1
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Gerbec ZJ, Thakar MS, Malarkannan S. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Front Immunol 2015; 6:472. [PMID: 26441977 PMCID: PMC4584950 DOI: 10.3389/fimmu.2015.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Lymphocyte signaling cascades responsible for anti-tumor cytotoxicity and inflammatory cytokine production must be tightly regulated in order to control an immune response. Disruption of these cascades can cause immune suppression as seen in a tumor microenvironment, and loss of signaling integrity can lead to autoimmunity and other forms of host-tissue damage. Therefore, understanding the distinct signaling events that exclusively control specific effector functions of “killer” lymphocytes (T and NK cells) is critical for understanding disease progression and formulating successful immunotherapy. Elucidation of divergent signaling pathways involved in receptor-mediated activation has provided insights into the independent regulation of cytotoxicity and cytokine production in lymphocytes. Specifically, the Fyn signaling axis represents a branch point for killer cell effector functions and provides a model for how cytotoxicity and cytokine production are differentially regulated. While the Fyn–PI(3)K pathway controls multiple functions, including cytotoxicity, cell development, and cytokine production, the Fyn–ADAP pathway preferentially regulates cytokine production in NK and T cells. In this review, we discuss how the structure of Fyn controls its function in lymphocytes and the role this plays in mediating two facets of lymphocyte effector function, cytotoxicity and production of inflammatory cytokines. This offers a model for using mechanistic and structural approaches to understand clinically relevant lymphocyte signaling.
Collapse
Affiliation(s)
- Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
4
|
Manne BK, Badolia R, Dangelmaier C, Eble JA, Ellmeier W, Kahn M, Kunapuli SP. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015; 290:11557-68. [PMID: 25767114 DOI: 10.1074/jbc.m114.629527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Rachit Badolia
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Johannes A Eble
- the Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Wilfried Ellmeier
- the Division of Immunobiology, Institution of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Mark Kahn
- the Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159
| | - Satya P Kunapuli
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140,
| |
Collapse
|
5
|
Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol 2013; 14:1127-36. [PMID: 24036998 PMCID: PMC3855032 DOI: 10.1038/ni.2708] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Abstract
Inflammation is a critical component of the immune response. However, acute or chronic inflammation can be highly destructive. Uncontrolled inflammation forms the basis for allergy, asthma, and multiple autoimmune disorders. Here, we identify a signaling pathway that is exclusively responsible for inflammatory cytokine production but not for cytotoxicity. Recognition of H60+ or CD137L+ tumor cells by murine NK cells led to efficient cytotoxicity and inflammatory cytokine production. Both of these effector functions required Lck, Fyn, PI(3)K-p85α, PI(3)K-p110δ, and PLC-γ2. However, the complex of Fyn and the adapter ADAP exclusively regulated inflammatory cytokine production but not cytotoxicity in NK cells. This unique function of ADAP required a Carma1-Bcl10-MAP3K7 signaling axis. Our results identify molecules that can be targeted to regulate inflammation without compromising NK cell cytotoxicity.
Collapse
|
6
|
Mahadevan D, Chiorean EG, Harris WB, Von Hoff DD, Stejskal-Barnett A, Qi W, Anthony SP, Younger AE, Rensvold DM, Cordova F, Shelton CF, Becker MD, Garlich JR, Durden DL, Ramanathan RK. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer 2012; 48:3319-27. [PMID: 22921184 DOI: 10.1016/j.ejca.2012.06.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 02/09/2023]
Abstract
BACKGROUND SF1126 is a peptidic pro-drug inhibitor of pan-PI3K/mTORC. A first-in-human study evaluated safety, dose limiting toxicities (DLT), maximum tolerated dose (MTD), pharmacokinetics (PK), pharmacodynamics (PD) and efficacy of SF1126, in patients with advanced solid and B-cell malignancies. PATIENTS AND METHODS SF1126 was administered IV days 1 and 4, weekly in 28day-cycles. Dose escalation utilised modified Fibonacci 3+3. Samples to monitor PK and PD were obtained. RESULTS Forty four patients were treated at 9 dose levels (90-1110 mg/m(2)/day). Most toxicity was grade 1 and 2 with a single DLT at180 mg/m(2) (diarrhoea). Exposure measured by peak concentration (C(max)) and area under the time-concentration curve (AUC(0-)(t)) was dose proportional. Stable disease (SD) was the best response in 19 of 33 (58%) evaluable patients. MTD was not reached but the maximum administered dose (MAD) was 1110 mg/m(2). The protocol was amended to enrol patients with CD20+ B-cell malignancies at 1110 mg/m(2). A CLL patient who progressed on rituximab [R] achieved SD after 2 months on SF1126 alone but in combination with R achieved a 55% decrease in absolute lymphocyte count and a lymph node response. PD studies of CLL cells demonstrated SF1126 reduced p-AKT and increased apoptosis indicating inhibition of activated PI3K signalling. CONCLUSION SF1126 is well tolerated with SD as the best response in patients with advanced malignancies.
Collapse
Affiliation(s)
- D Mahadevan
- University of Arizona Cancer Center, Tucson, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Interferon-γ-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. J Transl Med 2011; 91:764-77. [PMID: 21321534 DOI: 10.1038/labinvest.2010.208] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon-γ (IFNγ) is an important immunoregulatory cytokine that can also decrease intestinal epithelial barrier function. Little is known about the intracellular signalling events immediately subsequent to IFNγ/IFNγ receptor interaction that mediate increases in epithelial permeability; data that could be used to ablate this effect of IFNγ while leaving its immunostimulatory effects intact. This study assessed the potential involvement of Src family kinases in IFNγ-induced increases in epithelial permeability using confluent filter-grown monolayers of the human colon-derived T84 epithelial cell line. Inhibition of Src kinase with the pharmacologic PP1 and use of Fyn kinase-specific siRNA significantly reduced IFNγ-induced increases in epithelial permeability as gauged by translocation of noninvasive E. coli (HB101 strain) and flux of horseradish peroxidase (HRP) across monolayers of T84 cells. However, the drop in transepithelial resistance elicited by IFNγ was not affected by either treatment. Immunoblotting revealed that IFNγ activated the transcription factor STAT5 in T84 cells, and immunoprecipitation studies identified an IFNγ-inducible interaction between STAT5b and the PI3K regulatory subunit p85α through formation of a complex requiring the adaptor molecule Gab2. siRNA targeting STAT5b and Gab2 reduced IFNγ-induced increases in epithelial permeability and phosphorylation of PI3K(p85α). PP1 and Fyn siRNA reduced IFNγ-induced PI3K activity (indicated by decreased phospho-Akt) and the formation of the STAT5b/PI3K(p85α) complex. Collectively, the results suggest the formation of a Fyn-dependent STAT5b/Gab2/PI3K complex that links IFNγ to PI3K signalling and the regulation of macromolecular permeability in a model enteric epithelium.
