1
|
Boyarchuk O, Romanyshyn Y, Savchak I, Kravets V, Shymanska I, Makukh H. Two case reports of B-cell lymphopenia associated with IGLL1 variants identified through newborn screening in Ukraine. Front Pediatr 2025; 13:1566867. [PMID: 40443574 PMCID: PMC12119295 DOI: 10.3389/fped.2025.1566867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Before the implementation of newborn screening (NBS), only a few cases of agammaglobulinemia associated with IGLL1 variants had been reported. The IGLL1 gene encodes the surrogate light chain components λ5 and VpreB, which form a crucial part of the pre-B cell receptor complex. A recently published study reported 17 cases of agammaglobulinemia caused by IGLL1 variants, the vast majority of which were identified through NBS. Here, we report two cases of B-cell lymphopenia along with IGLL1 variants identified through NBS in Ukraine. Both neonates had undetectable KREC and normal TREC levels at birth. Despite the presence of B-cell lymphopenia, only one patient exhibited a transient decline in IgG levels. IgA and IgM levels remained normal during the first year of follow-up, which had not been reported in previous IGLL1 cases. Both children presented with mild upper respiratory tract infections. Genetic analysis revealed that both patients carried the c.425C > T variant, with one patient also harboring the c.258del variant. These variants have been linked to B-cell lymphopenia and low KREC levels in prior studies. Two additional variants were identified on the second chromosome: c.368C > G, which is predicted to be tolerated, and c.377T > C, which is likely disruptive. This study highlights the potential underdiagnosis of B-cell lymphopenia caused by IGLL1 variants. Moreover, the comparison between clinically diagnosed cases and those identified through NBS underscores the importance of early diagnosis that facilitates close monitoring of affected patients from birth, timely initiation of immunoglobulin replacement therapy, and the prevention of complications and severe manifestations.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yaryna Romanyshyn
- Clinic of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Centre, Lviv, Ukraine
| | - Ihor Savchak
- Clinic of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Centre, Lviv, Ukraine
| | - Volodymyr Kravets
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Ivanna Shymanska
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
| | - Halyna Makukh
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| |
Collapse
|
2
|
Soomann M, Bily V, Elgizouli M, Kraemer D, Akgül G, von Bernuth H, Bloomfield M, Brodszki N, Candotti F, Förster-Waldl E, Freiberger T, Giżewska M, Klocperk A, Kölsch U, Nichols KE, Krüger R, Oak N, Pac M, Prader S, Schmiegelow K, Šedivá A, Sogkas G, Stittrich A, Stoltze UK, Theodoropoulou K, Wadt K, Wong M, Zeyda M, Pachlopnik Schmid J, Trück J. Variants in IGLL1 cause a broad phenotype from agammaglobulinemia to transient hypogammaglobulinemia. J Allergy Clin Immunol 2024; 154:1313-1324.e7. [PMID: 39147326 DOI: 10.1016/j.jaci.2024.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Agammaglobulinemia due to variants in IGLL1 has traditionally been considered an exceedingly rare form of severe B-cell deficiency, with only 8 documented cases in the literature. Surprisingly, the first agammaglobulinemic patient identified by newborn screening (NBS) through quantification of kappa-deleting recombination excision circles harbored variants in IGLL1. OBJECTIVE We comprehensively reviewed clinical and immunologic findings of patients with B-cell deficiency attributed to variants in IGLL1. METHODS NBS programs reporting the use of kappa-deleting recombination excision circle assays, the European Society for Immunodeficiencies Registry, and authors of published reports featuring patients with B-cell deficiency linked to IGLL1 variants were contacted. Only patients with (likely) pathogenic variants, reduced CD19+ counts, and no alternative diagnosis were included. RESULTS The study included 13 patients identified through NBS, 2 clinically diagnosed patients, and 2 asymptomatic siblings. All had severely reduced CD19+ B cells (< 0.1 × 109/L) at first evaluation, yet subsequent follow-up assessments indicated residual immunoglobulin production. Specific antibody responses to vaccine antigens varied, with a predominant reduction observed during infancy. Clinical outcomes were favorable with IgG substitution. Two patients successfully discontinued substitution therapy without developing susceptibility to infections and while maintaining immunoglobulin levels. The pooled incidence of homozygous or compound heterozygous pathogenic IGLL1 variants identified by NBS in Austria, Czechia, and Switzerland was 1.3:100,000, almost double of X-linked agammaglobulinemia. CONCLUSION B-cell deficiency resulting from IGLL1 variants appears to be more prevalent than initially believed. Despite markedly low B-cell counts, the clinical course in some patients may be milder than reported in the literature so far.
