1
|
Huang W, Wang J, Liu C, Yang C, Chen Z, Ding J, Jiang W, Wang Y, Meng Y, Li L, Liu Y, Liu X, Li H, Sun B. Norepinephrine (NE) promotes activated B cells to identify and kill effector CD8 + T cells through FasL/Fas pathway in spleen mononuclear cells isolated from experimental autoimmune encephalomyelitis (EAE). Brain Behav Immun 2025:S0889-1591(25)00015-7. [PMID: 39824471 DOI: 10.1016/j.bbi.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
It has been reported that the nervous system can regulate immune reactions through various mechanisms. However, the role of splenic sympathetic nerve activity in the autoimmune reactions during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) remained unclear. Here, we blocked the activity of the splenic sympathetic nerve and found that the number of adaptive immune cells, such as CD4+ T cells, CD8+ T cells and B cells, were upregulated. Additionally, there was an increase in the secretion of inflammatory cytokines in the spleen, and the neurological symptoms of EAE were exacerbated. In vitro experiments, we found that norepinephrine (NE), the neurotransmitter of the splenic sympathetic nerve, indirectly drove the death of effector CD8+ T cells. Furthermore, activated B cells, under the influence of NE, specifically recognized effector CD8+ T cells by upregulating MHC-I molecules and killed these cells via the FasL/Fas pathway. Our findings provide a new perspective on B cells killing effect in vitro, which was boosted by NE and demonstrate that the splenic sympathetic nerve controls the degree of autoimmune responses in EAE This adds a new dimension to the diversity of NE's regulatory effects on adaptive immune cells and suggests a potential new therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Chao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Jianwen Ding
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Wenkang Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Lei Li
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
2
|
Mamrosh JL, Sherman DJ, Cohen JR, Johnston JA, Joubert MK, Li J, Lipford JR, Lomenick B, Moradian A, Prabhu S, Sweredoski MJ, Vander Lugt B, Verma R, Deshaies RJ. Quantitative measurement of the requirement of diverse protein degradation pathways in MHC class I peptide presentation. SCIENCE ADVANCES 2023; 9:eade7890. [PMID: 37352349 PMCID: PMC10289651 DOI: 10.1126/sciadv.ade7890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.
Collapse
Affiliation(s)
- Jennifer L. Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - David J. Sherman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Joseph R. Cohen
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael J. Sweredoski
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rati Verma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Raymond J. Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
3
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
4
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
5
|
Van Meerhaeghe T, Néel A, Brouard S, Degauque N. Regulation of CD8 T cell by B-cells: A narrative review. Front Immunol 2023; 14:1125605. [PMID: 36969196 PMCID: PMC10030846 DOI: 10.3389/fimmu.2023.1125605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Activation of CD4 T cells by B cells has been extensively studied, but B cell-regulated priming, proliferation, and survival of CD8 T cells remains controversial. B cells express high levels of MHC class I molecules and can potentially act as antigen-presenting cells (APCs) for CD8 T cells. Several in vivo studies in mice and humans demonstrate the role of B cells as modulators of CD8 T cell function in the context of viral infections, autoimmune diseases, cancer and allograft rejection. In addition, B-cell depletion therapies can lead to impaired CD8 T-cell responses. In this review, we attempt to answer 2 important questions: 1. the role of B cell antigen presentation and cytokine production in the regulation of CD8 T cell survival and cell fate determination, and 2. The role of B cells in the formation and maintenance of CD8 T cell memory.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Department of Nephrology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Antoine Néel
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- Internal Medicine Department, Nantes University Hospital, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- *Correspondence: Nicolas Degauque,
| |
Collapse
|
6
|
Shi Y. PLAN B for immunotherapy: Promoting and leveraging anti-tumor B cell immunity. J Control Release 2021; 339:156-163. [PMID: 34563591 DOI: 10.1016/j.jconrel.2021.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
Current immuno-oncology primarily focuses on adaptive cellular immunity mediated by T lymphocytes. The other important lymphocytes, B cells, are largely ignored in cancer immunotherapy. B cells are generally considered to be responsible for humoral immune response to viral and bacterial infections. The role of B cells in cancer immunity has long been under debate. Recently, increasing evidence from both preclinical and clinical research has shown that B cells can also induce potent anti-cancer immunity, via humoral and cellular immune responses. Yet it is unclear how to efficiently integrate B cell immunity in cancer immunotherapy. In the current perspective, anti-tumor immunity of B cells is discussed regarding antibody production, antigen presentation, cytokine release and contribution to intratumoral tertiary lymphoid structures. Afterwards, immunosuppressive regulatory phenotypes of B cells are summarized. Furthermore, strategies to activate and modulate B cells using nanomedicines and biomaterials are discussed. This article provides a unique perspective on "PLAN B" (promoting and leveraging anti-tumor B cell immunity) using nanomedicines and biomaterials for cancer immunotherapy. This is envisaged to form a new research direction with the potential to reach the next breakthrough in immunotherapy.
Collapse
Affiliation(s)
- Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
7
|
Klarquist J, Cross EW, Thompson SB, Willett B, Aldridge DL, Caffrey-Carr AK, Xu Z, Hunter CA, Getahun A, Kedl RM. B cells promote CD8 T cell primary and memory responses to subunit vaccines. Cell Rep 2021; 36:109591. [PMID: 34433030 PMCID: PMC8456706 DOI: 10.1016/j.celrep.2021.109591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The relationship between B cells and CD4 T cells has been carefully studied, revealing a collaborative effort in which B cells promote the activation, differentiation, and expansion of CD4 T cells while the so-called “helper” cells provide signals to B cells, influencing their class switching and fate. Interactions between B cells and CD8 T cells are not as well studied, although CD8 T cells exhibit an accelerated contraction after certain infections in B-cell-deficient mice. Here, we find that B cells significantly enhance primary CD8 T cell responses after vaccination. Moreover, memory CD8 numbers and function are impaired in B-cell-deficient animals, leading to increased susceptibility to bacterial challenge. We also show that interleukin-27 production by B cells contributes to their impact on primary, but not memory, CD8 responses. Better understanding of the interactions between CD8 T cells and B cells may aid in the design of more effective future vaccine strategies. Generating cytotoxic CD8 T cell responses with vaccines can greatly improve their efficacy, but inducing adequate numbers of these cells can be challenging. Klarquist et al. reveal that the magnitude, persistence, and function of CD8 T cell vaccine responses depend on B cells.
Collapse
Affiliation(s)
- Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Eric W Cross
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin Willett
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel L Aldridge
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Alayna K Caffrey-Carr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Christopher A Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Tohme M, Maisonneuve L, Achour K, Dussiot M, Maschalidi S, Manoury B. TLR7 trafficking and signaling in B cells is regulated by the MHCII-associated invariant chain. J Cell Sci 2020; 133:jcs.236711. [PMID: 32079661 DOI: 10.1242/jcs.236711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal receptor that recognizes single-stranded RNA from viruses. Its trafficking and activation is regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 and lysosomal proteases. UNC93B1 also modulates major histocompatibility complex class II (MHCII) antigen presentation, and deficiency in MHCII protein diminishes TLR9 signaling. These results indicate a link between proteins that regulate both innate and adaptive responses. Here, we report that TLR7 resides in lysosomes and interacts with the MHCII-chaperone molecule, the invariant chain (Ii) or CD74, in B cells. In the absence of CD74, TLR7 displays both ER and lysosomal localization, leading to an increase in pro-inflammatory cytokine production. Furthermore, stimulation with TLR7 but not TLR9, is inefficient in boosting antigen presentation in Ii-deficient cells. In contrast, in B cells lacking TLR7 or mutated for UNC93B1, which are able to trigger TLR7 activation, antigen presentation is enhanced. This suggests that TLR7 signaling in B cells is controlled by the Ii chain.