Collapse
|
8
|
E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. Blood 2009; 114:4197-208. [PMID: 19734451 DOI: 10.1182/blood-2008-12-190934] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatic mutations of Kit have been found in leukemias and gastrointestinal stromal tumors. The proto-oncogene c-Cbl negatively regulates Kit and Flt3 by its E3 ligase activity and acts as a scaffold. We recently identified the first c-Cbl mutation in human disease in an acute myeloid leukemia patient, called Cbl-R420Q. Here we analyzed the role of Cbl mutants on Kit-mediated transformation. Coexpression of Cbl-R420Q or Cbl-70Z with Kit induced cytokine-independent proliferation, survival, and clonogenic growth. Primary murine bone marrow retrovirally transduced with c-Cbl mutants and transplanted into mice led to a generalized mastocytosis, a myeloproliferative disease, and myeloid leukemia. Overexpression of these Cbl mutants inhibited stem cell factor (SCF)-induced ubiquitination and internalization of Kit. Both Cbl mutants enhanced the basal activation of Akt and prolonged the ligand-dependent activation. Importantly, transformation was observed also with kinase-dead forms of Kit and Flt3 in the presence of Cbl-70Z, but not in the absence of Kit or Flt3, suggesting a mechanism dependent on receptor tyrosine kinases, but independent of their kinase activity. Instead, transformation depends on the Src family kinase Fyn, as c-Cbl coimmunoprecipitated with Fyn and inhibition abolished transformation. These findings may explain primary resistance to tyrosine kinase inhibitors targeted at receptor tyrosine kinases.
Collapse
|
9
|
Benczik M, Gaffen SL. The Interleukin (IL)‐2 Family Cytokines: Survival and Proliferation Signaling Pathways in T Lymphocytes. Immunol Invest 2009; 33:109-42. [PMID: 15195693 DOI: 10.1081/imm-120030732] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lymphocyte populations in the immune system are maintained by a well-organized balance between cellular proliferation, cellular survival and programmed cell death (apoptosis). One of the primary functions of many cytokines is to coordinate these processes. In particular, the interleukin (IL)-2 family of cytokines, which consists of six cytokines (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) that all share a common receptor subunit (gammac), plays a major role in promoting and maintaining T lymphocyte populations. The details of the molecular signaling pathways mediated by these cytokines have not been fully elucidated. However, the three major pathways clearly involved include the JAK/STAT, MAPK and phosphatidylinositol 3-kinase (P13K) pathways. The details of these pathways as they apply to the IL-2 family of cytokines is discussed, with a focus on their roles in proliferation and survival signaling.
Collapse
Affiliation(s)
- Marta Benczik
- Department of Oral Biology, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | |
Collapse
|
10
|
Role of Fyn and PI3K in H2O2-induced inhibition of apical Cl-/OH- exchange activity in human intestinal epithelial cells. Biochem J 2008; 416:99-108. [PMID: 18564062 DOI: 10.1042/bj20070960] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
H(2)O(2) is a highly reactive oxygen metabolite that has been implicated as an important mediator of inflammation-induced intestinal injury associated with ischaemia/reperfusion, radiation and inflammatory bowel disease. Previous studies have shown that H(2)O(2) inhibits NaCl absorption and activates Cl(-) secretion in the rat and rabbit colon. To date, however, almost no information is available with respect to its effect on the human intestinal apical anion exchanger Cl(-)/OH(-) (HCO(3)(-)). The present studies were, therefore, undertaken to examine the direct effects of H(2)O(2) on OH(-) gradient-driven DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate)-sensitive (36)Cl(-) uptake utilizing a post-confluent transformed human intestinal epithelial cell line, Caco-2. Our results demonstrate that H(2)O(2) (1 mM for 60 min) significantly inhibited (approx. 60%; P<0.05) Cl(-)/OH(-) exchange activity in Caco-2 cells. H(2)O(2)-mediated inhibition of Cl(-)/OH(-) exchange activity involved the Src kinase Fyn and PI3K (phosphoinositide 3-kinase)-dependent pathways. H(2)O(2) also induced phosphorylation of Fyn and p85 (the regulatory subunit of PI3K) in Caco-2 cells. Moreover, an increased association of Fyn and p85 was observed in response to H(2)O(2), resulting in the activation of the downstream target PLCgamma1 (phospholipase Cgamma1). Elevated intracellular Ca(2+) levels and PKCalpha (protein kinase Calpha) functioned as downstream effectors of H(2)O(2)-induced PLCgamma1 activation. Our results, for the first time, provide evidence for H(2)O(2)-induced Src kinase Fyn/PI3K complex association. This complex association resulted in the subsequent activation of PLCgamma1 and Ca(2+)-dependent PKCalpha, resulting in the inhibition of Cl(-)/OH(-) exchange activity. These findings suggest that H(2)O(2)-induced inhibition of the Cl(-)/OH(-) exchange process may play an important role in the pathophysiology of diarrhoea associated with inflammatory disorders, where the amount of reactive oxygen species is markedly elevated.
Collapse
|
11
|
Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ, Kim UH. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295:H77-88. [PMID: 18456728 DOI: 10.1152/ajpheart.01355.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rukhsana Gul
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
De Fazio SR, Warner CM. Activation of T cells by cross-linking Qa-2, the ped gene product, requires Fyn. Am J Reprod Immunol 2007; 58:315-24. [PMID: 17845201 PMCID: PMC2529476 DOI: 10.1111/j.1600-0897.2007.00503.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Qa-2, the product of the Ped (preimplantation development) gene, regulates the rate of cell division of preimplantation mouse embryos by an unknown mechanism. Due to the limited availability of preimplantation embryos, T cells were used as a model system to assess the possible roles of Fyn and Lck, and two downstream effectors, PI-3 kinase and Akt, in Qa-2 induced cell proliferation. METHOD OF STUDY Resting T cells were stimulated to proliferate by treating with mouse anti-Qa-2 antibody, cross-linking with anti-mouse immunoglobulin, and adding PMA. The effects of kinase inhibitors on this proliferation were studied. Co-immunoprecipitates of T-cell lysates were analyzed for possible associations between Qa-2 and Fyn or Lck. Fyn knockout mice (Fyn-/-) were used to determine whether Fyn is required for T-cell activation induced by cross-linking Qa-2. RESULTS An inhibitor of Src family kinases and inhibitors of PI-3 kinase and Akt suppressed proliferation of resting T cells induced by cross-linking Qa-2. Fyn, but not Lck, co-immunoprecipitated with Qa-2. Fyn-/- T cells failed to proliferate in response to Qa-2 cross-linking. CONCLUSION Fyn, PI-3 kinase, and Akt are required for the activation of T cells by cross-linking Qa-2.
Collapse
Affiliation(s)
- Sally R De Fazio
- Biology Department, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
13
|
Guo J, Zhu T, Xiao ZXJ, Chen CY. Modulation of intracellular signaling pathways to induce apoptosis in prostate cancer cells. J Biol Chem 2007; 282:24364-72. [PMID: 17573344 DOI: 10.1074/jbc.m702938200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
14
|
Peus D, Vasa RA, Meves A, Beyerle A, Pittelkow MR. UVB-induced Epidermal Growth Factor Receptor Phosphorylation is Critical for Downstream Signaling and Keratinocyte Survival ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720135uiegfr2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Peng Y, Jiang BH, Yang PH, Cao Z, Shi X, Lin MCM, He ML, Kung HF. Phosphatidylinositol 3-kinase signaling is involved in neurogenesis during Xenopus embryonic development. J Biol Chem 2004; 279:28509-14. [PMID: 15123704 DOI: 10.1074/jbc.m402294200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) has numerous cellular functions, including cell survival and proliferation. In this study, we demonstrated that the expression of the active form of PI3K induced dorsal differentiation and axis duplication and strongly induced the expression of neural markers. In contrast, the inhibition of PI3K activity by its dominant negative mutant induced the phenotype of losing posterior structures and the expression of ventral markers. Akt is an essential target of PI3K for neurogenesis. The expression of the active form of Akt induced axis duplication and increased the expression of neural markers. Inhibition of the Akt activity abolished the PI3K-induced double heads and axes. This signal transmits through its target, glycogen synthase kinase 3beta, which is known to mediate Wnt signaling for Xenopus development. These results identify a new function of PI3K/Akt signaling in axis formation and neurogenesis during Xenopus embryonic development and provide a direct link between growth factor-mediated PI3K/Akt signaling and Wnt signaling during embryonic development.