Collapse
Affiliation(s)
- Maarja Soomann
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Viktor Bily
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | | | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Gülfirde Akgül
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Horst von Bernuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, University Hospital Center, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | | | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elisabeth Förster-Waldl
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Neuropaediatrics, and Paediatric Intensive Care and Center for Congenital Immunodeficiencies and Jeffrey Modell Diagnostic & Research Center, Medical University of Vienna, Vienna, Austria
| | - Tomas Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | - Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases, and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, University Hospital Center, Berlin, Germany
| | - Ninad Oak
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Małgorzata Pac
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Seraina Prader
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kjeld Schmiegelow
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical University, and Hannover Medical School, Hannover, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | | | - Katerina Theodoropoulou
- Unit of Pediatric Immunology, Allergology and Rheumatology, Department of Woman, Mother, Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karin Wadt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Genetics, University Hospital Copenhagen, Copenhagen, Denmark
| | - Melanie Wong
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, Australia
| | - Maximillian Zeyda
- Department of Pediatrics and Adolescent Medicine, Austrian Newborn Screening, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jana Pachlopnik Schmid
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Trück
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Mutational Analysis of the VPREB1 Gene of Pre-BCR Complex in a Cohort of Sporadic Pediatric Patients With B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2022; 44:210-219. [PMID: 35398858 DOI: 10.1097/mph.0000000000002456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
During bone marrow B-cell development, the pre-B-cell receptor is formed by the association of the immunoglobulin heavy chain with a surrogate light chain, which is encoded by the VPREB1, and λ5 genes. It is known that pre-BCR signaling signifies a critical checkpoint at the pre-B-cell stage. Thus, failure pre-BCR signaling is proposed as a critical factor for the development of B-cell acute lymphoblastic leukemia (B-ALL). B‑ALL is the most common pediatric cancer and is one of the leading causes of death in children. Until now, several molecular analyses were performed for genomic alterations in B-ALL, but for genomic analysis of the VPREB1 gene and its rare variations, limited studies have been conducted. In this study, using polymerase chain reaction and direct sequencing of 88 pediatric patients with B-ALL, we investigated the genomic region of the VPREB1 gene to find sequence variations of this gene. Our study presented ten homozygous and heterozygous point mutations and heterozygous nucleotide deletions, in the VPREB1 gene in 36 boys and 32 girls' patients. Our Bioinformatics assay results presented that these variations may alter the RNA folding, protein structure, and therefore probable effect on the protein function. These results propose that nucleotide changes probably contribute to B-ALL pathogenesis.
Collapse
|
6
|
Nguyen K, Alsaati N, Le Coz C, Romberg N. Genetic obstacles to developing and tolerizing human B cells. WIREs Mech Dis 2022; 14:e1554. [DOI: 10.1002/wsbm.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kim Nguyen
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Nouf Alsaati
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Carole Le Coz
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Neil Romberg
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Immunology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
7
|
Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to Autosomal Forms of Disease. Clin Rev Allergy Immunol 2022; 63:22-35. [PMID: 34241796 PMCID: PMC8269404 DOI: 10.1007/s12016-021-08870-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Interruptions or alterations in the B cell development pathway can lead to primary B cell immunodeficiency with resultant absence or diminished immunoglobulin production. While the most common cause of congenital agammaglobulinemia is X-linked agammaglobulinemia (XLA), accounting for approximately 85% of cases, other genetic forms of agammaglobulinemia have been identified. Early recognition and diagnosis of these conditions are pivotal for improved outcomes and prevention of sequelae and complications. The diagnosis of XLA is often delayed, and can be missed if patient has a mild phenotype. The lack of correlation between phenotype and genotype in this condition makes management and predicting outcomes quite difficult. In contrast, while less common, autosomal recessive forms of agammaglobulinemia present at younger ages and with typically more severe clinical features resulting in an earlier diagnosis. Some diagnostic innovations, such as KREC level measurements and serum BCMA measurements, may aid in facilitating an earlier identification of agammaglobulinemia leading to prompt treatment. Earlier diagnosis may improve the overall health of patients with XLA.