Collapse
Affiliation(s)
- Mira Tohme
- Nkarta Therapeutics, South San Fransisco, CA 94080, USA
| | - Lucie Maisonneuve
- Institut Necker Enfant Malade, INSERM U1151-CNRS UMR 8253, 75015 Paris, France.,Université de Paris, Faculté de médecine, 75015 Paris, France
| | - Karim Achour
- Institut de recherche Servier, 3 rue de la république, 92150 Suresnes, France
| | - Michaël Dussiot
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Sophia Maschalidi
- VIB-UGent Center for Inflammation Research, UGent-VIB Research Building FSVM, Technologiepark 71, 9052 Ghent, Belgium
| | - Bénédicte Manoury
- Institut Necker Enfant Malade, INSERM U1151-CNRS UMR 8253, 75015 Paris, France .,Université de Paris, Faculté de médecine, 75015 Paris, France
| |
Collapse
|
9
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|
10
|
Lu B, Zhang B, Wang L, Ma C, Liu X, Zhao Y, Jiao Y. Hepatitis B Virus e Antigen Regulates Monocyte Function and Promotes B Lymphocyte Activation. Viral Immunol 2016; 30:35-44. [PMID: 27976981 PMCID: PMC5220529 DOI: 10.1089/vim.2016.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) e (HBe) antigen is a nonstructural virus component with great immune regulation roles. It regulates adaptive immunity response and participates in persistent infection development. However, its roles on monocytes and B lymphocytes were rarely studied. Herein, we studied HBe roles on U937 and Hmy2.CIR by creating HBe stably transfected cells using lentivirus. We detected the motility of HBe-U937 through transwell migration assay. Cytokines that primarily produced by monocytes, including BAFF, B-cell activating factor (BAFF), interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and A proliferation inducing ligand (APRIL), were measured in culture supernatants of transfected U937, and serum BAFF, IL-6, and IL-10 were detected in HBe-positive and HBe-negative HBV-infected patients. Among these, BAFF mRNA and membrane-bound BAFF were further detected. Activation and inhibition markers of B lymphocytes on HBe-Hmy2.CIR and proliferation of transfected Hmy2.CIR after coculture with transfected U937 were also detected. We found that U937 migration was inhibited by HBe. BAFF expression was increased in HBe-U937, however, membrane-bound BAFF on HBe-U937 was decreased. In addition, Serum BAFF in HBe-positive patients was higher than in HBe-negative patients. IL-6 and IL-10 were increased in HBe-U937 after being stimulated by lipopolysaccharide (LPS), however, serum IL-6 and IL-10 were not associated with HBe status in patients. Besides, TNF-α and APRIL expression were basically the same in GV166-U937 and HBe-U937. B lymphocyte activation markers CD86 and Tspan33 were raised in HBe-Hmy2.CIR. However, inhibition markers Lyn and CD32b had no differences between HBe-Hmy2.CIR and control. Proliferation of transfected Hmy2.CIR was not affected by coculture with transfected U937, however, HBe transfection itself enhanced Hmy2.CIR proliferation. Altogether, these revealed that HBe can inhibit U937 migration and promote cytokines, including BAFF, IL-6, and IL-10, production in U937. Besides, HBe enhances BAFF release from U937 and increases BAFF concentration in vivo. In addition, HBe antigen facilitates Hmy2.CIR activation and proliferation through direct induction.
Collapse
Affiliation(s)
- Bingru Lu
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Bingchang Zhang
- 2 Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Laicheng Wang
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Chunyan Ma
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Xiaowen Liu
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Yueran Zhao
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| | - Yulian Jiao
- 1 Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, People's Republic of China
| |
Collapse
|
11
|
Kim JS, Byun N, Chung H, Kim HJ, Kim JM, Chun T, Lee WW, Park CG. Cell enrichment-free massive ex-vivo expansion of peripheral CD20⁺ B cells via CD40-CD40L signals in non-human primates. Biochem Biophys Res Commun 2016; 473:92-98. [PMID: 26993166 DOI: 10.1016/j.bbrc.2016.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022]
Abstract
Non-human primates (NHPs) are valuable as preclinical resources that bridge the gap between basic science and clinical application. B cells from NHPs have been utilized for the development of B-cell targeted drugs and cell-based therapeutic modalities; however, few studies on the ex-vivo expansion of monkey B cells have been reported. In this study, we developed a highly efficient ex-vivo expansion protocol for monkey B cells resulting in 99% purity without the requirement for prior cell-enrichment procedures. To this end, monkey peripheral blood mononuclear cells (PBMCs) were stimulated for 12 days with cells constitutively expressing monkey CD40L in expansion medium optimized for specific and massive expansion of B cells. The B cells expansion rates obtained were 2-5 times higher than those previously reported in humans, with rates ranging from 7.9 to 16.6 fold increase. Moreover, expanded B cells sustained high expression of co-stimulatory molecules including CD83 and CD86 until day 12 of culture, and the simple application of a brief centrifugation resulted in a CD20(+) B cell purity rate of greater than 99%. Furthermore, small amounts of CD3(+)CD20(+)BT-like cells were generated and CD16 was expressed at moderate levels on expanded B cells. Thus, the establishment of this protocol provides a method to produce quantities of homogeneous, mature B cells in numbers sufficient for the in vitro study of B cell immunity as well as for the development of B cell-diagnostic tools and cell-based therapeutic modalities.
Collapse
Affiliation(s)
- Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Nari Byun
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799, South Korea; BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799, South Korea; BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799, South Korea; BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799, South Korea; BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Biomedical Research Institute, Seoul National University College of Medicine, Seoul, 110-799, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799, South Korea; BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
| |
Collapse
|
12
|
Therapeutic antitumor efficacy of B cells loaded with tumor-derived autophagasomes vaccine (DRibbles). J Immunother 2015; 37:383-93. [PMID: 25198526 PMCID: PMC4166015 DOI: 10.1097/cji.0000000000000051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supplemental Digital Content is available in the text. Tumor-derived autophagosomes (DRibble) selectively capture tumor-specific antigens and induce a dramatic T-cell activation and expansion when injected into lymph nodes of naive mice. Both dendritic and B cells can efficiently cross-prime antigen-specific T cells. In this report, we demonstrated that a booster vaccination with naive B cells loaded with DRibbles eradicated E.G7-OVA tumors in mice that were previously treated with adoptive transfer naive OT-I T cells and intranodal immunization with DRibbles derived from E.G7 tumors. The antitumor efficacy was accompanied by a heighten number of tumor-specific interferon-γ-producing T cells and antibodies. However, the same treatment in the absence of adoptive T-cell transfer exhibited a limited efficacy. In contrast, when DRibble-loaded B cells were activated with CpG and anti-CD40 antibody before use as booster vaccines, established E.G7 tumors were completely eradicated in the absence of T-cell transfer. Therefore, our results document that B cells could efficiently cross-present tumor-specific antigens captured by DRibbles and suggest that naive B cells can be deployed as an effective and readily accessible source of antigen-presenting cells for cancer immunotherapy clinical trials.
Collapse
|
13
|
Klöhn PC, Castro-Seoane R, Collinge J. Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 2013; 67:359-68. [PMID: 23911964 DOI: 10.1016/j.jinf.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Prion diseases are incurable transmissible neurological disorders. In many natural and experimental prion diseases, infectious prions can be detected in the lymphoreticular system (LRS) long before they reach the brain where they cause a fatal rapidly progressive degeneration. Although major cell types that contribute to prion accumulation have been identified, the mode of prion dissemination in the LRS remains elusive. Recent evidence of a remarkably fast splenic prion accumulation after peripheral infection of mice, resulting in high prion titers in dendritic cells (DCs) and a release of prions from infected DCs via exosomes suggest that intercellular dissemination may contribute to rapid prion colonization in the LRS. A vast body of evidence from retroviral infections shows that DCs and other antigen-presenting cells (APCs) share viral antigens by intercellular transfer to warrant immunity against viruses if APCs remain uninfected. Evolved to adapt the immune response to evading pathogens, these pathways may constitute a portal for unimpeded prion dissemination owing to the tolerance of the immune system against host-encoded prion protein. In this review we summarize current paradigms for antigen-sharing pathways which may be relevant to better understand dissemination of rogue neurotoxic proteins.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
14
|
Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, Kurts C, Steinkasserer A, Gessner A. Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 2013; 24:906-16. [PMID: 23539760 DOI: 10.1681/asn.2012020133] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC-antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection.
