigens, Neoplasm/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Child
- Female
- Humans
- Immunophenotyping
- Leukemia, Biphenotypic, Acute/classification
- Leukemia, Biphenotypic, Acute/diagnosis
- Leukemia, Biphenotypic, Acute/genetics
- Leukemia, Biphenotypic, Acute/immunology
- Male
- Middle Aged
- Phenotype
- Retrospective Studies
- World Health Organization
- Young Adult
Collapse
Affiliation(s)
- Xianfeng Frank Zhao
- Department of Pathology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
30
|
Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9:195-205. [PMID: 19240758 DOI: 10.1038/nri2491] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy chain gene. Signals through the pre-BCR are required for initiating diverse processes in pre-B cells, including proliferation and recombination of the light chain gene, which eventually lead to the differentiation of pre-B cells to immature B cells. However, the molecular mechanisms by which the pre-BCR promotes these processes remain largely unresolved. Recent findings suggest that forkhead box O (FOXO) transcription factors connect pre-BCR signalling to the activation of the recombination machinery. In this Review, we discuss how FOXO transcription factors are regulated by the pre-BCR to allow the progression of the cell cycle and the recombination of the light chain gene.
Collapse
Affiliation(s)
- Sebastian Herzog
- Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
31
|
Sahoo M, Edholm ES, Stafford JL, Bengtén E, Miller NW, Wilson M. B cell receptor accessory molecules in the channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1385-97. [PMID: 18572245 PMCID: PMC2561914 DOI: 10.1016/j.dci.2008.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 05/19/2023]
Abstract
B cell receptor (BCR) accessory molecules CD79a and CD79b homologs were identified in the channel catfish, Ictalurus punctatus. Both are found as single copy genes that encode proteins containing a signal peptide, an extracellular immunoglobulin domain, a transmembrane region and a cytoplasmic tail containing an immune-receptor tyrosine-dased activation motif (ITAM). IpCD79a and IpCD79b transcripts correlate well with IgM message expression. They are highly expressed in peripheral blood leukocytes (PBL) enriched in membrane (m) IgM+ cells and catfish clonal B cell lines, but not in catfish clonal T cells, indicating that IpCD79a and IpCD79b expression is B cell restricted. Studies using catfish clonal B cells (3B11) transfected with constructs encoding epitope-tagged IpCD79a and IpCD79b revealed that IpCD79a was expressed as a 45 kDa protein and IpCD79b was expressed as a 32 kDa protein. Furthermore, co-immunoprecipitations of epitope-tagged CD79 proteins demonstrate that these molecules are non-covalently associated with mIgM. These data correlate with some of the previous immunoprecipitation data demonstrating that catfish mIgM associates with proteins of 45 and 32 kDa.
Collapse
Affiliation(s)
- Manoranjan Sahoo
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson MS, 39216, USA
| | - Eva-Stina Edholm
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson MS, 39216, USA
| | - James L. Stafford
- Department of Biological Sciences Z508, University of Alberta, Edmonton, Alberta Canada T6G 2E9
| | - Eva Bengtén
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson MS, 39216, USA
| | - Norman W. Miller
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson MS, 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson MS, 39216, USA
| |
Collapse
|
32
|
Cajiao I, Sargent R, Elstrom R, Cooke NE, Bagg A, Liebhaber SA. Igbeta(CD79b) mRNA expression in chronic lymphocytic leukaemia cells correlates with immunoglobulin heavy chain gene mutational status but does not serve as an independent predictor of clinical severity. Am J Hematol 2007; 82:712-20. [PMID: 17315213 DOI: 10.1002/ajh.20885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The etiology of chronic lymphocytic leukemia (CLL) is poorly understood and its course is highly variable. Somatic hypermutation (SHM) of the immunoglobulin heavy chain (IgV(H)) gene and ZAP70 protein expression have been reported as prognostic indicators. However, these assays are not widely available and their concordance is imperfect. Thus a need exists to identify additional molecular determinants of CLL. The Igbeta (CD79b) subunit of the B cell antigen receptor is essential for B lymphocyte function. Defects in Igbeta expression are implicated in CLL pathogenesis. We have analyzed Igbeta mRNA expression in CLL cells in 40 consecutive patient samples. About 75% of the samples showed the expected decrease of Igbeta surface staining. Igbeta mRNA levels covered a wider range, did not correlate with Igbeta surface staining, but clearly distinguished the normal and CLL lymphocyte populations. Remarkably, Igbeta mRNA levels correlated strongly with SHM; Igbeta mRNA levels in CLL cells were significantly higher in patients with an unmutated IgV(H) gene when compared with those in whom IgV(H) was hypermutated (P = 0.008). In contrast, no correlation was observed between Igbeta mRNA levels and ZAP70 expression. Multiple parameters abstracted from chart reviews were used to estimate severity of CLL in each case. While severity correlated strongly with ZAP70 staining, and to a lesser extent with SHM status, there was no correlation with Igbeta mRNA levels. These data establish a strong linkage between Igbeta mRNA expression and SHM in CLL and highlight the complex relationships between biochemical parameters and clinical status in this disease.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing/genetics