Collapse
Affiliation(s)
| | - Vivian P. Hernandez-Trujillo
- Allergy and Immunology Care Center of South Florida, Miami, FL USA ,Division of Allergy and Immunology, Nicklaus Children’s Hospital, Miami, FL USA
| |
Collapse
|
8
|
Lougaris V, Plebani A. Predominantly Antibody Deficiencies. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:482-496. [DOI: 10.1016/b978-0-12-818731-9.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Humoral Immune Deficiencies of Childhood. Immunol Allergy Clin North Am 2021; 41:527-533. [PMID: 34602225 DOI: 10.1016/j.iac.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most common primary immune deficiencies are those of the humoral immune system, and most of these present in childhood. The severity of these disorders ranges from transient deficiencies to deficiencies that are associated with a complete loss of ability to make adequate or functional antibodies, and have infectious as well as noninfectious complications. This article reviews, in a case-based discussion, the most common of the humoral immune deficiencies; their presentations, diagnoses, treatments; and, when known, the genetic defects.
Collapse
|
10
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
12
|
Della Mina E, Guérin A, Tangye SG. Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells 2021; 39:389-402. [PMID: 33400834 DOI: 10.1002/stem.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to the diverse repertoire of all immune cells. As they differentiate, HSCs yield a series of cell states that undergo gradual commitment to become mature blood cells. Studies of hematopoiesis in murine models have provided critical insights about the lineage relationships among stem cells, progenitors, and mature cells, and these have guided investigations of the molecular basis for these distinct developmental stages. Primary immune deficiencies are caused by inborn errors of immunity that result in immune dysfunction and subsequent susceptibility to severe and recurrent infection(s). Over the last decade there has been a dramatic increase in the number and depth of the molecular, cellular, and clinical characterization of such genetically defined causes of immune dysfunction. Patients harboring inborn errors of immunity thus represent a unique resource to improve our understanding of the multilayered and complex mechanisms underlying lymphocyte development in humans. These breakthrough discoveries not only enable significant advances in the diagnosis of such rare and complex conditions but also provide substantial improvement in the development of personalized treatments. Here, we will discuss the clinical, cellular, and molecular phenotypes, and treatments of selected inborn errors of immunity that impede, either intrinsically or extrinsically, the development of B- or T-cells at different stages.
Collapse
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Antoine Guérin
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
13
|
Hartley GE, Edwards ESJ, Bosco JJ, Ojaimi S, Stirling RG, Cameron PU, Flanagan K, Plebanski M, Hogarth PM, O'Hehir RE, van Zelm MC. Influenza-specific IgG1 + memory B-cell numbers increase upon booster vaccination in healthy adults but not in patients with predominantly antibody deficiency. Clin Transl Immunology 2020; 9:e1199. [PMID: 33088507 PMCID: PMC7563650 DOI: 10.1002/cti2.1199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Annual influenza vaccination is recommended to all individuals over 6 months of age, including predominantly antibody deficiency (PAD) patients. Vaccination responses are typically evaluated by serology, and because PAD patients are by definition impaired in generating IgG and receive immunoglobulin replacement therapy (IgRT), it remains unclear whether they can mount an antigen-specific response. Objective To quantify and characterise the antigen-specific memory B (Bmem) cell compartment in healthy controls and PAD patients following an influenza booster vaccination. Methods Recombinant hemagglutinin (HA) from the A/Michigan/2015 H1N1 (AM15) strain with an AviTag was generated in a mammalian cell line, and following targeted biotinylation, was tetramerised with BUV395 or BUV737 streptavidin conjugates. Multicolour flow cytometry was applied on blood samples before and 28 days after booster influenza vaccination in 16 healthy controls and five PAD patients with circulating Bmem cells. Results Recombinant HA tetramers were specifically recognised by 0.5-1% of B cells in previously vaccinated healthy adults. HA-specific Bmem cell numbers were significantly increased following booster vaccination and predominantly expressed IgG1. Similarly, PAD patients carried HA-specific Bmem cells, predominantly expressing IgG1. However, these numbers were lower than in controls and did not increase following booster vaccination. Conclusion We have successfully identified AM15-specific Bmem cells in healthy controls and PAD patients. The presence of antigen-specific Bmem cells could offer an additional diagnostic tool to aid in the clinical diagnosis of PAD. Furthermore, alterations in the number or immunophenotype of HA-specific Bmem cells post-booster vaccination could assist in the evaluation of immune responses in individuals receiving IgRT.