Collapse
Affiliation(s)
- Andreas Goldwich
- Department of Immunemodulation at the Dermatology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li W, Zhou M, Ren H, Hu HM, Lu L, Cao M, Wang LX. Tumor-derived autophagosomes (DRibbles) induce B cell activation in a TLR2-MyD88 dependent manner. PLoS One 2013; 8:e53564. [PMID: 23326458 PMCID: PMC3541185 DOI: 10.1371/journal.pone.0053564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
Previously, we have documented that isolated autophagosomes from tumor cells could efficiently cross-prime tumor-reactive naïve T cells and mediate tumor regression in preclinical mouse models. However, the effect of tumor-derived autophagosomes, here we refer as to DRibbles, on B cells has not been studied so far. At present study, we found that DRibbles generated from a murine hepatoma cell line Hep1-6, induced B-cell activation after intravenous injection into mice. B-cell populations were significantly expanded and the production of Hep1-6 tumor-specific antibodies was successfully induced. Moreover, in vitro studies showed that DRibbles could induce more efficient B-cell proliferation and activation, antibody production, and cytokine secretion than whole tumor cell lysates. Notably, we found that B-cell activation required proteins but not DNA in the DRibbles. We further showed that B cells could capture DRibbles and present antigens in the DRibbles to directly induce T cell activation. Furthermore, we found that B-cell activation, antibody production, cytokine secretion and antigen cross-presentation were TLR2-MyD88 pathway dependent. Taken together, the present studies demonstrated that tumor-derived autophagosomes (DRibbles) efficiently induced B cells activation, antibody production, cytokine secretion and antigen cross-presentation mainly depending on their protein component via TLR2/MyD88 dependent manner.
Collapse
Affiliation(s)
- Weixia Li
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Meng Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Hongyan Ren
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Hong-Ming Hu
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China
| | - Meng Cao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- * E-mail: (LxW); (MC)
| | - Li-xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- Cancer Research and Biotherapy Center, the Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
- * E-mail: (LxW); (MC)
| |
Collapse
|
16
|
Cross-presentation of IgG-containing immune complexes. Cell Mol Life Sci 2012; 70:1319-34. [PMID: 22847331 DOI: 10.1007/s00018-012-1100-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.
Collapse
|
17
|
B Effector Cells Activated by a Chimeric Protein Consisting of IL-2 and the Ectodomain of TGF-β Receptor II Induce Potent Antitumor Immunity. Cancer Res 2012; 72:1210-20. [DOI: 10.1158/0008-5472.can-11-1659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Matte-Martone C, Wang X, Anderson B, Jain D, Demetris AJ, McNiff J, Shlomchik MJ, Shlomchik WD. Recipient B cells are not required for graft-versus-host disease induction. Biol Blood Marrow Transplant 2010; 16:1222-30. [PMID: 20338255 DOI: 10.1016/j.bbmt.2010.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
Recipient antigen presenting cells (APCs) are required for CD8-mediated graft-versus-host disease (GVHD), and have an important and nonredundant role in CD4-mediated GVHD in mouse major histocompatibility complex-matched allogeneic bone marrow transplantation (alloBMT). However, the precise roles of specific recipient APCs-dendritic cells, macrophages, and B cells-are not well defined. If recipient B cells are important APCs they could be depleted with rituximab, an anti-CD20 monoclonal antibody. On the other hand, B cells can downregulate T cell responses, and consequently, B cell depletion could exacerbate GVHD. Patients with B cell lymphomas undergo allogeneic hematopoietic stem cell transplantation (alloSCT) and many are B-cell-deficient because of prior rituximab. We therefore studied the role of recipient B cells in major histocompatibility complex-matched murine models of CD8- and CD4-mediated GVHD by using recipients genetically deficient in B cells and with antibody-mediated depletion of host B cells. In both CD4- and CD8-dependent models, B cell-deficient recipients developed clinical and pathologic GVHD. However, although CD8-mediated GVHD was clinically less severe in hosts genetically deficient in B cells, it was unaffected in anti-CD20-treated recipients. These data indicate that recipient B cells are not important initiators of GVHD, and that efforts to prevent GVHD by APC depletion should focus on other APC subsets.
Collapse
|
19
|
Kim S, Shen T, Min B. Basophils can directly present or cross-present antigen to CD8 lymphocytes and alter CD8 T cell differentiation into IL-10-producing phenotypes. THE JOURNAL OF IMMUNOLOGY 2009; 183:3033-9. [PMID: 19667092 DOI: 10.4049/jimmunol.0900332] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing evidence suggesting that basophils play a critical role in developing Th2-type immunity both in vitro and in vivo. We previously reported that basophils cocultured with naive CD4 T cells stimulated with Ag promote the differentiation of the T cells into IL-4-producing Th2 cells. In the present study, we examined the roles of basophils during CD8 T cell activation. Although stimulating OVA-specific OT-I CD8 T cells with OVA peptide-pulsed splenic dendritic cells primarily induced the production of IFN-gamma, adding basophils into the coculture induced IL-10 production. Surprisingly, basophils were capable of directly presenting peptide Ag or of cross-presenting protein Ag to CD8 T cells. CD28-mediated costimulation dramatically enhanced T cell IL-10 production, yet neither ICOS nor CD86 was involved in IL-10 production. Basophil-mediated IL-10 induction was greatly diminished without IL-4 or IL-6, indicating that these cytokines are necessary for programming CD8 T cell IL-10 production. Adding IL-4 or IL-6 into CD8/APC coculture was not sufficient to induce IL-10 production; however, the presence of both cytokines significantly induced IL-10 production without basophils. Finally, CD8 T cells producing IL-10 induced by basophils did not display regulatory cell functions. Collectively, these results suggest a novel function of basophils that act as professional APCs to present Ag to CD8 T cells, thus inducing IL-10 production.
Collapse
Affiliation(s)
- Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
20
|
Holcmann M, Stoitzner P, Drobits B, Luehrs P, Stingl G, Romani N, Maurer D, Sibilia M. Skin Inflammation Is Not Sufficient to Break Tolerance Induced against a Novel Antigen. THE JOURNAL OF IMMUNOLOGY 2009; 183:1133-43. [DOI: 10.4049/jimmunol.0713351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood 2008; 112:3713-22. [PMID: 18698004 DOI: 10.1182/blood-2008-03-146290] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cross-presentation is a crucial mechanism in tumoral and microbial immunity because it allows internalized cell associated or exogenous antigens (Ags) to be delivered into the major histocompatibility complex I pathway. This pathway is important for the development of CD8(+) T-cell responses and for the induction of tolerance. In mice, cross-presentation is considered to be a unique property of CD8alpha+ conventional dendritic cells (DCs). Here we show that splenic plasmacytoid DCs (pDCs) efficiently capture exogenous Ags in vivo but are not able to cross-present these Ags at steady state. However, in vitro and in vivo stimulation by Toll-like receptor-7, or -9 or viruses licenses pDCs to cross-present soluble or particulate Ags by a transporter associated with antigen processing-dependent mechanism. Induction of cross-presentation confers to pDCs the ability to generate efficient effector CD8+ T-cell responses against exogenous Ags in vivo, showing that pDCs may play a crucial role in induction of adaptive immune responses against pathogens that do not infect tissues of hemopoietic origin. This study provides the first evidence for an in vivo role of splenic pDCs in Ag cross-presentation and T-cell cross-priming and suggests that pDCs may constitute an attractive target to boost the efficacy of vaccines based on cytotoxic T lymphocyte induction.
Collapse
|
22
|
Robson N, Donachie A, Mowat A. Simultaneous presentation and cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-specific B cells. Eur J Immunol 2008; 38:1238-46. [DOI: 10.1002/eji.200737758] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
The cell biology of cross‐presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86:353-62. [DOI: 10.1038/icb.2008.3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Abstract
The rise-and-fall and reincarnation of suppressor T cells is reviewed from the perspective of a participant in the field.