Collapse
Affiliation(s)
- Ying Peng
- Department of Neurology, Nanfang Hospital, The First Military Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Peus D, Beyerle A, Vasa M, Pott M, Meves A, Pittelkow MR. Antipsoriatic drug anthralin induces EGF receptor phosphorylation in keratinocytes: requirement for H(2)O(2) generation. Exp Dermatol 2004; 13:78-85. [PMID: 15009100 DOI: 10.1111/j.0906-6705.2004.00119.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even though anthralin is a well-established topical therapeutic agent for psoriasis, little is known about its effects and biochemical mechanisms of signal transduction. In contrast to a previous report, we found that anthralin induced time- and concentration-dependent phosphorylation of epidermal growth factor receptor in primary human keratinocytes. Four lines of evidence show that this process is mediated by reactive oxygen species. First, we found that anthralin induces time-dependent generation of H(2)O(2). Second, there is a correlation between a time-dependent increase in anthralin-induced epidermal growth factor receptor phosphorylation and H(2)O(2) generation. Third, the structurally different antioxidants n-propyl gallate and N-acetylcysteine inhibited epidermal growth factor receptor phosphorylation induced by anthralin. Fourth, overexpression of catalase inhibited this process. The epidermal growth factor receptor-specific tyrosine kinase inhibitor PD153035 abrogated anthralin-induced epidermal growth factor receptor phosphorylation and activation of extracellular-regulated kinase 1/2. These findings establish the following sequence of events: (1) H(2)O(2) generation, (2) epidermal growth factor receptor phosphorylation, and (3) extracellular-regulated kinase activation. Our data identify anthralin-induced reactive oxygen species and, more specifically, H(2)O(2) as an important upstream mediator required for ligand-independent epidermal growth factor receptor phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Dominik Peus
- Department of Dermatology and Biochemistry, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 2004; 287:C281-91. [PMID: 15028555 DOI: 10.1152/ajpcell.00422.2003] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- 1820 MBR Cancer Center and Dept. of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gala S, Schibeci SD, Marreiros A, Calvo V, Merida I, Williamson P. Expression of an active p110 catalytic subunit of phosphatidylinositol 3-kinase alters the proliferative capacity of interleukin-2 receptor signals. Immunol Cell Biol 2003; 81:343-9. [PMID: 12969321 DOI: 10.1046/j.1440-1711.2003.t01-2-01179.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of phosphatidylinositol 3-kinase (PI3K) is an early and essential step in interleukin-2 receptor (IL-2R) signalling, and plays an important role in regulating both cell survival and cellular proliferation. In the present study, we utilized Baf-B03 cells expressing mutated IL-2R to examine the contribution of PI3K to proliferative capacity. In this model IL-2-mediated induction of the downstream PI3K-dependent signalling molecule p70 S6 kinase was detected, but there was no proliferative response. Increasing the level of PI3K activity by transfection of an active form of the catalytic subunit, p110*, enabled the proliferative capacity of the mutated receptor. Whereas, in cells without p110*, IL-2 lacked the capacity to induce c-myc and to overcome an S-phase checkpoint, S-phase transition was restored by transfection of p110*, and this was accompanied by an increase in the c-myc response. Despite the presence of p110*, activity cells still required IL-2R-derived signals for proliferation, and IL-2Rbeta truncated at amino acid 350 were sufficient to provide this signalling activity. The data support a model in which the level of available PI3K can determine the cellular response to IL-2.
Collapse
Affiliation(s)
- Salvador Gala
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003; 310:1124-32. [PMID: 14559232 DOI: 10.1016/j.bbrc.2003.09.132] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.
Collapse
Affiliation(s)
- Ning Gao
- Institute for Nutritional Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | |
Collapse
|
20
|
Xue HH, Kovanen PE, Pise-Masison CA, Berg M, Radovich MF, Brady JN, Leonard WJ. IL-2 negatively regulates IL-7 receptor alpha chain expression in activated T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:13759-64. [PMID: 12354940 PMCID: PMC129770 DOI: 10.1073/pnas.212214999] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin (IL)-2 is a type I four-alpha-helical bundle cytokine that plays vital roles in antigen-mediated proliferation of peripheral blood T cells and also is critical for activation-induced cell death. We now demonstrate that IL-2 potently decreases expression of IL-7 receptor alpha chain (IL-7Ralpha) mRNA and protein. The fact that IL-7Ralpha is a component of the receptors for both IL-7 and thymic stromal lymphopoietin (TSLP) suggests that IL-2 can negatively regulate signals by each of these cytokines. Previously it was known that the IL-2 and IL-7 receptors shared the common cytokine receptor gamma chain, gamma(c), which suggested a possible competition between these cytokines for a receptor component. Our findings now suggest a previously unknown type of cross-talk between IL-2 and IL-7 signaling by showing that IL-2 signaling can diminish IL-7Ralpha expression via a phosphatidylinositol 3-kinase/Akt-dependent mechanism.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N252, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Shah OJ, Kimball SR, Jefferson LS. The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases. Biochem J 2002; 366:57-62. [PMID: 12014987 PMCID: PMC1222761 DOI: 10.1042/bj20020198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 04/26/2002] [Accepted: 05/15/2002] [Indexed: 11/17/2022]
Abstract
Considerable biochemical and pharmacological evidence suggests that the activation of ribosomal protein S6 kinases (S6Ks) by activated receptor tyrosine kinases involves multiple co-ordinated input signals. However, the identities of many of these inputs remain poorly described, and their precise involvement in S6K activation has been the subject of great investigative effort. In the present study, we have shown that 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), a selective inhibitor of the Src family of non-receptor tyrosine kinases, interferes with the activation of 70 and 85 kDa S6K gene products (p70S6K1 and p85S6K1) by insulin, insulin-like growth factor 1, sodium orthovanadate and activated alleles of phosphoinositide 3-kinase and H-Ras. PP1 also impedes the activation of AKT/protein kinase B and the extracellular signal-regulated protein kinases 1 and 2 by these various stimuli. Insulin-like growth factor 1 was observed to induce a sustained increase in c-Src autophosphorylation as revealed using anti-phospho-Y416 antisera, but this effect was absent from the cells treated with PP1. To conclude, an activated allele of p70S6K1 is compared with the wild-type allele, resistant to inhibition by PP1 when co-expressed with phosphoinositide-dependent kinase 1 (PDK1), suggesting that PP1 affects p70S6K1 via a PDK1-independent pathway. Thus activation of Src may supply a necessary signal for the activation of p70S6K1 and possibly other S6Ks.