Collapse
Affiliation(s)
- Gemma E Hartley
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Infectious Diseases Monash Health Clayton VIC Australia.,Immunology Laboratory Monash Pathology Clayton VIC Australia.,Allergy and Immunology Monash Health Clayton VIC Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Katie Flanagan
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,School of Medicine University of Tasmania Launceston TAS Australia.,School of Health and Biomedical Sciences RMIT Bundoora VIC Australia
| | | | - Philip Mark Hogarth
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,Immune Therapies Group Burnet Institute Melbourne VIC Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| |
Collapse
|
14
|
Calzoni E, Castagnoli R, Giliani SC. Human inborn errors of immunity caused by defects of receptor and proteins of cellular membrane. Minerva Pediatr 2020; 72:393-407. [PMID: 32960006 DOI: 10.23736/s0026-4946.20.06000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inborn errors of immunity are diseases of the immune system resulting from mutations that alter the expression of encoded proteins or molecules. Total updated number of these disorders is currently 406, with 430 different identified gene defects involved. Studies of the underlying mechanisms have contributed in better understanding the pathophysiology of the diseases, but also the complexity of the biology of innate and adaptive immune system and its interaction with microbes. In this review we present and briefly discuss Inborn Errors of Immunity caused by defects in genes encoding for receptors and protein of cellular membrane, including cytokine receptors, T cell antigen receptor (TCR) complex, cellular surface receptors or receptors signaling causing predominantly antibody deficiencies, co-stimulatory receptors and others. These alterations impact many biological processes of immune-system cells, including development, proliferation, activation and down-regulation of the immunological response, and result in a variety of diseases that present with distinct clinical features or with overlapping signs and symptoms.
Collapse
Affiliation(s)
- Enrica Calzoni
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy -
| | - Riccardo Castagnoli
- Pediatric Clinic, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia C Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Guevara-Hoyer K, Ochoa-Grullón J, Fernández-Arquero M, Cárdenas M, Pérez de Diego R, Sánchez-Ramón S. Serum Free Immunoglobulins Light Chains: A Common Feature of Common Variable Immunodeficiency? Front Immunol 2020; 11:2004. [PMID: 32849664 PMCID: PMC7431983 DOI: 10.3389/fimmu.2020.02004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Serum free light chain (sFLC) is a recently proposed biomarker for CVID diagnosis. Most CVID patients present low or undetectable sFLC up to 10-fold lower compared to other primary antibody deficiencies. Given that κ and λ light chains are normally secreted in excess with respect to immunoglobulins, this finding points to an intrinsic defect of B cell differentiation in CVID. sFLC levels were prospectively evaluated in a cohort of 100 primary immunodeficiency (PID) patients and in 49 patients with secondary immunodeficiency to haematological malignancy (SID). CVID patients had significantly lower κ and/or λ values (mean: κ: 1.39 ± 1.7 mg/L and λ: 1.97 ± 2.24 mg/L) compared to "other PIDs" (κ: 13.97 ± 5.88 mg/L and λ: 12.92 ± 7.4 mg/L, respectively, p < 0.001 both), and SID (κ 20.9 ± 22.8 mg/L and λ 12.8 ± 8.7 mg/L, respectively, p < 0.001 both). The sum of kappa and lambda (sum κ + λ) in CVID patients (7.25 ± 7.90 mg/L) was significantly lower respect to other PIDs (26.44 ± 13.25 mg/L, p < 0.0001), and to SID patients (28.25 ± 26.24 mg/L, p = 0.0002). ROC analysis of the sum κ + λ disclosed an area under the curve (AUC) of 0.894 for CVID diagnosis (SD 0.031; 95% CI: 0.83-0.95, p < 0.0001), with optimal cut-off of 16.7 mg/L, giving the highest combination of sensitivity (92%), specificity (75%) and NPV (98%). The Relative Risk (RR) for patients presenting a sum κ + λ below 16.7 mg/L was 20.35-fold higher (95%, CI: 5.630-75.93) for CVID than below this threshold. A similar behavior of the sFLC in our CVID cohort with respect to previously published studies was observed. We propose a cut-off of sum κ + λ 16.7 with diagnostic application in CVID patients, and discuss potential specific defects converging in low or undetectable sFLC.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Juliana Ochoa-Grullón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Mariacruz Cárdenas
- Clinical Analysis Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Rebeca Pérez de Diego
- Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain.,Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| |
Collapse
|
16
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The advent of enhanced genetic testing has allowed for the discovery of gene defects underlying two broad categories of antibody deficiency in children: agammaglobulinemia and common variable immunodeficiency (CVID). This review describes the underlying gene defects and the clinical manifestations. RECENT FINDINGS Because novel monogenetic defects have been discovered in both categories, a strict dichotomous classification of B cell disorders as either X-linked agammaglobulinemia or common variable immunodeficiency is no longer appropriate. Advances in genetic testing technology and the decreasing cost of such testing permit more precise diagnosis of B cell disorders, more helpful information for genetic counselors, and a better understanding of the complex process of B cell development and function. More disorders await discovery.