Collapse
Affiliation(s)
- Judith A Kapp
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
25
|
Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 2008; 20:89-95. [DOI: 10.1016/j.coi.2007.12.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
|
26
|
Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK. Structural genomics of protein phosphatases. ACTA ACUST UNITED AC 2007; 8:121-40. [PMID: 18058037 DOI: 10.1007/s10969-007-9036-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022]
Abstract
The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.
Collapse
Affiliation(s)
- Steven C Almo
- Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Antigen presentation by professional antigen-presenting cells (pAPCs) to cytotoxic CD8(+) T cells can occur via two processing routes - the direct and cross-presentation pathways. Cross-presentation of exogenous antigens in the context of major histocompatibility complex (MHC) class I molecules has recently attracted a lot of research interest because it may prove crucial for vaccine development. This alternative pathway has been implicated in priming CD8(+) T-cell responses to pathogens as well as tumours in vivo (cross-priming). In cross-presentation, the internalized antigens can be processed through diverse intracellular routes. As many unresolved questions regarding the molecular basis that controls the cross-priming process still exist, it is essential to explore the various elements involved therein, to better elucidate this pathway. In this review, we summarize current data that explore how the source and nature of antigens could affect their cross-presentation. Moreover, we will discuss and outline how recent advances regarding pAPCs' properties have increased our appreciation of the complex nature of the cross-priming pathway in vivo. In conclusion, we contemplate how the direct and cross-presentation pathways can function to allow the immune system to deal efficiently with diverse pathogens.
Collapse
Affiliation(s)
- S Basta
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| | | |
Collapse
|
28
|
Yamasaki Y, Ikenaga T, Otsuki T, Nishikawa M, Takakura Y. Induction of antigen-specific cytotoxic T lymphocytes by immunization with negatively charged soluble antigen through scavenger receptor-mediated delivery. Vaccine 2007; 25:85-91. [PMID: 16956699 DOI: 10.1016/j.vaccine.2006.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Antigen-specific cytotoxic T lymphocytes (CTL) are essential for the immunotherapy against cancer or infection diseases although, conventionally, immunization with antigens in soluble form cannot induce CTL. In the present study, we have demonstrated for the first time that ovalbumin (OVA)-specific CTL can be induced without any adjuvants by immunization with soluble OVA with negative charges through scavenger-mediated delivery of antigens to antigen presenting cells (APC). Succinylated, maleylated and aconitylated derivatives were synthesized to allow the introduction of negative charges. All these derivatives can induce OVA-specific CTL and, especially, the CTL activity of mice immunized with maleylated derivatives was comparable with that with OVA emulsified with CFA, known to be the strongest adjuvant. Efficient antigen-specific T cell proliferation and IFN-gamma production were also observed for the OVA derivatives. The OVA derivatives also showed significant protective effects on the growth of OVA-expressing E.G7 tumor cells. In conclusion, the present study demonstrates that the introduction of negative charges to soluble antigens will be a useful strategy for the development of vaccines.
Collapse
Affiliation(s)
- Yasuomi Yamasaki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
29
|
Wang W, Golding B. The cytotoxic T lymphocyte response against a protein antigen does not decrease the antibody response to that antigen although antigen-pulsed B cells can be targets. Immunol Lett 2006; 100:195-201. [PMID: 15916814 DOI: 10.1016/j.imlet.2005.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 04/04/2005] [Indexed: 12/30/2022]
Abstract
The role of activated CD8+ T cells in shaping the dynamics of in vivo antigen presentation and immune responses is a subject receiving more attention. We studied whether cytotoxic T lymphocyte (CTL) would limit antibody responses by targeting antigen-specific B cells. A modified in vivo CTL assay was developed and used herein to demonstrate cytotoxicity in vivo, and to show that antigen-specific B cells that process exogenous antigen and present peptide in association with MHC class I can be the targets of CD8+ T cells. B cells from C57BL/6 mice immunized with ovalbumin (OVA)/alum were pulsed with OVA in vitro, and transferred into C57BL/6 recipient mice that had been immunized with vaccinia virus expressing SIINFEKL minigene to generate CD8+ CTL against K(b)/SIINFEKL. OVA-pulsed B220+ B cells from OVA-immunized mice were killed to a greater extent than B220+ B cells from naïve mice (28+/-20% versus 12+/-16%, p=0.0042). However, mice receiving vaccinia-SIINFEKL and generating CTL, did not appear to target endogenous B cells, since both primary and secondary antibody responses to OVA were unaffected. Our findings indicate that CTL responses to the protein antigen do not interfere with endogenous B cell responses, even though exogenous B cells expressing the CTL epitope can be efficiently lysed.
Collapse
Affiliation(s)
- Weila Wang
- Laboratory of Plasma Derivatives, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
30
|
Smyth LA, Herrera OB, Golshayan D, Lombardi G, Lechler RI. A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases. Transplantation 2006; 82:S15-8. [PMID: 16829787 DOI: 10.1097/01.tp.0000231347.06149.ca] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DCs) are the major antigen presenting cells capable of stimulating T cell responses following either organ transplantation or a viral infection. In the context of allorecognition, T cells can be activated following presentation of alloantigens by donor DCs (direct), as well as by recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect). We have recently described another mechanism by which alloreactive T cells are activated. Recipient DCs can acquire donor MHC through cell-to-cell contact and this acquired MHC can stimulate a T cell response (the semidirect pathway). Similarly, during a viral infection, DCs are capable of stimulating T cells directly, as occurs when infected DCs present processed viral antigens, or indirectly by a process known as cross-presentation. Although cross-presentation of exogenous antigen is an important mechanism for controlling infectious diseases, it is possible that peptide:MHC acquisition (the semidirect pathway) may also play a part in immunity against pathogens. In this review, we discuss the possible contributions of the semidirect pathway/MHC transfer in infectious disease.
Collapse
Affiliation(s)
- Lesley Ann Smyth
- Department of Nephrology and Transplantation, Kings College London, Guy's Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006; 117:78-88. [PMID: 16423043 PMCID: PMC1782199 DOI: 10.1111/j.1365-2567.2005.02268.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD8(+) T-cell responses are critical in the immunological control of tumours and infectious diseases. To prime CD8(+) T cells against these cell-associated antigens, exogenous antigens must be cross-presented by professional antigen-presenting cells (APCs). While cross-presentation of soluble antigens by dendritic cells is detectable in vivo, the efficiency is low, limiting the clinical utility of protein-based vaccinations. To enhance the efficiency of presentation, we generated nanoparticles from a biodegradable polymer, poly(D,L-lactide-co-glycolide) (PLGA), to deliver antigen into the major histocompatibility complex (MHC) class I antigen presentation pathway. In primary mouse bone marrow-derived dendritic cells (BMDCs), the MHC class I presentation of PLGA-encapsulated ovalbumin (OVA) stimulated T cell interleukin-2 secretion at 1000-fold lower concentration than soluble antigen and 10-fold lower than antigen-coated latex beads. The microparticles also served as an intracellular antigen reservoir, leading to sustained MHC class I presentation of OVA for 72 hr, decreasing by only 20% after 96 hr, a time at which the presentation of soluble and latex bead-associated antigens was undetectable. Cytosol extraction demonstrated that antigen delivery via PLGA particles increased the amount of protein that escaped from endosomes into the cytoplasm, thereby increasing the access of exogenous antigen to the classic MHC class I loading pathway. These data indicate that the unique properties of PLGA particle-mediated antigen delivery dramatically enhance and sustain exogenous antigen presentation by MHC class I, potentially facilitating the clinical use of these particles in vaccination.