Collapse
Affiliation(s)
- O Jameel Shah
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, U.S.A
| | | | | |
Collapse
|
22
|
Kubota Y, Tanaka T, Kitanaka A, Ohnishi H, Okutani Y, Waki M, Ishida T, Kamano H. Src transduces erythropoietin-induced differentiation signals through phosphatidylinositol 3-kinase. EMBO J 2001; 20:5666-77. [PMID: 11598010 PMCID: PMC125681 DOI: 10.1093/emboj/20.20.5666] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we examined the molecular mechanism of erythropoietin-initiated signal transduction of erythroid differentiation through Src and phosphatidylinositol 3-kinase (PI3-kinase). Antisense oligonucleotides against src but not lyn inhibited the formation of erythropoietin-dependent colonies derived from human bone marrow cells and erythropoietin-induced differentiation of K562 human erythroleukaemia cells. Antisense p85alpha oligonucleotide or LY294002, a selective inhibitor of PI3-kinase, independently inhibited the formation of erythropoietin-dependent colonies. In K562 cells, Src associated with PI3-kinase in response to erythropoietin. Antisense src RNA expression in K562 cells inhibited the erythropoietin-induced activation of PI3-kinase and its association with erythropoietin receptor. PP1, a selective inhibitor of the Src family, reduced erythropoietin-induced tyrosine phosphorylation of erythropoietin receptor and its association with PI3-kinase in F-36P human erythroleukaemia cells. The coexpression experiments and in vitro kinase assay further demonstrated that Src directly tyrosine-phosphorylated erythropoietin receptor, and associated with PI3-kinase. In vitro binding experiments proved that glutathione S-transferase-p85alpha N- or C-terminal SH2 domains independently bound to erythropoietin receptor, which was tyrosine-phosphorylated by Src. Taken together, Src transduces the erythropoietin-induced erythroid differentiation signals by regulating PI3-kinase activity.
Collapse
Affiliation(s)
- Yoshitsugu Kubota
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Terukazu Tanaka
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Akira Kitanaka
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Hiroaki Ohnishi
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Yuichi Okutani
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Masato Waki
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Toshihiko Ishida
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| | - Hiroshi Kamano
- Department of Transfusion Medicine,
First Department of Internal Medicine, Department of Laboratory Medicine, School of Medicine and Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793 and Health Science Center, Kagawa University, Kagawa 760-8521, Japan Corresponding author e-mail:
| |
Collapse
|
23
|
Peus D, Vasa RA, Meves A, Beyerle A, Pittelkow MR. UVB-induced epidermal growth factor receptor phosphorylation is critical for downstream signaling and keratinocyte survival. Photochem Photobiol 2000; 72:135-40. [PMID: 10911738 DOI: 10.1562/0031-8655(2000)072<0135:uiegfr>2.0.co;2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently shown that UVB radiation activates epidermal growth factor receptor (EGFR)/extracellular regulated kinase 1 and 2 (ERK1/2) and p38 signaling pathways in keratinocytes. However, the functional relevance of these processes for downstream signaling and cell survival remains to be determined. The specific EGFR inhibitor PD153035 markedly decreased UVB-induced phosphorylation of EGFR, ERK1/2 and shc, whereas p38 activation was unaffected. PD153035 pretreatment followed by UVB reduced clonogenic potential and enhanced peroxide production, apoptosis and cell death. Our data suggest that ligand-independent phosphorylation of EGFR and likely dependent downstream signaling pathways regulate cellular defense mechanisms important for cell survival following oxidative stress.
Collapse
Affiliation(s)
- D Peus
- Department of Dermatology, Mayo Clinic/Foundation, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
24
|
Boytim ML, Lilly P, Drouvalakis K, Lyu SC, Jung R, Krensky AM, Clayberger C. A human class II MHC-derived peptide antagonizes phosphatidylinositol 3-kinase to block IL-2 signaling. J Clin Invest 2000; 105:1447-53. [PMID: 10811852 PMCID: PMC315461 DOI: 10.1172/jci8139] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MHC molecules bind antigenic peptides and present them to T cells. There is a growing body of evidence that MHC molecules also serve other functions. We and others have described synthetic peptides derived from regions of MHC molecules that inhibit T-cell proliferation or cytotoxicity in an allele-nonspecific manner that is independent of interaction with the T-cell receptor. In this report, we describe the mechanism of action of a synthetic MHC class II-derived peptide that blocks T-cell activation induced by IL-2. Both this peptide, corresponding to residues 65-79 of DQA*03011 (DQ 65-79), and rapamycin inhibit p70 S6 kinase activity, but only DQ 65-79 blocks Akt kinase activity, placing the effects of DQ 65-79 upstream of mTOR, a PI kinase family member. DQ 65-79, but not rapamycin, inhibits phosphatidylinositol 3-kinase (PI 3-kinase) activity in vitro. The peptide is taken up by cells, as demonstrated by confocal microscopy. These findings indicate that DQ 65-79 acts as an antagonist with PI 3-kinase, repressing downstream signaling events and inhibiting proliferation. Understanding the mechanism of action of immunomodulatory peptides may provide new insights into T-cell activation and allow the development of novel immunosuppressive agents.
Collapse
Affiliation(s)
- M L Boytim
- Program in Immunology, Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University, Stanford, California 94305-5407, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Martínez-Lorenzo MJ, Anel A, Monleón I, Sierra JJ, Piñeiro A, Naval J, Alava MA. Tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase correlates with high proliferation rates in sublines derived from the Jurkat leukemia. Int J Biochem Cell Biol 2000; 32:435-45. [PMID: 10762069 DOI: 10.1016/s1357-2725(99)00142-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A prominent tyrosine phosphorylated protein of 85 kDa (p85) was detected in highly proliferative sublines derived from the Jurkat T cell leukemia. We undertook a study to characterize the identity of this protein and its possible role in the hyperproliferative phenotypes observed. Using immunoblot and immunoprecipitation techniques, this protein was characterized as the p85 regulatory subunit of phosphatidylinositol 3-kinase. Cell proliferation and p85 tyrosine phosphorylation was not affected by tyrphostin AG-490, an inhibitor of Jak kinases, wortmannin or LY294002, inhibitors of the activity of the catalytic phosphatidylinositol 3-kinase subunit. Herbimycin-A and PPI, inhibitors of src-like protein tyrosine kinases, and genistein, a general tyrosine kinase inhibitor, inhibited p85 tyrosine phosphorylation and induced cell death in the sublines. PD98059, an inhibitor of Mek, inhibited cell growth of the sublines, but not that of the parental cells. It was concluded that tyrosine phosphorylation of p85 is associated with highly proliferative tumoral phenotypes, at least in T cell leukemias, independent of the phosphatidylinositol 3-kinase activity of the catalytic subunit.