Collapse
Affiliation(s)
- Bailee Gilchrist
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - William K Dolen
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
McLean KC, Mandal M. It Takes Three Receptors to Raise a B Cell. Trends Immunol 2020; 41:629-642. [PMID: 32451219 DOI: 10.1016/j.it.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
As the unique source of diverse immunoglobulin repertoires, B lymphocytes are an indispensable part of humoral immunity. B cell progenitors progress through sequential and mutually exclusive states of proliferation and recombination, coordinated by cytokines and chemokines. Mutations affecting the crucial pre-B cell checkpoint result in immunodeficiency, autoimmunity, and leukemia. This checkpoint was previously modeled by the signaling of two opposing receptors, IL-7R and the pre-BCR. We provide an update to this model in which three receptors, IL-7R, pre-BCR, and CXCR4, work in concert to coordinate both the proper positioning of B cell progenitors in the bone marrow (BM) microenvironment and their progression through the pre-B checkpoint. Furthermore, signaling initiated by all three receptors directly instructs cell fate and developmental progression.
Collapse
Affiliation(s)
- Kaitlin C McLean
- Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, Department of Medicine, University of Chicago, IL 60637, USA
| | - Malay Mandal
- Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, Department of Medicine, University of Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
20
|
Movafagh A, Naji P, Sheikhpour M. Gene mutation of childhood B-acute lymphoblastic leukemia: A systematic review. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_48_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE, van Zelm MC. Predominantly Antibody-Deficient Patients With Non-infectious Complications Have Reduced Naive B, Treg, Th17, and Tfh17 Cells. Front Immunol 2019; 10:2593. [PMID: 31803177 PMCID: PMC6873234 DOI: 10.3389/fimmu.2019.02593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with predominantly antibody deficiency (PAD) suffer from severe and recurrent infections that require lifelong immunoglobulin replacement and prophylactic antibiotic treatment. Disease incidence is estimated to be 1:25,000 worldwide, and up to 68% of patients develop non-infectious complications (NIC) including autoimmunity, which are difficult to treat, causing high morbidity, and early mortality. Currently, the etiology of NIC is unknown, and there are no diagnostic and prognostic markers to identify patients at risk. Objectives: To identify immune cell markers that associate with NIC in PAD patients. Methods: We developed a standardized 11-color flow cytometry panel that was utilized for in-depth analysis of B and T cells in 62 adult PAD patients and 59 age-matched controls. Results: Nine males had mutations in Bruton's tyrosine kinase (BTK) and were defined as having X-linked agammaglobulinemia. The remaining 53 patients were not genetically defined and were clinically diagnosed with agammaglobulinemia (n = 1), common variable immunodeficiency (CVID) (n = 32), hypogammaglobulinemia (n = 13), IgG subclass deficiency (n = 1), and specific polysaccharide antibody deficiency (n = 6). Of the 53, 30 (57%) had one or more NICs, 24 patients had reduced B-cell numbers, and 17 had reduced T-cell numbers. Both PAD–NIC and PAD+NIC groups had significantly reduced Ig class-switched memory B cells and naive CD4 and CD8 T-cell numbers. Naive and IgM memory B cells, Treg, Th17, and Tfh17 cells were specifically reduced in the PAD+NIC group. CD21lo B cells and Tfh cells were increased in frequencies, but not in absolute numbers in PAD+NIC. Conclusion: The previously reported increased frequencies of CD21lo B cells and Tfh cells are the indirect result of reduced naive B-cell and T-cell numbers. Hence, correct interpretation of immunophenotyping of immunodeficiencies is critically dependent on absolute cell counts. Finally, the defects in naive B- and T-cell numbers suggest a mild combined immunodeficiency in PAD patients with NIC. Together with the reductions in Th17, Treg, and Tfh17 numbers, these key differences could be utilized as biomarkers to support definitive diagnosis and to predict for disease progression.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Abstract
Laboratory assays of immune cell function are essential for understanding the type and function of immune defects. These assessments should be performed in conjunction with a detailed history and physical examination, which should guide the evaluation of patients with a suspected immune deficiency. Laboratory assays of immune cell function are critical for assessing and demonstrating the functional impact of genetic mutations. Advances in diagnostic techniques continue to expand the ability of clinicians and researchers to understand the complex immune pathophysiology that underlies these disorders.