Collapse
Affiliation(s)
- Hong Shen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Limmer A, Ohl J, Wingender G, Berg M, Jüngerkes F, Schumak B, Djandji D, Scholz K, Klevenz A, Hegenbarth S, Momburg F, Hämmerling GJ, Arnold B, Knolle PA. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 2005; 35:2970-81. [PMID: 16163670 DOI: 10.1002/eji.200526034] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After ingestion, oral antigens distribute systemically and provoke T cell stimulation outside the gastrointestinal tract. Within the liver, scavenger liver sinusoidal endothelial cells (LSEC) eliminate blood-borne antigens and induce T cell tolerance. Here we investigated whether LSEC contribute to oral tolerance. Oral antigens were efficiently cross-presented on H-2K(b) by LSEC to naive CD8 T cells. Cross-presentation efficiency in LSEC but not dendritic cells was increased by antigen-exposure to heat or low pH. Mechanistically, cross-presentation in LSEC requires endosomal maturation, involves hsc73 and proteasomal degradation. H-2K(b)-restricted cross-presentation of oral antigens by LSEC in vivo induced CD8 T cell priming and led to development of CD8 T cell tolerance in two independent experimental systems. Adoptive transfer of LSEC from mice fed with antigen (ovalbumin) into RAG2-/- knockout mice, previously reconstituted with naive ovalbumin-specific CD8 T cells, prevented development of specific cytotoxicity and expression of IFN-gamma in CD8 T cells. Using a new transgenic mouse line expressing H-2K(b) only on endothelial cells, we have demonstrated that oral antigen administration leads to tolerance in H-2K(b)-restricted CD8 T cells. Collectively, our data demonstrate a participation of the liver, in particular scavenger LSEC, in development of CD8 T cell tolerance towards oral antigens.
Collapse
Affiliation(s)
- Andreas Limmer
- Institut für Molekulare Medizin und Experimentelle Immunologie, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
It was originally thought that a cell's major histocompatibility complex (MHC) class I molecules presented peptides derived exclusively from proteins synthesized by the cell itself. However, in some circumstances, antigens from the extracellular environment can be presented on MHC class I molecules and stimulate CD8(+) T-cell immunity, a process termed cross-presentation. Cross-presentation was originally discovered as an obscure phenomenon in transplantation immunity. However, it is now clear that it is a major mechanism by which the immune system monitors tissues and phagocytes for the presence of foreign antigen. Cross-presentation is the only pathway by which the immune system can detect and respond to viral infections or mutations that exclusively occur in parenchymal cells rather than in bone marrow-derived antigen-presenting cells (APCs). Professional APCs, such as dendritic cells, are the principal cells endowed with the capacity to cross-present antigens. In this process, the APCs acquire proteins from other tissue cells through endocytic mechanisms, especially phagocytosis or macropinocytosis. The internalized antigen can then be processed through at least two different mechanisms. In one pathway, the antigen is transferred from the phagosome into the cytosol, where it is hydrolyzed by proteasomes into oligopeptides that are then transported by the transporter associated with antigen processing to MHC class I molecules in the endoplasmic reticulum or phagosomes. In a second pathway, the antigen is cleaved into peptides by endosomal proteases, particularly cathepsin S, and bound by class I molecules probably in the endocytic compartment itself. Depending on the nature of the antigen, one or both of these pathways can contribute to cross-presentation in vivo. The outcome of cross-presentation can be either tolerance or immunity. Which of these outcomes occurs is thought to depend on whether antigens are acquired by themselves alone, leading to tolerance, or with immunostimulatory signals, leading to immunity. One source of such signals is from dying cells that release immunostimulatory 'danger' signals that promote the generation of immunity to their cellular antigens. In addition to the critical role of cross-presentation in normal immune physiology, this pathway has considerable potential for being exploited for developing subunit vaccines that elicit both CD4(+) and CD8(+) T-cell immunity.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
34
|
Ivanov R, Aarts T, Hagenbeek A, Hol S, Ebeling S. B-cell expansion in the presence of the novel 293-CD40L-sCD40L cell line allows the generation of large numbers of efficient xenoantigen-free APC. Cytotherapy 2005. [PMID: 16040385 DOI: 10.1016/s1465-3249(05)70790-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND CD40-activated B lymphocytes have been used successfully as potent APC for the induction of T-cell responses. However, the 3T3-CD40L cell line, regularly used for engagement of CD40 on the B-cell surface, is a potential source of xenoantigens. This may affect the specificity of T cells stimulated with CD40-activated B cells, especially when generation of T-cell lines specific for endogenously processed Ag is desired. METHODS To develop a system that allows efficient expansion of B cells in the absence of sources of xenoantigens, we created a human 293-CD40L-sCD40L cell line that produces soluble CD40L and expresses CD40L on the cell surface. B cells from patients with hematologic malignancies were expanded on the 293-CD40L-sCD40L cells and used for stimulation of either naive or in vivo primed donor T cells in three HLA-identical patient-donor combinations. RESULTS The 293-CD40L-sCD40L cell line was able to stimulate B-cell growth with an efficiency superior to that of the commonly used 3T3-CD40L cell line. In all cases T-cell lines and, subsequently, T-cell clones were generated that showed reactivity against patient and not donor B cells, suggesting their specificity for minor histocompatibility antigens (mHAg). DISCUSSION B cells activated with GMP grade 293-CD40L-sCD40L can be used in a variety of applications. In particular, they may be suitable for ex vivo stimulation of T cells prior to donor lymphocyte infusion (DLI), which may enhance its graft versus leukemia (GvL) effect.
Collapse
Affiliation(s)
- R Ivanov
- Jordan Laboratory for Hemato-Oncology, Department of Hematology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Boisgérault F, Rueda P, Sun CM, Hervas-Stubbs S, Rojas M, Leclerc C. Cross-Priming of T Cell Responses by Synthetic Microspheres Carrying a CD8+ T Cell Epitope Requires an Adjuvant Signal. THE JOURNAL OF IMMUNOLOGY 2005; 174:3432-9. [PMID: 15749877 DOI: 10.4049/jimmunol.174.6.3432] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Controlling the cross-presentation of exogenous Ags to CD8+ T cells represents a major step for designing new vaccination strategies. Whereas several recombinant pseudo-viral particles have been used as delivery systems for triggering potent CTL responses to heterologous exogenous Ags, the adjuvant properties of virus-like particles (VLPs) themselves were little questioned. Here, we analyzed the contribution of the porcine parvovirus (PPV)-VLPs to the induction of protective cellular responses to exogenous Ags carried by an independent delivery system. Microspheres, which are known to transfer exogenous Ags into the MHC class I pathway, were chosen for delivering the immunodominant OVA(257-264) CD8+ T cell epitope (B-OVAp). This delivery system fulfills the requirements in terms of cross-presentation, but fails to induce cross-priming of specific CD8+ T cells. Coinjection of PPV-VLPs with B-OVAp results in the priming of potent CTL responses and type 1-biased immunity in a CD4- and CD40-independent manner, as efficiently as the recombinant PPV-VLPs carrying the same epitope (PPV-OVAp). Furthermore, vaccination with PPV-VLPs and B-OVAp was fully efficient to protect mice against the development of OVA-bearing melanoma. These findings indicate that PPV-VLPs act not only as a delivery system but also as a strong adjuvant when independently provided with exogenous Ag. Thus, dissociation between delivery system and adjuvant would provide a more flexible and reliable system to induce potent and protective CTL.
Collapse
Affiliation(s)
- Florence Boisgérault
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale E352, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199:9-26. [PMID: 15233723 DOI: 10.1111/j.0105-2896.2004.00142.x] [Citation(s) in RCA: 558] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-presentation involves the uptake and processing of exogenous antigens within the major histocompatibility complex (MHC) class I pathway. This process is primarily performed by dendritic cells (DCs), which are not a single cell type but may be divided into several distinct subsets. Those expressing CD8alpha together with CD205, found primarily in the T-cell areas of the spleen and lymph nodes, are the major subset responsible for cross-presenting cellular antigens. This ability is likely to be important for the generation of cytotoxic T-cell immunity to a variety of antigens, particularly those associated with viral infection, tumorigenesis, and DNA vaccination. At present, it is unclear whether the CD8alpha-expressing DC subset captures antigen directly from target cells or obtains it indirectly from intermediary DCs that traffic from peripheral sites. In this review, we examine the molecular basis for cross-presentation, discuss the role of DC subsets, and examine the contribution of this process to immunity, with some emphasis on DNA vaccination.