Collapse
Affiliation(s)
- M J Martínez-Lorenzo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Peus D, Meves A, Vasa RA, Beyerle A, O'Brien T, Pittelkow MR. H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation. Free Radic Biol Med 1999; 27:1197-202. [PMID: 10641711 DOI: 10.1016/s0891-5849(99)00198-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ultraviolet radiation (UVR)-induced receptor phosphorylation is increasingly recognized as a widely occurring phenomenon. However, the mechanisms, mediators, and sequence of events involved in this process remain ill-defined. We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B radiation (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinase 1 and 2 (ERK1/2), and p38 signaling pathways via reactive oxygen species. Here we demonstrate that UVB exposure increased intra- and extracellular H2O2 production rapidly in a time-dependent manner. An EGFR-specific monoclonal antibody abrogated EGFR autophosphorylation and markedly decreased the phosphorylation of ERK1/2 whereas p38 activation was unaffected. Overexpression of catalase strongly inhibited UVB-induced EGFR/ERK1/2 pathway activation. These findings establish the sequence of events after UVB irradiation: (i) H2O2 generation, (ii) EGFR phosphorylation, and (iii) ERK activation. Our results identify UVB-induced H2O2 as a second messenger that is required for EGFR and dependent downstream signaling pathways activation.
Collapse
Affiliation(s)
- D Peus
- Department of Dermatology, Mayo Clinic/Foundation, Rochester, MN, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Eberl G, Lowin-Kropf B, MacDonald HR. Cutting Edge: NKT Cell Development Is Selectively Impaired in Fyn- Deficient Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Most NK1.1+ T (NKT) cells express a biased TCRαβ repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.
Collapse
Affiliation(s)
- Gérard Eberl
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | - Bente Lowin-Kropf
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | - H. Robson MacDonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
28
|
Ciprés A, Gala S, Martinez-A C, Mérida I, Williamson P. An IL-2 receptor beta subdomain that controls Bcl-X(L) expression and cell survival. Eur J Immunol 1999; 29:1158-67. [PMID: 10229082 DOI: 10.1002/(sici)1521-4141(199904)29:04<1158::aid-immu1158>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
IL-2 binding to its high-affinity receptor regulates signaling events that control both lymphocyte cell survival and cell cycle progression. Although many studies have examined the mechanisms by which IL-2 regulates cell growth, few studies have dissected the pathways involved in promoting cell survival or the coupling of these pathways to the receptor. In the present study, using the pre-B cell line Baf-B03 transfected with a truncated form of the IL-2 receptor (IL-2R) beta chain, we demonstrate that IL-2-dependent cell survival requires only the N-terminal 350 amino acids of the IL-2Rbeta chain. IL-2-dependent survival of cells expressing the truncated receptor correlates with increases in receptor-associated phosphatidylinositol 3-kinase (PI3K) activity and expression of Bcl-X(L), but not with changes in c-Myc expression or proliferation. Inhibition of the PI3K pathway in these cells, but not in cells expressing the wild-type receptor, has a marked effect on the capacity of IL-2 to prevent cell death and diminishes the Bcl-X(L) response. The requirement for IL-2-induced PI3K activity in suppressing the onset of apoptotic cell death is discussed.
Collapse
Affiliation(s)
- A Ciprés
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Sutor SL, Vroman BT, Armstrong EA, Abraham RT, Karnitz LM. A phosphatidylinositol 3-kinase-dependent pathway that differentially regulates c-Raf and A-Raf. J Biol Chem 1999; 274:7002-10. [PMID: 10066754 DOI: 10.1074/jbc.274.11.7002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokines trigger the rapid assembly of multimolecular signaling complexes that direct the activation of downstream protein kinase cascades. Two protein kinases that have been linked to growth factor-regulated proliferation and survival are mitogen-activated protein/ERK kinase (MEK) and its downstream target Erk, a member of the mitogen-activated protein kinase family. Using complementary pharmacological and genetic approaches, we demonstrate that MEK and Erk activation requires a phosphatidylinositol 3-kinase (PI3-K)-generated signal in an interleukin (IL)-3-dependent myeloid progenitor cell line. Analysis of the upstream pathway leading to MEK activation revealed that inhibition of PI3-K did not block c-Raf activation, whereas MEK activation was effectively blocked under these conditions. Furthermore, agents that elevated cAMP suppressed IL-3-induced c-Raf activation but did not inhibit MEK activation. Because c-Raf activation and MEK activation were inversely affected by PI3-K- and cAMP-dependent pathways, we examined whether IL-3 activated the alternative Raf isoforms A-Raf and B-Raf. Although IL-3 did not activate B-Raf, A-Raf was activated by the cytokine. Moreover, A-Raf activation, like MEK activation, was blocked by inhibition of PI3-K but was insensitive to cAMP. Experiments with dominant negative mutants of the Raf isoforms showed that overexpression of dominant negative c-Raf did not prevent MEK activation. However, dominant negative A-Raf effectively blocked MEK activation, suggesting that activation of the MEK-Erk signaling cascade is mediated through A-Raf. Taken together, these results suggest that IL-3 receptors engage and activate both c-Raf and A-Raf in hemopoietic cells. However, these intermediates are differentially regulated by upstream signaling cascades and selectively coupled to downstream signaling pathways.
Collapse
Affiliation(s)
- S L Sutor
- Division of Oncology Research, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
30
|
Migone TS, Rodig S, Cacalano NA, Berg M, Schreiber RD, Leonard WJ. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol Cell Biol 1998; 18:6416-22. [PMID: 9774657 PMCID: PMC109227 DOI: 10.1128/mcb.18.11.6416] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-K) plays an important role in signaling via a wide range of receptors such as those for antigen, growth factors, and a number of cytokines, including interleukin-2 (IL-2). PI 3-K has been implicated in both IL-2-induced proliferation and prevention of apoptosis. A number of potential mechanisms for the recruitment of PI 3-K to the IL-2 receptor have been proposed. We now have found that tyrosine residues in the IL-2 receptor beta chain (IL-2Rbeta) are unexpectedly not required for the recruitment of the p85 component of PI 3-K. Instead, we find that Jak1, which associates with membrane-proximal regions of the IL-2Rbeta cytoplasmic domain, is essential for efficient IL-2Rbeta-p85 interaction, although some IL-2Rbeta-p85 association can be seen in the absence of Jak1. We also found that Jak1 interacts with p85 in the absence of IL-2Rbeta and that IL-2Rbeta and Jak1 cooperate for the efficient recruitment and tyrosine phosphorylation of p85. This is the first report of a PI 3-K-Jak1 interaction, and it implicates Jak1 in an essential IL-2 signaling pathway distinct from the activation of STAT proteins.
Collapse
Affiliation(s)
- T S Migone
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Phosphatidylinositol, a component of eukaryotic cell membranes, is unique among phospholipids in that its head group can be phosphorylated at multiple free hydroxyls. Several phosphorylated derivatives of phosphatidylinositol, collectively termed phosphoinositides, have been identified in eukaryotic cells from yeast to mammals. Phosphoinositides are involved in the regulation of diverse cellular processes, including proliferation, survival, cytoskeletal organization, vesicle trafficking, glucose transport, and platelet function. The enzymes that phosphorylate phosphatidylinositol and its derivatives are termed phosphoinositide kinases. Recent advances have challenged previous hypotheses about the substrate selectivity of different phosphoinositide kinase families. Here we re-examine the pathways of phosphoinositide synthesis and the enzymes involved.