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Cell Line
- Cell Membrane/metabolism
- Exons/genetics
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunohistochemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Male
- Middle Aged
- Mutation/genetics
- RNA, Messenger/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Isabela Cajiao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fuentes-Pananá EM, Bannish G, Karnell FG, Treml JF, Monroe JG. Analysis of the Individual Contributions of Igα (CD79a)- and Igβ (CD79b)-Mediated Tonic Signaling for Bone Marrow B Cell Development and Peripheral B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2006; 177:7913-22. [PMID: 17114463 DOI: 10.4049/jimmunol.177.11.7913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The individual contribution of Igalpha and Igbeta for BCR-triggered fates is unclear. Prior evidence supports conflicting ideas concerning unique as well as redundant functions for these proteins in the context of BCR/pre-BCR signaling. Part of this ambiguity may reflect the recent appreciation that Igalpha and Igbeta participate in both Ag-independent (tonic) and Ag-dependent signaling. The present study undertook defining the individual requirement for Igalpha and Igbeta under conditions where only ligand-independent tonic signaling was operative. In this regard, we have constructed chimeric proteins containing one or two copies of the cytoplasmic domains of either Igalpha or Igbeta and Igalpha/Igbeta heterodimers with targeted Tyr-->Phe modifications. The ability of these proteins to act as surrogate receptors and trigger early bone marrow and peripheral B cell maturation was tested in RAG2(-/-) primary pro-B cell lines and in gene transfer experiments in the muMT mouse model. We considered that the threshold for a functional activity mediated by the pre-BCR/BCR might only be reached when two functional copies of the Igalpha/Igbeta ITAM domain are expressed together, and therefore the specificity conferred by these proteins can only be observed in these conditions. We found that the ligand-independent tonic signal is sufficient to drive development into mature follicular B cells and both Igalpha and Igbeta chains supported formation of this population. In contrast, neither marginal zone nor B1 mature B cell subsets develop from bone marrow precursors under conditions where only tonic signals are generated.
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Yoo EJ, Cajiao I, Kim JS, Kimura AP, Zhang A, Cooke NE, Liebhaber SA. Tissue-specific chromatin modifications at a multigene locus generate asymmetric transcriptional interactions. Mol Cell Biol 2006; 26:5569-79. [PMID: 16847312 PMCID: PMC1592780 DOI: 10.1128/mcb.00405-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitary cell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd., 428 Clinical Research Building, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Gazumyan A, Reichlin A, Nussenzweig MC. Ig beta tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization. J Exp Med 2006; 203:1785-94. [PMID: 16818674 PMCID: PMC2118343 DOI: 10.1084/jem.20060221] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/02/2006] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin (Ig)alpha and Igbeta initiate B cell receptor (BCR) signaling through immune receptor tyrosine activation motifs (ITAMs) that are targets of SH2 domain-containing kinases. To examine the function of Igbeta ITAM tyrosine resides in mature B cells in vivo, we exchanged these residues for alanine by gene targeting (Igbeta(AA)). Mutant mice showed normal development of all B cell subtypes with the exception of B1 cells that were reduced by fivefold. However, primary B cells purified from Igbeta(AA) mice showed significantly decreased steady-state and ligand-mediated BCR internalization and higher levels of cell surface IgM and IgD. BCR cross-linking resulted in decreased Src and Syk activation but paradoxically enhanced and prolonged BCR signaling, as measured by cellular tyrosine phosphorylation, Ca(++) flux, AKT, and ERK activation. In addition, B cells with the ITAM mutant receptor showed an enhanced response to a T-independent antigen. Thus, Igbeta ITAM tyrosines help set BCR signaling threshold by regulating receptor internalization.