Collapse
Affiliation(s)
- William R Heath
- Department of Immunology and The Cooperative Research Center for Vaccine Technology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shakushiro K, Yamasaki Y, Nishikawa M, Takakura Y. Efficient scavenger receptor-mediated uptake and cross-presentation of negatively charged soluble antigens by dendritic cells. Immunology 2004; 112:211-8. [PMID: 15147564 PMCID: PMC1782477 DOI: 10.1111/j.1365-2567.2004.01871.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Exogenous antigens endocytosed in large amounts by antigen-presenting cells (APC) are presented on major histocompatibility complex (MHC) class I molecules as well as on class II molecules, a process called cross-presentation. Among APC, dendritic cells (DC) play a key role in cross-presentation by transporting internalized antigen to the cytosol. The present study shows that ovalbumin (OVA) introduced with negative charges by succinylation (Suc-OVA), maleylation (Mal-OVA) or cis-aconitylation (Aco-OVA) was efficiently taken up by DC via scavenger receptors (SR). Mal-OVA and Aco-OVA were efficiently cross-presented by DC, while cross-presentation of Suc-OVA was hardly observed. MHC class I presentation of acylated OVA introduced directly into the cytosol was inefficient and presentation of exogenous native OVA but not of Aco-OVA was markedly augmented by chloroquine, an inhibitor of endosomal acidification, suggesting that deacylation in endosomes or lysosomes is necessary for cross-presentation of acylated OVA. MHC class I presentation of exogenous native OVA and Aco-OVA by DC was blocked by lactacystin and brefeldin A, demonstrating that exogenous antigens taken up by DC are cross-presented through the conventional cytosolic pathway. Therefore, SR-mediated delivery of antigen to DC leads to efficient cross-presentation, although the pathway of chemical modification should be considered.
Collapse
Affiliation(s)
- Kohsuke Shakushiro
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
38
|
Chang-Rodriguez S, Ecker R, Stingl G, Elbe-Bürger A. Autocrine IL-10 partially prevents differentiation of neonatal dendritic epidermal leukocytes into Langerhans cells. J Leukoc Biol 2004; 76:657-66. [PMID: 15197230 DOI: 10.1189/jlb.0204087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To test whether reduced immune responsiveness in early life may be related to the immaturity of neonatal antigen-presenting cells, we comparatively assessed the phenotypic and functional characteristics of dendritic epidermal leukocytes (DEL) and epidermal Langerhans cells (LC) in newborn (NB) and adult mice, respectively. We report that purified, 3-day-cultured DEL do not acquire the morphology and phenotype typical of LC and are significantly weaker stimulators of naive, allogeneic CD4+ and CD8+ T cells than LC. Freshly isolated DEL are twice as efficient as LC in the uptake of fluorescein isothiocyanate-conjugated tracers but are not able to present these to antigen-specific T cell hybridomas. To clarify the underlying cause, cytokine expression of NB and adult epidermal cells (EC) was examined. We found that DEL express considerable amounts of interleukin (IL)-10, that IL-10 in NB EC supernatants partially inhibits LC maturation, and that DEL-enriched EC from IL-10-/- mice induce stronger primary T cell responses compared with those from IL-10+/+ mice. We conclude that IL-10 is one of the factors preventing maturation and differentiation of DEL into immunocompetent LC in intrauterine life and is at least partly responsible for the poor immune responsiveness of neonates.
Collapse
Affiliation(s)
- Souyet Chang-Rodriguez
- Department of Dermatology, DIAID, Medical University of Vienna, Brunner Str. 59, A-1235 Vienna, Austria
| | | | | | | |
Collapse
|
39
|
Palena C, Zhu M, Schlom J, Tsang KY. Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells. Blood 2004; 104:192-9. [PMID: 15010371 DOI: 10.1182/blood-2003-09-3211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are the most potent of the antigen-presenting cells (APCs). Preparation of sufficient numbers of mature DCs, however, is both costly and time-consuming. We have examined here the possibility of using an alternative source of APCs that would be easier to obtain, would not require extensive culture, and thus would be more applicable to human immunotherapy protocols. We show here that freshly isolated human B cells can be efficiently infected by a replication-defective fowlpox recombinant vector, designated rF-TRICOM (TRIad of COstimulatory Molecules), to markedly increase surface expression of the human costimulatory molecule B7-1 and moderately increase expression of intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-3 (LFA-3). Peptide-pulsed rF-TRICOM-infected B cells were highly efficient in activating antigen-specific human T cells and shown to be superior to the use of CD40L in enhancing APC potency. Moreover, when infection of freshly isolated B cells with rF-TRICOM was combined with CD40L, a still further marked enhancement of the antigen-presenting potency was observed. Ex vivo-generated antigen-specific T cells activated in this manner might be applied to experimental protocols or used for adoptive transfer in immunotherapy protocols.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Oran AE, Robinson HL. DNA vaccines, combining form of antigen and method of delivery to raise a spectrum of IFN-gamma and IL-4-producing CD4+ and CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1999-2005. [PMID: 12902504 DOI: 10.4049/jimmunol.171.4.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DNA-based immunizations have been used to determine the patterns of type 1 and type 2 cytokines that can be induced in vivo for Ag-specific CD4(+) and CD8(+) T cells. IL-4 was used as a signature cytokine for a type 2 T cell response and IFN-gamma as the signature cytokine for a type 1 response. Gene gun deliveries of secreted Ags were used to bias responses toward type 2 and saline injections of cell-associated Ags to bias responses toward type 1. The studies revealed that gene gun bombardments of DNAs expressing secreted Ags strongly biased responses toward type 2, inducing IL-4-producing CD8(+) as well as CD4(+) T cells. Saline injections of DNAs expressing cell-associated Ags strongly biased responses toward type 1, inducing IFN-gamma-producing CD8(+) and CD4(+) cells. A mixed type 1/type 2 response of IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells was found for gene gun deliveries of cell-associated Ags. Saline injections of secreted Ags raised a weakly type 1-biased response characterized by only slightly higher frequencies of IFN-gamma- than IL-4-producing CD4(+) and CD8(+) T cells. Studies in B cell knockout and hen egg lysozyme Ig transgenic mice revealed that B cells were required for the generation of IL-4-producing CD8(+) T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biolistics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A virus/immunology
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Nucleocapsid Proteins
- Nucleoproteins/administration & dosage
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- RNA-Binding Proteins
- Sodium Chloride/administration & dosage
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Core Proteins/administration & dosage
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Alp E Oran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
41
|
Parekh VV, Prasad DVR, Banerjee PP, Joshi BN, Kumar A, Mishra GC. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5897-911. [PMID: 12794116 DOI: 10.4049/jimmunol.170.12.5897] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells recognize Ag through their surface IgRs and present it in the context of MHC class II molecules to CD4(+) T cells. Recent evidence indicates that B cells also present exogenous Ags in the context of MHC class I to CD8(+) T cells and thus may play an important role in the modulation of CTL responses. However, in this regard, conflicting reports are available. One group of studies suggests that the interaction between B cells and CD8(+) T cells leads to the activation of the T cells, whereas other studies propose that it induces T cell tolerance. For discerning this dichotomy, we used B cells that were activated with either LPS or anti-Ig plus anti-CD40 Ab, which mimic the T-independent and T-dependent modes of B cell activation, respectively, to provide accessory signals to resting CD8(+) T cells. Our results show that, in comparison with anti-Ig plus anti-CD40 Ab-activated B cells, the LPS-activated B cells (LPS-B) failed to induce significant levels of proliferation, cytokine secretion, and cytotoxic ability of CD8(+) T cells. This hyporesponsiveness of CD8(+) T cells activated with LPS-B was significantly rescued by anti-TGF-beta1 Ab. Moreover, it was found that such hyporesponsive CD8(+) T cells activated with LPS-B had entered a state of anergy. Furthermore, LPS-B expresses a significantly higher level of TGF-beta1 on the surface, which caused the observed hyporesponsiveness of CD8(+) T cells. Therefore, this study, for the first time, provides a novel mechanism of B cell surface TGF-beta1-mediated hyporesponsiveness leading to anergy of CD8(+) T cells.