Collapse
Affiliation(s)
- D A Fruman
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
32
|
Abstract
Studies of the biology of the IL-2 receptor have played a major part in establishing several of the fundamental principles that govern our current understanding of immunology. Chief among these is the contribution made by lymphokines to regulation of the interactions among vast numbers of lymphocytes, comprising a number of functionally distinct lineages. These soluble mediators likely act locally, within the context of the microanatomic organization of the primary and secondary lymphoid organs, where, in combination with signals generated by direct membrane-membrane interactions, a wide spectrum of cell fate decisions is influenced. The properties of IL-2 as a T-cell growth factor spawned the view that IL-2 worked in vivo to promote clonal T-cell expansion during immune responses. Over time, this singular view has suffered from increasing appreciation that the biologic effects of IL-2R signals are much more complex than simply mediating T-cell growth: depending on the set of conditions, IL-2R signals may also promote cell survival, effector function, and apoptosis. These sometimes contradictory effects underscore the fact that a diversity of intracellular signaling pathways are potentially activated by IL-2R. Furthermore, cell fate decisions are based on the integration of multiple signals received by a lymphocyte from the environment; IL-2R signals can thus be regarded as one input to this integration process. In part because IL-2 was first identified as a T-cell growth factor, the major focus of investigation in IL-R2 signaling has been on the mechanism of mitogenic effects in cultured cell lines. Three critical events have been identified in the generation of the IL-2R signal for cell cycle progression, including heterodimerization of the cytoplasmic domains of the IL-2R beta and gamma(c) chains, activation of the tyrosine kinase Jak3, and phosphorylation of tyrosine residues on the IL-2R beta chain. These proximal events led to the creation of an activated receptor complex, to which various cytoplasmic signaling molecules are recruited and become substrates for regulatory enzymes (especially tyrosine kinases) that are associated with the receptor. One intriguing outcome of the IL-2R signaling studies performed in cell lines is the apparent functional redundancy of the A and H regions of IL-2R beta, and their corresponding downstream pathways, with respect to the proliferative response. Why should the receptor complex induce cell proliferation through more than one mechanism or pathway? One possibility is that this redundancy is an unusual property of cultured cell lines and that primary lymphocytes require signals from both the A and the H regions of IL-2R beta for optimal proliferative responses in vivo. An alternative possibility is that the A and H regions of IL-2R beta are only redundant with respect to proliferation and that each region plays a unique and essential role in regulating other aspects of lymphocyte physiology. As examples, the A or H region could prove to be important for regulating the sensitivity of lymphocytes to AICD or for promoting the development of NK cells. These issues may be resolved by reconstituting IL-2R beta-/-mice with A-and H-deleted forms of the receptor chain and analyzing the effect on lymphocyte development and function in vivo. In addition to the redundant nature of the A and H regions, there remains a large number of biochemical activities mediated by the IL-2R for which no clear physiological role has been identified. Therefore, the circumstances are ripe for discovering new connections between molecular signaling events activated by the IL-2R and the regulation of immune physiology. Translating biochemical studies of Il-2R function into an understanding of how these signals regulate the immune system has been facilitated by the identification of natural mutations in IL-2R components in humans with immunodeficiency and by the generation of mice with targeted mutations in these gen
Collapse
Affiliation(s)
- B H Nelson
- Virginia Mason Research Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
33
|
Arrieumerlou C, Donnadieu E, Brennan P, Keryer G, Bismuth G, Cantrell D, Trautmann A. Involvement of phosphoinositide 3-kinase and Rac in membrane ruffling induced by IL-2 in T cells. Eur J Immunol 1998; 28:1877-85. [PMID: 9645369 DOI: 10.1002/(sici)1521-4141(199806)28:06<1877::aid-immu1877>3.0.co;2-i] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
IL-2 is known to play a critical role in regulating T lymphocyte proliferation. We show here that IL-2 also provokes an instantaneous and sustained membrane ruffling in cloned human or murine T cells as well as in lectin-activated peripheral blood lymphocytes. In the IL-2-induced lamellipodia, tubulin is depolymerized whereas actin is strongly polymerized, forming caps. IL-2-induced membrane ruffling is protein kinase C (PKC) independent, as judged by the absence of effects of bisindolylmaleimide, an efficient inhibitor of all PKC isoforms. The formation of lamellipodia by IL-2 is blocked by wortmannin and LY294002, two inhibitors of phosphoinositide 3-kinase (PI3-kinase). Moreover, expression in murine T cells of an inactive form of P13-kinase inhibits IL-2-induced membrane ruffling, whereas expression of a constitutively active p110 increases the basal membrane ruffling. Rac is also involved in IL-2-induced membrane ruffling since an inactive form of Rac (N17rac) blocks the IL-2-induced lamellipodia, whereas the constitutive form of Rac (Val12rac) can also lead to membrane ruffling. In the signaling cascade, Rac is downstream of PI3-kinase since constitutive membrane ruffling in Val12rac cells is insensitive to wortmannin. Thus, through a signaling cascade involving PI3-kinase and Rac, IL-2 can induce profound alterations of the T cell cytoskeleton, a phenomenon which might be of importance for T cell physiology.
Collapse
Affiliation(s)
- C Arrieumerlou
- Laboratoire d'Immunologie Cellulaire, CNRS UMR 7627, Centre Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
von Willebrand M, Williams S, Saxena M, Gilman J, Tailor P, Jascur T, Amarante-Mendes GP, Green DR, Mustelin T. Modification of phosphatidylinositol 3-kinase SH2 domain binding properties by Abl- or Lck-mediated tyrosine phosphorylation at Tyr-688. J Biol Chem 1998; 273:3994-4000. [PMID: 9461588 DOI: 10.1074/jbc.273.7.3994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In cells expressing the oncogenic Bcr-Abl tyrosine kinase, the regulatory p85 subunit of phosphatidylinositol 3-kinase is phosphorylated on tyrosine residues. We report that this phosphorylation event is readily catalyzed by the Abl and Lck protein-tyrosine kinases in vitro, by Bcr-Abl or a catalytically activated Lck-Y505F in co-transfected COS cells, and by endogenous kinases in transfected Jurkat T cells upon triggering of their T cell antigen receptor. Using these systems, we have mapped a major phosphorylation site to Tyr-688 in the C-terminal SH2 domain of p85. Tyrosine phosphorylation of p85 in vitro or in vivo was not associated with detectable change in the enzymatic activity of the phosphatidylinositol 3-kinase heterodimer, but correlated with a strong reduction in the binding of some, but not all, phosphoproteins to the SH2 domains of p85. This provides an additional candidate to the list of SH2 domains regulated by tyrosine phosphorylation and may explain why association of phosphatidylinositol 3-kinase with some cellular ligands is transient or of lower stoichiometry than anticipated.
Collapse
Affiliation(s)
- M von Willebrand
- Divisions of Cell Biology and Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Interleukin-2 has pleiotropic actions on the immune system and plays a vital role in the modulation of immune responses. Our current understanding of IL-2 signaling has resulted from in vitro studies that have identified the signaling pathways activated by IL-2, including the Jak-STAT pathways, and from in vivo studies that have analyzed mice in which IL-2, each chain of the receptor, as well a number of signaling molecules have been individually targeted by homologous recombination. Moreover, mutations in IL-2Ralpha, gamma(c) and Jak3 have been found in patients with severe combined immunodeficiency. In addition, with the discovery that two components of the receptor, IL-2Rbeta and gamma(c), are shared by other cytokine receptors, we have an enhanced appreciation of the contributions of these molecules towards cytokine specificity, pleiotropy and redundancy.