Collapse
|
23
|
Abstract
The most common primary immune deficiencies are those of the humoral immune system, and most of these present in childhood. The severity of these disorders ranges from transient deficiencies to deficiencies that are associated with a complete loss of ability to make adequate or functional antibodies, and have infectious as well as noninfectious complications. This article reviews, in a case-based discussion, the most common of the humoral immune deficiencies; their presentations, diagnoses, treatments; and, when known, the genetic defects.
Collapse
|
24
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
25
|
Winkler TH, Mårtensson IL. The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front Immunol 2018; 9:2423. [PMID: 30498490 PMCID: PMC6249383 DOI: 10.3389/fimmu.2018.02423] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
Around four decades ago, it had been observed that there were cell lines as well as cells in the fetal liver that expressed antibody μ heavy (μH) chains in the apparent absence of bona fide light chains. It was thus possible that these cells expressed another molecule(s), that assembled with μH chains. The ensuing studies led to the discovery of the pre-B cell receptor (pre-BCR), which is assembled from Ig μH and surrogate light (SL) chains, together with the signaling molecules Igα and β. It is expressed on a fraction of pro-B (pre-BI) cells and most large pre-B(II) cells, and has been implicated in IgH chain allelic exclusion and down-regulation of the recombination machinery, assessment of the expressed μH chains and shaping the IgH repertoire, transition from the pro-B to pre-B stage, pre-B cell expansion, and cessation.
Collapse
Affiliation(s)
- Thomas H Winkler
- Chair of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Kashevarova AA, Nazarenko LP, Skryabin NA, Nikitina TV, Vasilyev SA, Tolmacheva EN, Lopatkina ME, Salyukova OA, Chechetkina NN, Vorotelyak EA, Kalabusheva EP, Fishman VS, Kzhyshkowska J, Graziano C, Magini P, Romeo G, Lebedev IN. A mosaic intragenic microduplication of LAMA1 and a constitutional 18p11.32 microduplication in a patient with keratosis pilaris and intellectual disability. Am J Med Genet A 2018; 176:2395-2403. [PMID: 30244536 DOI: 10.1002/ajmg.a.40478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/23/2017] [Accepted: 06/28/2018] [Indexed: 11/06/2022]
Abstract
The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.
Collapse
Affiliation(s)
- Anna A Kashevarova
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Laboratory of Human Ontogenetics, National Research Tomsk State University, Tomsk, Russia
| | - Lyudmila P Nazarenko
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Chair of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - Nikolay A Skryabin
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Laboratory of Human Ontogenetics, National Research Tomsk State University, Tomsk, Russia
| | - Tatiana V Nikitina
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Stanislav A Vasilyev
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Laboratory of Human Ontogenetics, National Research Tomsk State University, Tomsk, Russia
| | - Ekaterina N Tolmacheva
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Mariya E Lopatkina
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Olga A Salyukova
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Chair of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - Nataliya N Chechetkina
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Ekaterina A Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina P Kalabusheva
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Claudio Graziano
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Igor N Lebedev
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,Laboratory of Human Ontogenetics, National Research Tomsk State University, Tomsk, Russia.,Chair of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
27
|
Slade CA, Bosco JJ, Binh Giang T, Kruse E, Stirling RG, Cameron PU, Hore-Lacy F, Sutherland MF, Barnes SL, Holdsworth S, Ojaimi S, Unglik GA, De Luca J, Patel M, McComish J, Spriggs K, Tran Y, Auyeung P, Nicholls K, O'Hehir RE, Hodgkin PD, Douglass JA, Bryant VL, van Zelm MC. Delayed Diagnosis and Complications of Predominantly Antibody Deficiencies in a Cohort of Australian Adults. Front Immunol 2018; 9:694. [PMID: 29867917 PMCID: PMC5960671 DOI: 10.3389/fimmu.2018.00694] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Predominantly antibody deficiencies (PADs) are the most common type of primary immunodeficiency in adults. PADs frequently pass undetected leading to delayed diagnosis, delayed treatment, and the potential for end-organ damage including bronchiectasis. In addition, PADs are frequently accompanied by comorbid autoimmune disease, and an increased risk of malignancy. Objectives To characterize the diagnostic and clinical features of adult PAD patients in Victoria, Australia. Methods We identified adult patients receiving, or having previously received immunoglobulin replacement therapy for a PAD at four hospitals in metropolitan