Collapse
Affiliation(s)
- Anna Gazumyan
- Laboratory of Molecular Immunology and 2Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
36
|
Minuzzo S, Indraccolo S, Tosello V, Piovan E, Cabrelle A, Trentin L, Semenzato G, Amadori A. Heterogeneous intracellular expression of B-cell receptor components in B-cell chronic lymphocytic leukaemia (B-CLL) cells and effects of CD79b gene transfer on surface immunoglobulin levels in a B-CLL-derived cell line. Br J Haematol 2005; 130:878-89. [PMID: 16156858 DOI: 10.1111/j.1365-2141.2005.05699.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) cells display low amounts of surface immunoglobulins (sIg). To investigate the mechanisms underlying this phenomenon, we performed a thorough study of surface and intracellular expression of the B-cell receptor (BCR) components in B-CLL cells using flow cytometry. There was an heterogeneous pattern of expression. Overall, 20 of 22 samples showed reduced sIgM levels, compared with normal B cells. Among them, three (15%) had very low to undetectable intracellular IgM levels and variable amounts of CD79a and CD79b; nine (45%) had low intracellular CD79b levels but appreciable levels of IgM and CD79a; and eight (40%) had relatively normal intracellular levels of all BCR components. To investigate whether surface BCR levels could be controlled by the rate of CD79b synthesis, adenoviral vectors encoding CD79b were generated and used for gene transfer experiments. Delivery of CD79b to non-B cells transfected with IgM and CD79a lead to high-level expression of a functional BCR. Moreover, CD79b gene transfer in a B cell line derived from a B-CLL patient and characterised by low intracellular levels of endogenous CD79b consistently increased sIgM levels. These findings indicate that the phenotype of B-CLL cells in a subset of patients may depend primarily on poor CD79b expression, and suggest that upregulation of CD79b expression may correct the phenotype of these cells.
Collapse
MESH Headings
- Adenoviridae/genetics
- Aged
- Aged, 80 and over
- Antibodies, Neoplasm/blood
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD79 Antigens
- Female
- Genetic Vectors
- Humans
- Immunoglobulin M/blood
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Receptors, Antigen, B-Cell/blood
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonia Minuzzo
- Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sigalov AB. Multichain immune recognition receptor signaling: different players, same game? Trends Immunol 2005; 25:583-9. [PMID: 15489186 DOI: 10.1016/j.it.2004.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
38
|
Vangelista L, Soprana E, Cesco-Gaspere M, Mandiola P, Di Lullo G, Fucci RN, Codazzi F, Palini A, Paganelli G, Burrone OR, Siccardi AG. Membrane IgE Binds and Activates FcεRI in an Antigen-Independent Manner. THE JOURNAL OF IMMUNOLOGY 2005; 174:5602-11. [PMID: 15843559 DOI: 10.4049/jimmunol.174.9.5602] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction of secretory IgE with FcepsilonRI is the prerequisite for allergen-driven cellular responses, fundamental events in immediate and chronic allergic manifestations. Previous studies reported the binding of soluble FcepsilonRIalpha to membrane IgE exposed on B cells. In this study, the functional interaction between human membrane IgE and human FcepsilonRI is presented. Four different IgE versions were expressed in mouse B cell lines, namely: a truncation at the Cepsilon2-Cepsilon3 junction of membrane IgE isoform long, membrane IgE isoform long (without Igalpha/Igbeta BCR accessory proteins), and both epsilonBCRs (containing membrane IgE isoforms short and long). All membrane IgE versions activated a rat basophilic leukemia cell line transfected with human FcepsilonRI, as detected by measuring the release of both preformed and newly synthesized mediators. The interaction led also to Ca(2+) responses in the basophil cell line, while membrane IgE-FcepsilonRI complexes were detected by immunoprecipitation. FcepsilonRI activation by membrane IgE occurs in an Ag-independent manner. Noteworthily, human peripheral blood basophils and monocytes also were activated upon contact with cells bearing membrane IgE. In humans, the presence of FcepsilonRI in several cellular entities suggests a possible membrane IgE-FcepsilonRI-driven cell-cell dialogue, with likely implications for IgE homeostasis in physiology and pathology.