Collapse
|
36
|
August A, Sadra A, Dupont B, Hanafusa H. Src-induced activation of inducible T cell kinase (ITK) requires phosphatidylinositol 3-kinase activity and the Pleckstrin homology domain of inducible T cell kinase. Proc Natl Acad Sci U S A 1997; 94:11227-32. [PMID: 9326591 PMCID: PMC23424 DOI: 10.1073/pnas.94.21.11227] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/1997] [Indexed: 02/05/2023] Open
Abstract
The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.
Collapse
Affiliation(s)
- A August
- Laboratory of Molecular Oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) is an important component of the signal transduction systems activated by tyrosine kinase receptors. It has not been established, however, whether PI3K is also an essential mediator for G protein-coupled receptors. The potential involvement of PI3K in G protein-linked angiotensin II (Ang II)-dependent signaling was assessed in a primary cell culture system of porcine coronary artery smooth muscle cells (SMCs). Treatment of quiescent SMCs with Ang II (10(-5) to 10(-8) mol/L) resulted in a dose-dependent activation of PI3K when assayed in vivo and in vitro. The Ang II receptor antagonists losartan and PD123319 were used to establish that Ang II stimulates PI3K through the Ang II type-1 (AT1) receptor. Immunofluorescent microscopy revealed that Ang II (10(-6) mol/L) stimulated the translocation of p85, the regulatory subunit of PI3K, from the perinuclear region to distinct foci throughout the cell within 15 minutes. Western blot analysis of p85 subcellular distribution demonstrated that p85 concentrations were also increased within 15 minutes in the membrane fraction and concomitantly decreased in the cytoskeletal and nuclear fractions. These changes in PI3K location and activity were paralleled by increased tyrosine phosphorylation of p85. A potential correlation between angiotensin-mediated PI3K activation and SMC growth was found using LY294002, a specific inhibitor of PI3K, which blocked the increase in DNA and RNA synthesis as well as cellular hyperplasia generated by Ang II (10(-6) mol/L) stimulation of quiescent SMCs. These data indicate that PI3K may operate as a mediator of vascular SMC growth after stimulation with Ang II.
Collapse
Affiliation(s)
- L Saward
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Winnipeg, Canada
| | | |
Collapse
|
38
|
Hershenson MB, Naureckas ET, Li J. Mitogen-activated signaling in cultured airway smooth muscle cells. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Reif K, Burgering BM, Cantrell DA. Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem 1997; 272:14426-33. [PMID: 9162082 DOI: 10.1074/jbc.272.22.14426] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) is activated by the cytokine interleukin-2 (IL-2). We have used a constitutively active PI 3-kinase to identify IL-2-mediated signal transduction pathways directly regulated by PI 3-kinase in lymphoid cells. The serine/threonine protein kinase B (PKB)/Akt can act as a powerful oncogene in T cells, but its positioning in normal T cell responses has not been explored. Herein, we demonstrate that PKB is activated by IL-2 in a PI 3-kinase-dependent fashion. Importantly, PI 3-kinase signals are sufficient for PKB activation in IL-2-dependent T cells, and PKB is a target for PI 3-kinase signals in IL-2 activation pathways. The present study establishes also that PI 3-kinase signals or PKB signals are sufficient for activation of p70 S6 kinase in T cells. PI 3-kinase can contribute to, but is not sufficient for, activation of extracellular signal-regulated kinases (Erks) and Erk effector pathways. Therefore, PI 3-kinase is a selective regulator of serine/threonine kinase signal transduction pathways in T lymphocytes, and this enzyme provides a crucial link between the interleukin-2 receptor, the protooncogene PKB, and p70 S6 kinase.
Collapse
Affiliation(s)
- K Reif
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | | | |
Collapse
|
40
|
Kojima N, Wang J, Mansuy IM, Grant SG, Mayford M, Kandel ER. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci U S A 1997; 94:4761-5. [PMID: 9114065 PMCID: PMC20798 DOI: 10.1073/pnas.94.9.4761] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIalpha promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice was caused directly by the lack of Fyn in adult hippocampal neurons or indirectly by an impairment in neuronal development, we generated fyn-rescue mice by introducing the wild-type fyn-transgene into mice carrying a targeted deletion in the endogenous fyn gene. In fyn-rescue mice, Schaffer collateral LTP was restored, even though the morphological abnormalities characteristic of fyn-deficient mice were still present. These results suggest that Fyn contributes, at least in part, to the molecular mechanisms of LTP induction.
Collapse
Affiliation(s)
- N Kojima
- Laboratory of Neurochemistry, National Institute for Physiological Sciences, Okazaki 444, Japan
| | | | | | | | | | | |
Collapse
|
41
|
González-García A, Mérida I, Martinez-A C, Carrera AC. Intermediate affinity interleukin-2 receptor mediates survival via a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 1997; 272:10220-6. [PMID: 9092570 DOI: 10.1074/jbc.272.15.10220] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Peripheral blood T lymphocytes require two signals to enter and progress along the cell cycle from their natural quiescent state. The first activation signal is provided by the stimulation through the T cell receptor, which induces the synthesis of cyclins and the expression of the high affinity interleukin-2 receptor. The second signal, required to enter the S phase, is generated upon binding of interleukin-2 to the high affinity alphabetagamma interleukin-2 receptor. However, resting T cells already express intermediate affinity betagamma interleukin-2 receptors. As shown here, T cell stimulation through intermediate affinity receptors is capable of inducing cell rescue from the apoptosis suffered in the absence of stimulation. Characterization of the signaling pathways utilized by betagamma interleukin-2 receptors in resting T cells, indicated that pp56(lck), but not Jak1 or Jak3, is activated upon receptor triggering. Compelling evidence is presented indicating that phosphatidylinositol 3-kinase associates with the intermediate affinity interleukin-2 receptor and is activated upon interleukin-2 addition. Bcl-xL gene was also found to be induced upon betagamma interleukin-2 receptor stimulation. Finally, pharmacological inhibition of phosphatidylinositol 3-kinase blocked both interleukin-2-mediated bcl-xL induction and cell survival. We conclude that betagamma interleukin-2 receptor mediates T-cell survival via a phosphatidylinositol 3-kinase-dependent pathway, possibly involving pp56(lck) and bcl-xL as upstream and downstream effectors, respectively.
Collapse
Affiliation(s)
- A González-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma Campus de Cantoblanco, Cantoblanco, 28049-Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Kirkham PA, Takamatsu HH, Parkhouse RM. Growth arrest of gammadelta T cells induced by monoclonal antibody against WC1 correlates with activation of multiple tyrosine phosphatases and dephosphorylation of MAP kinase erk2. Eur J Immunol 1997; 27:717-25. [PMID: 9079814 DOI: 10.1002/eji.1830270321] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
WC1 is a 215-kDa type 1 transmembrane glycoprotein, the expression of which is restricted to gammadelta T lymphocytes. The binding of an anti-WC1 monoclonal antibody (mAb) (SC-29) induces reversible growth arrest in proliferating interleukin (IL)-2-dependent gammadalta T lymphocytes and this study has examined the relevant biochemical mechanisms. WC1 binding activates multiple protein tyrosine phosphatases causing specific tyrosine dephosphorylation in the absence of calcium mobilization. One of the dephosphorylated proteins was identified as the MAP kinase erk2. Another phosphotyrosine protein of 70 kDa, found to coprecipitate with p85 phosphoinositol (PI)3-kinase was either dephosphorylated or uncoupled from the p85 PI 3-kinase immunoprecipitate after WC1 receptor binding by mAb SC-29. The anti-WC1-induced tyrosine dephosphorylation was reversed by stimulation of gammadelta T cells with concanavalin A or anti-CD3 mAb, demonstrating that at the biochemical level, mitogen stimulation is dominant to the growth-arresting effects of anti-WC1. It is therefore proposed that the activation of tyrosine phosphatases by WC1 binding and the resultant dephosphorylation of certain key signaling protein such as erk2 correlates with and may cause the induction of growth arrest in IL-2-dependent gammadelta T cells, without affecting the cells ability to respond to antigen. Possible mechanisms, which include the inhibition of IL-2 signal transduction pathways, are discussed.