Collapse
Affiliation(s)
- Vrajesh V Parekh
- National Center for Cell Science, Pune, Maharashtra, India. School of Biotechnology, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh, India
| | | | | | | | | | | |
Collapse
|
42
|
Langston HP, Ke Y, Gewirtz AT, Dombrowski KE, Kapp JA. Secretion of IL-2 and IFN-gamma, but not IL-4, by antigen-specific T cells requires extracellular ATP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2962-70. [PMID: 12626548 DOI: 10.4049/jimmunol.170.6.2962] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extracellular ATP and other nucleotides transmit signals to cells via surface-associated molecules whose binding sites face the extracellular milieu. Ecto-nucleoside triphosphate diphosphohydrolase is such an ATP-binding enzyme that is expressed by activated lymphocytes. We have previously shown that nonhydrolyzable ATP analogs block the lytic activity of NK cells and CD8(+) T cells as well as their E-NTPDase activity. These results suggest that the hydrolysis of ATP may play a role in lymphocyte function. Here we report that E-NTPDase activity is up-regulated within 15 min of T cell stimulation and that reversible and irreversible enzyme inhibitors profoundly reduce secretion of IL-2 and IFN-gamma, but not IL-4. TNF-alpha, IL-10, and IL-5 production showed intermediate sensitivity to these ATP analogs. Depletion of extracellular ATP also inhibited secretion of IFN-gamma, but not IL-4, supporting the interpretation that extracellular ATP is required for secretion of some, but not all, cytokines. E-NTPDase antagonists reduced transcription of IL-2 mRNA and inhibited TCR-mediated intracellular calcium flux. These results suggest that extracellular ATP plays an essential role in the TCR-mediated signal transduction cascade for expression of certain cytokine genes.
Collapse
Affiliation(s)
- Heather P Langston
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
43
|
Gianfrani C, Troncone R, Mugione P, Cosentini E, De Pascale M, Faruolo C, Senger S, Terrazzano G, Southwood S, Auricchio S, Sette A. Celiac disease association with CD8+ T cell responses: identification of a novel gliadin-derived HLA-A2-restricted epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2719-26. [PMID: 12594302 DOI: 10.4049/jimmunol.170.5.2719] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the diagnostic hallmarks of the histological lesions associated with celiac disease is the extensive infiltration of the small intestinal epithelium by CD8(+) T cells of unknown Ag specificity. In this study, we report recognition of the gliadin-derived peptide (A-gliadin 123-132) by CD8(+) T lymphocytes from celiac patients. A-gliadin 123-132-specific IFN-gamma production and cytotoxic activity were detected in PBMCs derived from patients on gluten-free diet, but not from either celiac patients on gluten-containing diet or healthy controls. In contrast, A-gliadin 123-132-specific cells were isolated from small intestine biopsies of patients on either gluten-free or gluten-containing diets. Short-term T cell lines derived from the small intestinal mucosa and specific for the 123-132 epitope recognized human APC pulsed with either whole recombinant alpha-gliadin or a partial pepsin-trypsin gliadin digest. Finally, we speculate on a possible mechanism leading to processing and presentation of class I-restricted gliadin-derived epitopes in celiac disease patients.
Collapse
Affiliation(s)
- Carmen Gianfrani
- Institute of Food Science and Technology, Consiglio Nazionale delle Ricerche, Avellino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Villinger F, Mayne AE, Bostik P, Mori K, Jensen PE, Ahmed R, Ansari AA. Evidence for antibody-mediated enhancement of simian immunodeficiency virus (SIV) Gag antigen processing and cross presentation in SIV-infected rhesus macaques. J Virol 2003; 77:10-24. [PMID: 12477806 PMCID: PMC140624 DOI: 10.1128/jvi.77.1.10-24.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 09/30/2002] [Indexed: 01/31/2023] Open
Abstract
By using the dominant simian immunodeficiency virus (SIV) Gag Mamu-A01 restricted major histocompatibility complex (MHC) class I epitope p11CM, we demonstrate antibody-mediated enhanced MHC class I cross presentation of SIV Gag. In vitro restimulation of peripheral blood mononuclear cells from SIV-infected rhesus macaques with recombinant full-length SIV Gag p55 plus p55 affinity-purified immunoglobulin G (p55 Gag/p55-IgG) led to the generation of markedly higher frequencies of p11CM specific precursor cytotoxic T lymphocytes (p-CTLs) compared with restimulation with (i) SIV Gag p55 alone or (ii) optimal concentrations of the p11CM peptide alone. These results, along with the finding that CD4 depletion abrogated the enhancement, suggest a prominent role for CD4(+) T cells. Testing for p-CTLs against other Mamu-A01-restricted SIV Gag epitopes suggested that this mechanism favored recognition of the dominant p11CM peptide, potentially further skewing of the CTL response. The p-CTL enhancing effect was also decreased or abrogated by pepsin digestion of the p55-specific IgG or by the addition of monoclonal antibodies to Fc receptor (FcR) II/III, suggesting that the effect was dependent on FcR-mediated uptake of the immune-complexed antigen. Finally, incubation of antigen-presenting cells with SIV Gag p55 immune complexes in the presence of lactacystin or of bafilomycin indicated that the mechanism of antibody-mediated enhancement of cross presentation required both the proteasomal and the endosomal pathways. These data demonstrate for the first time the cross presentation of antigens via immune complexes in lentiviral infection and indicate a heretofore-unrecognized role for antibodies in modulating the magnitude and potentially also the breadth of MHC class I-restricted antigen processing and presentation and CTL responses.
Collapse
Affiliation(s)
- Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Lazdina U, Alheim M, Nyström J, Hultgren C, Borisova G, Sominskaya I, Pumpens P, Peterson DL, Milich DR, Sällberg M. Priming of cytotoxic T cell responses to exogenous hepatitis B virus core antigen is B cell dependent. J Gen Virol 2003; 84:139-146. [PMID: 12533710 DOI: 10.1099/vir.0.18678-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) core antigen (HBcAg) has a unique ability to bind a high frequency of naive human and murine B cells. The role of HBcAg-binding naive B cells in the immunogenicity of HBcAg is not clear. The HBcAg-binding properties of naive B cells were characterized using HBcAg particles with mutated spike region (residues 76-85) sequences. Deletion of residues 76-85 (HBcDelta76-85) destroyed naive B cell binding, whereas deletion of residues 79-85 did not. HBcAg particles with an Ile instead of the natural Ala at position 80 did not bind naive B cells, whereas reversion of Ile80-->Ala restored B cell binding. Destroying the B cell-binding ability of HBcAg had a marginal effect on the overall B cell immunogenicity of the different particles, suggesting that they were equally efficient in priming T helper cells. Therefore, the importance of HBcAg-binding B cells is studied with relation to the priming of HBcAg-specific cytotoxic T cells (CTLs). The role of HBcAg-binding B cells in the priming of HBcAg-specific CTLs was evaluated by immunization with endogenous HBcAg (DNA immunization) and exogenous recombinant HBcAg particles. Endogenous HBcAg primed HBcAg-specific CTLs in wild-type and B cell-deficient mice, whereas exogenous HBcAg primed HBcAg-specific CTLs only in wild-type mice. Importantly, HBcDelta76-85 did not prime CTLs despite the presence of B cells. Thus, the ability of exogenous HBcAg particles to prime specific CTLs is B cell dependent, suggesting a possible role for HBcAg-binding B cells in HBV infections.