Collapse
MESH Headings
- Animals
- Antigens/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Basophils/immunology
- Basophils/metabolism
- Binding Sites, Antibody
- Binding, Competitive/immunology
- CHO Cells
- Calcium/metabolism
- Cell Communication/immunology
- Cell Count
- Cell Line, Tumor
- Cricetinae
- Humans
- Immunoglobulin E/metabolism
- Immunoglobulin E/physiology
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Multiprotein Complexes/metabolism
- Protein Binding/immunology
- Protein Isoforms/biosynthesis
- Protein Isoforms/metabolism
- Rats
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/biosynthesis
- Receptors, IgE/metabolism
- SRS-A/analogs & derivatives
- SRS-A/metabolism
- Solubility
- Time Factors
Collapse
Affiliation(s)
- Luca Vangelista
- Department of Biology and Genetics, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kabak S, Clark MR. Membrane-targeted peptides derived from Igalpha attenuate B-cell antigen receptor function. Biochem Biophys Res Commun 2005; 324:1249-55. [PMID: 15504349 DOI: 10.1016/j.bbrc.2004.09.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 12/30/2022]
Abstract
Within the B-cell antigen receptor (BCR), heterodimers of Igalpha/Igbeta couple the receptor to intracellular signaling pathways. In the resting state, Igalpha associates with Src-family tyrosine kinases (SFTKs) which contain some basal activity. Upon engagement of the receptor, the SFTKs phosphorylate tyrosine residues in the BCR that recruit and activate the tyrosine kinase Syk, initiating signaling pathways. To test the hypothesis that disrupting the association between the resting receptor and the SFTKs would attenuate both basal and induced receptor activities, we expressed non-phosphorylatable membrane-targeted analogs of Igalpha (Igalpha/M) or Igbeta (Igbeta/M) in B lymphocytes. Both Igalpha/M and Igbeta/M inhibited BCR-induced calcium mobilization, but only Igalpha/M was able to diminish tyrosine phosphorylation. In an immature B-cell line, Igalpha/M attenuated both receptor-induced and basal apoptosis. Taken together, these data demonstrate the importance of the resting receptor complex and suggest therapeutic strategies for regulating receptor-mediated functions.
Collapse
Affiliation(s)
- Shara Kabak
- Departments of Medicine and Pathology, Section of Rheumatology, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
40
|
Pike KA, Ratcliffe MJH. Dual Requirement for the Igα Immunoreceptor Tyrosine-Based Activation Motif (ITAM) and a Conserved Non-Igα ITAM Tyrosine in Supporting Igαβ-Mediated B Cell Development. THE JOURNAL OF IMMUNOLOGY 2005; 174:2012-20. [PMID: 15699130 DOI: 10.4049/jimmunol.174.4.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface Ig (sIg) expression is a critical checkpoint during avian B cell development. Only cells that express sIg colonize bursal follicles, clonally expand, and undergo Ig diversification by gene conversion. Expression of a heterodimer, in which the extracellular and transmembrane domains of murine CD8alpha or CD8beta are fused to the cytoplasmic domains of chicken Igalpha (chIgalpha) or Igbeta, respectively (murine CD8alpha (mCD8alpha):chIgalpha + mCD8beta:chIgbeta), or an mCD8alpha:chIgalpha homodimer supported bursal B cell development as efficiently as endogenous sIg. In this study we demonstrate that B cell development, in the absence of chIgbeta, requires both the Igalpha ITAM and a conserved non-ITAM Igalpha tyrosine (Y3) that has been associated with binding to B cell linker protein (BLNK). When associated with the cytoplasmic domain of Igbeta, the Igalpha ITAM is not required for the induction of strong calcium mobilization or BLNK phosphorylation, but is still necessary to support B cell development. In contrast, mutation of the Igalpha Y3 severely compromised calcium mobilization when expressed as either a homodimer or a heterodimer with the cytoplasmic domain of Igbeta. However, coexpression of the cytoplasmic domain of Igbeta partially complemented the Igalpha Y3 mutation, rescuing higher levels of BLNK phosphorylation and, more strikingly, supporting B cell development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Avian Sarcoma Viruses/genetics
- Avian Sarcoma Viruses/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Carrier Proteins/metabolism
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cells, Cultured
- Chick Embryo
- Chickens
- Conserved Sequence
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Dimerization
- Mice
- Mutagenesis, Site-Directed
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/physiology
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
|