Collapse
Affiliation(s)
- P A Kirkham
- Department of Immunology, Institute for Animal Health, Pirbright, GB.
| | | | | |
Collapse
|
43
|
Bacon CM, Cho SS, O'Shea JJ. Signal transduction by interleukin-12 and interleukin-2. A comparison and contrast. Ann N Y Acad Sci 1996; 795:41-59. [PMID: 8958916 DOI: 10.1111/j.1749-6632.1996.tb52654.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C M Bacon
- Lymphocyte Cell Biology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
44
|
Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M, Takeshita T. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14:179-205. [PMID: 8717512 DOI: 10.1146/annurev.immunol.14.1.179] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin 2 (IL-2), a T cell-derived cytokine, targets a variety of cells to induce their growth, differentiation, and functional activation. IL-2 inserts signals into the cells through IL-2 receptors expressed on cell surfaces to induce such actions. In humans, the functional IL-2 receptor consists of the subunit complexes of the alpha, beta and gamma chains, or the beta and gamma chains. The third component, the gamma chain, of IL-2 receptor plays a pivotal role in formation of the full-fledged IL-2 receptor, together with the beta chain, the gamma chain participates in increasing the IL-2 binding affinity and intracellular signal transduction. Moreover, the cytokine receptors for at least IL-2, IL-4, IL-7, IL-9, and IL-15 utilize the same gamma chain as an essential subunit. Interestingly, mutations of the gamma chain gene cause human X-linked severe combined immunodeficiency (XSCID) characterized by a complete or profound T cell defect. Among the cytokines sharing the gamma chain, at least IL-7 is essentially involved in early T cell development in the mouse organ culture system. The molecular identification of the gamma chain brought a grasp of the structures and functions of the cytokine receptor and an in-depth understanding of the cause of human XSCID. To investigate the mechanism of XSCID and development of gene therapy for XSCID, knockout mice for the gamma chain gene were produced that showed similar but not exactly the same phenotypes as human XSCID.
Collapse
Affiliation(s)
- K Sugamura
- Department of Microbiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ward SG, June CH, Olive D. PI 3-kinase: a pivotal pathway in T-cell activation? IMMUNOLOGY TODAY 1996; 17:187-97. [PMID: 8871351 DOI: 10.1016/0167-5699(96)80618-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S G Ward
- Dept. of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, Claverton Down, UK.
| | | | | |
Collapse
|
46
|
Zier KS, Gansbacher B. IL-2 gene therapy of solid tumors: an approach for the prevention of signal transduction defects in T cells. J Mol Med (Berl) 1996; 74:127-34. [PMID: 8846162 DOI: 10.1007/bf01575444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification of tumor-associated antigens has focused attention on the mechanisms that underlie the failure of T cells to destroy tumor cells. A deeper understanding of the process of signal transduction following the binding of ligand by the T cell receptor can help to identify underlying defects that may be involved. Gene therapy using tumor cells genetically modified to express cytokines or surface determinants is a promising technique for stimulating antitumor responses. A potential pitfall in its application to cancer, however, is that some patients' T cells are immune suppressed and may resist stimulation by such genetically engineered vaccines. Recent studies have demonstrated that T cells from tumor-bearing patients exhibit abnormalities in signal transduction events, possibly rendering them unable to respond to activation signals. Gene therapy with interleukin 2 secreting tumor cells in an animal model has been shown effective in preventing the onset of signaling defects. A more precise definition of the molecular mechanisms that enable cytokine-secreting tumor cells to stimulate specific antitumor responses may make it feasible to optimize immunotherapeutic approaches resulting in better clinical results.
Collapse
Affiliation(s)
- K S Zier
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
47
|
|
48
|
Zier K, Gansbacher B, Salvadori S. Preventing abnormalities in signal transduction of T cells in cancer: the promise of cytokine gene therapy. IMMUNOLOGY TODAY 1996; 17:39-45. [PMID: 8652051 DOI: 10.1016/0167-5699(96)80567-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K Zier
- Dept of Medicine, Mount Sinai School of Medicine, New York 10029, USA.
| | | | | |
Collapse
|
49
|
Abstract
Rapamycin has potent immunosuppressive properties reflecting its ability to disrupt cytokine signaling that promotes lymphocyte growth and differentiation. In IL-2-stimulated T cells, rapamycin impedes progression through the G1/S transition of the proliferation cycle, resulting in a mid-to-late G1 arrest. Two major biochemical alterations underlie this mode of action. The first one affects the phosphorylation/activation of the p70 S6 kinase (p70s6k), an early event of cytokine-induced mitogenic response. By inhibiting this enzyme, whose major substrate is the 40S ribosomal subunit S6 protein, rapamycin reduces the translation of certain mRNA encoding for ribosomal proteins and elongation factors, thereby decreasing protein synthesis. A second, later effect of rapamycin in IL-2-stimulated T cells is an inhibition of the enzymatic activity of the cyclin-dependent kinase cdk2-cyclin E complex, which functions as a crucial regulator of G1/S transition. This inhibition results from a prevention of the decline of the p27 cdk inhibitor, that normally follows IL-2 stimulation. To mediate these biochemical alterations, rapamycin needs to bind to intracellular proteins, termed FKBP, thereby forming a unique effector molecular complex. However, neither(p70s6k) inhibition, nor p27-induced cdk2-cyclin E inhibition are directly caused by the FKBP-rapamycin complex. Instead, this complex physically interacts with a novel protein, designated "mammalian target of rapamycin" (mTOR), which has sequence homology with the catalytic domain of phosphatidylinositol kinases and may therefore be itself a kinase. mTOR may act upstream of (p70s6K) and cdk2-cyclin E in a linear or bifurcated pathway of growth regulation. Molecular dissection of this pathway should further unravel cytokine-mediated signaling processes and help devise new immunosuppressants.
Collapse
Affiliation(s)
- F J Dumont
- Department of Immunology, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | |
Collapse
|
50
|
Barker SA, Caldwell KK, Hall A, Martinez AM, Pfeiffer JR, Oliver JM, Wilson BS. Wortmannin blocks lipid and protein kinase activities associated with PI 3-kinase and inhibits a subset of responses induced by Fc epsilon R1 cross-linking. Mol Biol Cell 1995; 6:1145-58. [PMID: 8534912 PMCID: PMC301273 DOI: 10.1091/mbc.6.9.1145] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.
Collapse
Affiliation(s)
- S A Barker
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | | | | | | | | | |
Collapse
|