Collapse
Affiliation(s)
- Una Lazdina
- Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
| | - Mats Alheim
- Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
| | - Jessica Nyström
- Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
| | - Catharina Hultgren
- Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
| | - Gallina Borisova
- Biomedical Research and Study Center, University of Latvia, Riga, Latvia
| | - Irina Sominskaya
- Biomedical Research and Study Center, University of Latvia, Riga, Latvia
| | - Paul Pumpens
- Biomedical Research and Study Center, University of Latvia, Riga, Latvia
| | | | - David R Milich
- Vaccine Research Institute of San Diego, San Diego, CA, USA
| | - Matti Sällberg
- Division of Clinical Virology, F68, Karolinska Institutet at Huddinge University Hospital, S 141 86 Stockholm, Sweden
| |
Collapse
|
46
|
Wu YZ, Zhao JP, Wan Y, Jia ZC, Zhou W, Bian J, Ni B, Zou LY, Tang Y. Mimovirus: a novel form of vaccine that induces hepatitis B virus-specific cytotoxic T-lymphocyte responses in vivo. J Virol 2002; 76:10264-9. [PMID: 12239302 PMCID: PMC136564 DOI: 10.1128/jvi.76.20.10264-10269.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Accepted: 07/09/2002] [Indexed: 11/20/2022] Open
Abstract
CD8(+) cytotoxic T lymphocytes (CTLs) are now recognized as important mediators of immunity against intracellular pathogens, including human immunodeficiency virus and tumors. How to efficiently evoke antigen-specific CTL responses in vivo has become a crucial problem in the development of modern vaccines. Here, we developed a completely novel CTL vaccine-mimovirus, which is a kind of virus-size particulate antigen delivery system. It was formed by the self-assembly of a cationic peptide containing 18 lysines and a CTL-epitope peptide of HBsAg(28-39), with a plasmid encoding mouse interleukin-12 (IL-12) through electrostatic interactions. We examined the formation of mimovirus by DNA retardation assay, DNase I protection assay, and transmission electron microscopy and demonstrated that mimovirus could efficiently transfer the plasmid encoding IL-12 into mammalian cells such as P815 cells in vitro. Furthermore, it was proved that mimovirus could induce an HBsAg(28-39)-specific CTL response in vivo. Considering its effectiveness, flexibility, and defined composition, mimovirus is potentially a novel system for vaccination against intracellular pathogens and tumors.
Collapse
Affiliation(s)
- Yu-Zhang Wu
- Institute of Immunology, Third Military Medical University, Ave. Gaotanyan 30th, District Shapingba, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2164-71. [PMID: 12165546 DOI: 10.4049/jimmunol.169.4.2164] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of rapid, efficient, and safe methods for generating Ag-specific T cells is necessary for the clinical application of adoptive immunotherapy. We show that B cells stimulated with CD40 ligand and IL-4 (CD40-B cells) can be efficiently transduced with retroviral vectors encoding a model Ag, CMV tegument protein pp65 gene, and maintain high levels of costimulatory molecules after gene transfer. CTL lines specific for pp65 were readily generated in all four healthy CMV-seropositive donors by stimulating autologous CD8(+) T cells with these transduced CD40-B cells, both of which were derived from 10 ml peripheral blood. ELISPOT assays revealed that the CTL lines used multiple HLA alleles as restricting elements. Thus, CD40-B cells transduced retrovirally with Ag-encoding cDNA can be potent APC and facilitate to generate Ag-specific CTL in vitro.
Collapse
Affiliation(s)
- Eisei Kondo
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Riedl P, El-Kholy S, Reimann J, Schirmbeck R. Priming biologically active antibody responses against an isolated, conformational viral epitope by DNA vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1251-60. [PMID: 12133946 DOI: 10.4049/jimmunol.169.3.1251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunodominant, conformational "a" determinant of hepatitis B surface Ag (HBsAg) elicits Ab responses. We selectively expressed the Ab-binding, glycosylated, native a determinant (residue 120-147) of HBsAg in a fusion protein containing C-terminally the HBsAg fragment SII (residue 80-180) fused to a SV40 T-Ag-derived hsp73-binding 77 aa (T(77)) or non-hsp-binding 60 aa (T(60)) N terminus. A DNA vaccine encoding non-hsp-binding secreted T(60)-SII fusion protein-stimulated murine Ab responses with a similar efficacy as a DNA vaccine encoding the secreted, native, small HBsAg. A DNA vaccine encoding hsp73-binding, intracellular T(77)-SII fusion protein-stimulated murine Ab responses less efficiently but comparable to a DNA vaccine encoding the intracellular, native, large HBsAg. HBsAg-specific Abs elicited by either the T(60)-SII-expressing or the T(77)-SII-expressing DNA vaccine suppressed HBsAg antigenemia in transgenic mice that produce HBsAg from a transgene in the liver; hence, a biologically active B cell response cross-reacting with the native, viral envelope epitope was primed by both DNA vaccine constructs. HBsAg-specific Ab and CTL responses were coprimed when an S(20-50) fragment (containing the immunodominant, L(d)-binding epitope S(28-39)) of HBsAg was fused C-terminally to the pCI/T(77)-SII sequence (pCI/T(77)-SII-L(d) DNA vaccine). Chimeric, polyepitope DNA vaccines encoding conformational, Ab-binding epitopes and MHC class I-binding epitopes can thus efficiently deliver antigenic information to different compartments of the immune system in an immunogenic way.
Collapse
Affiliation(s)
- Petra Riedl
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
49
|
Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M, Luketic V, Coppel RL, Ansari AA, Gershwin ME. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002; 195:113-23. [PMID: 11781370 PMCID: PMC2196012 DOI: 10.1084/jem.20010956] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Primary biliary cirrhosis (PBC) is characterized by an intense biliary inflammatory CD4(+) and CD8(+) T cell response. Very limited information on autoantigen-specific cytotoxic T lymphocyte (CTL) responses is available compared with autoreactive CD4(+) T cell responses. Using peripheral blood mononuclear cells (PBMCs) from PBC, we identified an HLA-A2-restricted CTL epitope of the E2 component of pyruvate dehydrogenase (PDC-E2), the immunodominant mitochondrial autoantigen. This peptide, amino acids 159-167 of PDC-E2, induces specific MHC class I-restricted CD8(+) CTL lines from 10/12 HLA-A2(+) PBC patients, but not controls, after in vitro stimulation with antigen-pulsed dendritic cells (DCs). PDC-E2-specific CTLs could also be generated by pulsing DCs with full-length recombinant PDC-E2 protein. Furthermore, using soluble PDC-E2 complexed with either PDC-E2-specific human monoclonal antibody or affinity-purified autoantibodies against PDC-E2, the generation of PDC-E2-specific CTLs, occurred at 100-fold and 10-fold less concentration, respectively, compared with soluble antigen alone. Collectively, these data demonstrate that autoantibody, helper, and CTL epitopes all contain a shared peptide sequence. The finding that autoantigen-immune complexes can not only cross-present but also that presentation of the autoantigen is of a higher relative efficiency, for the first time defines a unique role for autoantibodies in the pathogenesis of an autoimmune disease.
Collapse
Affiliation(s)
- Hiroto Kita
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ma H, Kapp JA. Peptide affinity for MHC influences the phenotype of CD8(+) T cells primed in vivo. Cell Immunol 2001; 214:89-96. [PMID: 11902833 DOI: 10.1006/cimm.2001.1884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Priming C57BL/6 mice with dominant antigenic peptides of ovalbumin (OVA) or bovine insulin (INS) in complete Freund's adjuvant generates antigen-specific, H-2K(b)-restricted, CD8(+) CTL. OVA-CTL produced type 1 cytokines IFN-gamma and TNF-alpha, whereas INS-CTL produced IL-5 and IL-10 with low levels of IL-4 and IFN-gamma. Here, we investigate whether differential binding affinities of the OVA and INS peptides to H-2K(b) influence the phenotype of the CD8(+) CTL. OVA(257-264) was found to have significantly higher binding affinity than the INS A-chain(12-21) toward K(b). Exchanging the MHC anchor residues between the OVA and INS peptides reversed the K(b) binding capacity of the altered peptides. The lower affinity, altered OVA peptides induced CTL that produced IL-5 and IL-10 in addition to IFN-gamma, whereas high binding affinity, altered INS peptides induced CTL that produced IFN-gamma but not IL-5 or IL-10. These data suggest that MHC binding affinity of peptides can regulate the phenotype of the resulting CD8(+) T cells.
Collapse
Affiliation(s)
- H Ma
- Department of Ophthalmology, Winship Cancer Institute, Atlanta, Georgia 30322, USA
| | | |
Collapse
|