42
|
Hardy RR, Wei CJ, Hayakawa K. Selection during development of VH11+ B cells: a model for natural autoantibody-producing CD5+ B cells. Immunol Rev 2004; 197:60-74. [PMID: 14962187 DOI: 10.1111/j.0105-2896.2004.0100.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural autoantibodies constitute a large portion of serum immunoglobulin M (IgM) and bridge the adaptive and innate immune systems, serving as a rapid response to common pathogens. Many arise from a distinctive subset of B cells, termed B-1, that express CD5. Here, we describe our studies with a representative CD5+ B-cell-derived natural autoantibody, the VH11Vkappa9 B-cell receptor (BCR) that binds a determinant on senescent erythrocytes. This specificity represents 5-10% of the CD5+ B-cell subset, with a large portion accounted for by two novel BCRs, VH11Vkappa9 and VH12Vkappa4. We have found that the development of B-lineage cells with a VH11 rearrangement is surprisingly restricted at several crucial bottlenecks: (i). one of the most common VH11 rearrangements generates a heavy-chain protein that only inefficiently assembles a pre-BCR, key for recombinase-activating gene downregulation/allelic exclusion and pre-B-clonal expansion; (ii). cells containing VH11- micro chains lacking N-addition are favored for progression to the B-cell stage, eliminating most bone marrow VH11 rearrangements; and (iii). only a subset of Vkappa-light chains combine with VH11 heavy chain to foster progression to the mature B-cell stage. Together, these constrain VH11 generation to fetal development and may favor production of B cells with the prototype VH11Vkappa9 BCR.
Collapse
Affiliation(s)
- Richard R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | |
Collapse
|
43
|
Milne CD, Fleming HE, Zhang Y, Paige CJ. Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin-1 during B-cell development. Immunol Rev 2004; 197:75-88. [PMID: 14962188 DOI: 10.1111/j.0105-2896.2004.0103.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many of the stromal-derived signals and factors that regulate B lymphopoiesis have been identified. We review recent evidence from our laboratory that shows that there are at least three phases during B-cell development when cells direct their own maturation, independent of stromal cells. Following the expression of the preB-cell receptor (preBCR), cells acquire the ability to proliferate in low levels of interleukin-7 (IL-7), which acts as a self-selecting mechanism to expand cells that have successfully expressed a preBCR in environments that are non-permissive to preBCR- cells. Second, the preBCR is required for a contact-mediated event between B-cell progenitors. Disruption at this stage prevents the further maturation of progenitors to the lipopolysaccharide (LPS)-responsive stage. Finally, the transition from IL-7 receptor to mature antigen receptor-based signaling is enhanced by a novel member of the tachykinin family, hemokinin-1. This series of maturation, survival, and differentiation signals is generated by B-lineage cells as they progress through developmental checkpoints on the way to becoming functionally mature cells.
Collapse
|
44
|
Ohtsuka M, Arase H, Takeuchi A, Yamasaki S, Shiina R, Suenaga T, Sakurai D, Yokosuka T, Arase N, Iwashima M, Kitamura T, Moriya H, Saito T. NFAM1, an immunoreceptor tyrosine-based activation motif-bearing molecule that regulates B cell development and signaling. Proc Natl Acad Sci U S A 2004; 101:8126-31. [PMID: 15143214 PMCID: PMC419568 DOI: 10.1073/pnas.0401119101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 01/15/2023] Open
Abstract
A functional cDNA cloning system was developed by using a retrovirus library encoding CD8-chimeric proteins and a nuclear factor of activated T cells (NFAT)-GFP reporter cell line to identify molecules inducing NFAT activation. By using this strategy, NFAT activating molecule 1 (NFAM1) was cloned as an immunoreceptor tyrosine-based activation motif (ITAM)-bearing cell surface molecule belonging to the Ig superfamily and is predominantly expressed in spleen B and T cells. NFAM1 crosslinking induced ITAM phosphorylation, ZAP-70/Syk recruitment, NFAT activation, and cytokine production. In vivo overexpression of NFAM1 in bone marrow chimeras and transgenic mice induced severe impairment of early B cell development in an ITAM-dependent manner. In NFAM1-expressing B cells, B cell antigen receptor stimulation induced NFAM1 translocation to lipid raft, and NFAM1 co-crosslinking augmented B cell antigen receptor signaling. The results suggest that NFAM1 modulates B cell signaling through its ITAM, which regulates B cell development.