Melbourne, and retrospectively characterized their clinical and diagnostic features. Results 179 patients from The Royal Melbourne, Alfred and Austin Hospitals, and Monash Medical Centre were included in the study with a median age of 49.7 years (range: 16–87 years), of whom 98 (54.7%) were female. The majority of patients (116; 64.8%) met diagnostic criteria for common variable immunodeficiency (CVID), and 21 (11.7%) were diagnosed with X-linked agammaglobulinemia (XLA). Unclassified hypogammaglobulinemia (HGG) was described in 22 patients (12.3%), IgG subclass deficiency (IGSCD) in 12 (6.7%), and specific antibody deficiency (SpAD) in 4 individuals (2.2%). The remaining four patients had a diagnosis of Good syndrome (thymoma with immunodeficiency). There was no significant difference between the age at diagnosis of the disorders, with the exception of XLA, with a median age at diagnosis of less than 1 year. The median age of reported symptom onset was 20 years for those with a diagnosis of CVID, with a median age at diagnosis of 35 years. CVID patients experienced significantly more non-infectious complications, such as autoimmune cytopenias and lymphoproliferative disease, than the other antibody deficiency disorders. The presence of non-infectious complications was associated with significantly reduced survival in the cohort. Conclusion Our data are largely consistent with the experience of other centers internationally, with clear areas for improvement, including reducing diagnostic delay for patients with PADs. It is likely that these challenges will be in part overcome by continued advances in implementation of genomic sequencing for diagnosis of PADs, and with that opportunities for targeted treatment of non-infectious complications.
Collapse
Affiliation(s)
- Charlotte A Slade
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Tran Binh Giang
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia
| | - Elizabeth Kruse
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Michael F Sutherland
- Department of Respiratory and Sleep Medicine, The Austin Hospital, Melbourne, VIC, Australia
| | - Sara L Barnes
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Stephen Holdsworth
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Gary A Unglik
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph De Luca
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Mittal Patel
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy McComish
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kymble Spriggs
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Yang Tran
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Priscilla Auyeung
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Katherine Nicholls
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jo A Douglass
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Stubbs A, Bangs C, Shillitoe B, Edgar JD, Burns SO, Thomas M, Alachkar H, Buckland M, McDermott E, Arumugakani G, Jolles MS, Herriot R, Arkwright PD. Bronchiectasis and deteriorating lung function in agammaglobulinaemia despite immunoglobulin replacement therapy. Clin Exp Immunol 2018; 191:212-219. [PMID: 28990652 PMCID: PMC5758375 DOI: 10.1111/cei.13068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin replacement therapy enhances survival and reduces infection risk in patients with agammaglobulinaemia. We hypothesized that despite regular immunoglobulin therapy, some patients will experience ongoing respiratory infections and develop progressive bronchiectasis with deteriorating lung function. One hundred and thirty-nine (70%) of 199 patients aged 1-80 years from nine cities in the United Kingdom with agammaglobulinaemia currently listed on the UK Primary Immune Deficiency (UKPID) registry were recruited into this retrospective case study and their clinical and laboratory features analysed; 94% were male, 78% of whom had Bruton tyrosine kinase (BTK) gene mutations. All patients were on immunoglobulin replacement therapy and 52% had commenced therapy by the time they were 2 years old. Sixty per cent were also taking prophylactic oral antibiotics; 56% of patients had radiological evidence of bronchiectasis, which developed between the ages of 7 and 45 years. Multivariate analysis showed that three factors were associated significantly with bronchiectasis: reaching 18 years old [relative risk (RR) = 14·2, 95% confidence interval (CI) = 2·7-74·6], history of pneumonia (RR = 3·9, 95% CI = 1·1-13·8) and intravenous immunoglobulin (IVIG) rather than subcutaneous immunoglobulin (SCIG) = (RR = 3·5, 95% CI = 1·2-10·1), while starting immunoglobulin replacement after reaching 2 years of age, gender and recent serum IgG concentration were not associated significantly. Independent of age, patients with bronchiectasis had significantly poorer lung function [predicted forced expiratory volume in 1 s 74% (50-91)] than those without this complication [92% (84-101)] (P < 0·001). We conclude that despite immunoglobulin replacement therapy, many patients with agammaglobulinaemia can develop chronic lung disease and progressive impairment of lung function.