Collapse
Affiliation(s)
- Makoto Ohtsuka
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rheingold SR, Brown VI, Fang J, Kim JM, Grupp SA. Role of the BCR complex in B cell development, activation, and leukemic transformation. Immunol Res 2004; 27:309-30. [PMID: 12857978 DOI: 10.1385/ir:27:2-3:309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A primary focus of signal transduction in B cells, from the pre-B cell to the mature B cell, is the B cell receptor complex. Here we describe work demonstrating the importance of signaling via the pre-B cell receptor complex (pre-BCR) to the pre-B cell transition, the central checkpoint in B-cell development. We have shown tht pre-BCR complex components Igalpha and Igbeta are critical to allowing the pre-B cell to move through this transition, but may not be required for allelic exclusion. Pre-BCR expression also directly affects the response of leukemic cells to steroid treatment, suggesting that signals initiated by the pre-BCR complex may present therapeutic targets in acute leukemia. Additionally, interleukin-7 may also modulate the response of leukemic cells arising from early B-cell stages to treatment. This observation has lead directly to proposals to test drugs which may antagonize early B-cell growth signals, such as rapamycin, in acute lymphoid leukemia.
Collapse
Affiliation(s)
- Susan R Rheingold
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Reichlin A, Gazumyan A, Nagaoka H, Kirsch KH, Kraus M, Rajewsky K, Nussenzweig MC. A B cell receptor with two Igalpha cytoplasmic domains supports development of mature but anergic B cells. J Exp Med 2004; 199:855-65. [PMID: 15024049 PMCID: PMC2212724 DOI: 10.1084/jem.20031140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 02/02/2004] [Indexed: 12/17/2022] Open
Abstract
B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)alpha and Igbeta a membrane-bound heterodimer. Igalpha and Igbeta are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igalpha-Igbeta in mature B cells in vivo we exchanged the cytoplasmic domain of Igalpha for the cytoplasmic domain of Igbeta by gene targeting (Igbetac-->alphac mice). Igbetac-->alphac B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igbetac-->alphac B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Blotting, Southern
- Blotting, Western
- Bone Marrow/immunology
- Bromodeoxyuridine
- Calcium/metabolism
- Cell Differentiation/immunology
- Cell Differentiation/physiology
- Clonal Anergy/immunology
- DNA Primers
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Genetic Vectors
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Mice
- Mice, Transgenic
- Protein Structure, Tertiary/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/physiology
- Spleen/immunology
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Pike KA, Iacampo S, Friedmann JE, Ratcliffe MJH. The Cytoplasmic Domain of Igα Is Necessary and Sufficient to Support Efficient Early B Cell Development. THE JOURNAL OF IMMUNOLOGY 2004; 172:2210-8. [PMID: 14764688 DOI: 10.4049/jimmunol.172.4.2210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The B cell receptor complex (BcR) is essential for normal B lymphocyte function, and surface BcR expression is a crucial checkpoint in B cell development. However, functional requirements for chains of the BcR during development remain controversial. We have used retroviral gene transfer to introduce components of the BcR into chicken B cell precursors during embryonic development. A chimeric heterodimer, in which the cytoplasmic domains of chicken Igalpha and Igbeta are expressed by fusion with the extracellular and transmembrane domains of murine CD8alpha and CD8beta, respectively, targeted the cytoplasmic domains of the BcR to the cell surface in the absence of extracellular BcR domains. Expression of this chimeric heterodimer supported all early stages of embryo B cell development: bursal colonization, clonal expansion, and induction of repertoire diversification by gene conversion. Expression of the cytoplasmic domain of Igalpha, in the absence of the cytoplasmic domain of Igbeta, was not only necessary, but sufficient to support B cell development as efficiently as the endogenous BcR. In contrast, expression of the cytoplasmic domain of Igbeta in the absence of the cytoplasmic domain of Igalpha failed to support B cell development. The ability of the cytoplasmic domain of Igalpha to support early B cell development required a functional Igalpha immunoreceptor tyrosine-based activation motif. These results support a model in which expression of surface IgM following productive V(D)J recombination in developing B cell precursors serves to chaperone the cytoplasmic domain of Igalpha to the B cell surface, thereby initiating subsequent stages of development.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Antibody Diversity/genetics
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bursa of Fabricius/cytology
- Bursa of Fabricius/immunology
- Bursa of Fabricius/metabolism
- CD79 Antigens
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Chick Embryo
- Chickens
- Cytoplasm/genetics
- Cytoplasm/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Immunoglobulin M/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Pike KA, Baig E, Ratcliffe MJH. The avian B-cell receptor complex: distinct roles of Igalpha and Igbeta in B-cell development. Immunol Rev 2004; 197:10-25. [PMID: 14962183 DOI: 10.1111/j.0105-2896.2004.0111.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The bursa of Fabricius has evolved in birds as a gut-associated site of B-cell lymphopoiesis that is segregated from the development of other hematopoietic lineages. Despite differences in the developmental progression of chicken as compared to murine B-cell lymphopoiesis, cell-surface immunoglobulin (sIg) expression has been conserved in birds as an essential checkpoint in B-cell development. B-cell precursors that express an sIg complex that includes the evolutionarily conserved Igalpha/beta heterodimer colonize lymphoid follicles in the bursa, whereas B-cell precursors that fail to express sIg due to non-productive V(D)J recombination are eliminated. Productive retroviral gene transfer has allowed us to introduce chimeric receptor constructs into developing B-cell precursors in vivo. Chimeric proteins comprising the extracellular and transmembrane regions of murine CD8alpha fused to the cytoplasmic domain of chicken Igalpha efficiently supported B-cell development in precursors that lacked endogenous sIg expression. By contrast, expression of an equivalent chimeric receptor containing the cytoplasmic domain of Igbeta actively inhibited B-cell development. Consequently, the cytoplasmic domains of Igalpha and Igbeta play functionally distinct roles in chicken B-cell development.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto,Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Wang LD, Lopes J, Cooper AB, Dang-Lawson M, Matsuuchi L, Clark MR. Selection of B lymphocytes in the periphery is determined by the functional capacity of the B cell antigen receptor. Proc Natl Acad Sci U S A 2004; 101:1027-32. [PMID: 14722356 PMCID: PMC327145 DOI: 10.1073/pnas.0307040101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Indexed: 01/10/2023] Open
Abstract
Within the B cell antigen receptor (BCR), the cytoplasmic tails of both Igalpha and Igbeta are required for normal B cell development and maturation. To dissect the mechanisms by which each tail contributes to development in vivo, Igbeta(-/-) mice were reconstituted with retroviruses encoding either wild-type Igbeta, an Igbeta molecule lacking a cytoplasmic tail (Igbeta(deltaC)) or one in which the cytoplasmic tail was derived from Igalpha (Igbeta(Calpha)). All constructs rescued B cell development and generated immature B cell populations in the bone marrow with similar expression levels of both Igbeta and membrane-bound IgM. In the periphery, receptor-surface density was inversely proportional to the number of Igalpha tails in the BCR. Although peripheral-surface-receptor levels differed, splenic B cells expressing either Igbeta or Igbeta(Calpha) responded similarly to stimulation through the BCR. Analysis of membrane-bound IgM and Igbeta expression revealed that peripheral-receptor expression was primarily determined by positive selection between the bone marrow and peripheral immature B cell populations. These data indicate that B cells are selected into the periphery on the basis of a common level of antigen responsiveness.
Collapse
Affiliation(s)
- Leo D Wang
- Section of Rheumatology and Committee on Immunology, Biological Sciences Division and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Geisberger R, Crameri R, Achatz G. Models of signal transduction through the B-cell antigen receptor. Immunology 2004; 110:401-10. [PMID: 14632636 PMCID: PMC1783084 DOI: 10.1111/j.1365-2567.2003.01770.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Roland Geisberger
- Department of Genetics and General Biology, Institute for Genetics, Salzburg, Austria
| | | | | |
Collapse
|