Collapse
Affiliation(s)
- A. Stubbs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| | - C. Bangs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
- UKPIN UKPID Registry TeamUKPINLondonUK
| | - B. Shillitoe
- Department of ImmunologyGreat Northern Children's HospitalNewcastle upon TyneUK
| | - J. D. Edgar
- UKPIN UKPID Registry TeamUKPINLondonUK
- Regional Immunology ServiceThe Royal HospitalsBelfastUK
| | - S. O. Burns
- Department of ImmunologyRoyal Free Hospital, Institute of Immunology and Transplantation, University CollegeLondonUK
| | - M. Thomas
- ImmunologyNHS Greater Glasgow & ClydeGlasgowUK
| | - H. Alachkar
- ImmunologySalford Royal Foundation TrustManchesterUK
| | - M. Buckland
- UKPIN UKPID Registry TeamUKPINLondonUK
- ImmunologySt Bartholomew's HospitalLondonUK
| | | | | | - M. S. Jolles
- Department of ImmunologyUniversity Hospital of WalesCardiffUK
| | - R. Herriot
- ImmunologyAberdeen Royal InfirmaryAberdeenUK
| | - P. D. Arkwright
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| |
Collapse
|
29
|
Abdelrasoul H, Werner M, Setz CS, Okkenhaug K, Jumaa H. PI3K induces B-cell development and regulates B cell identity. Sci Rep 2018; 8:1327. [PMID: 29358580 PMCID: PMC5778048 DOI: 10.1038/s41598-018-19460-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) signaling is important for the survival of numerous cell types and class IA of PI3K is specifically required for the development of B cells but not for T cell development. Here, we show that class IA PI3K-mediated signals induce the expression of the transcription factor Pax5, which plays a central role in B cell commitment and differentiation by activating the expression of central B cell-specific signaling proteins such as SLP-65 and CD19. Defective class IA PI3K function leads to reduction in Pax5 expression and prevents B cell development beyond the stage expressing the precursor B cell receptor (pre-BCR). Investigating the mechanism of PI3K-induced Pax5 expression revealed that it involves a network of transcription factors including FoxO1 and Irf4 that directly binds to the Pax5 gene. Together, our results suggest that PI3K signaling links survival and differentiation of developing B cells with B cell identity and that decreased PI3K activity in pre-B cells results in reduced Pax5 expression and lineage plasticity.
Collapse
Affiliation(s)
- Hend Abdelrasoul
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany.,Molecular Biology department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), 12622, Giza, Egypt
| | - Markus Werner
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Corinna S Setz
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Hassan Jumaa
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany.
| |
Collapse
|
30
|
Gemayel KT, Litman GW, Sriaroon P. Autosomal recessive agammaglobulinemia associated with an IGLL1 gene missense mutation. Ann Allergy Asthma Immunol 2016; 117:439-441. [PMID: 27576013 DOI: 10.1016/j.anai.2016.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Kristina T Gemayel
- Nova Southeastern University, College of Osteopathic Medicine, Fort Lauderdale, Florida
| | - Gary W Litman
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of South Florida Morsani College of Medicine, Saint Petersburg, Florida
| | - Panida Sriaroon
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of South Florida Morsani College of Medicine, Saint Petersburg, Florida.
| |
Collapse
|
31
|
Ji Y, Kim H, Yang L, Sha H, Roman CA, Long Q, Qi L. The Sel1L-Hrd1 Endoplasmic Reticulum-Associated Degradation Complex Manages a Key Checkpoint in B Cell Development. Cell Rep 2016; 16:2630-2640. [PMID: 27568564 DOI: 10.1016/j.celrep.2016.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a principal mechanism that targets ER-associated proteins for cytosolic proteasomal degradation. Here, our data demonstrate a critical role for the Sel1L-Hrd1 complex, the most conserved branch of ERAD, in early B cell development. Loss of Sel1L-Hrd1 ERAD in B cell precursors leads to a severe developmental block at the transition from large to small pre-B cells. Mechanistically, we show that Sel1L-Hrd1 ERAD selectively recognizes and targets the pre-B cell receptor (pre-BCR) for proteasomal degradation in a BiP-dependent manner. The pre-BCR complex accumulates both intracellularly and at the cell surface in Sel1L-deficient pre-B cells, leading to persistent pre-BCR signaling and pre-B cell proliferation. This study thus implicates ERAD mediated by Sel1L-Hrd1 as a key regulator of B cell development and reveals the molecular mechanism underpinning the transient nature of pre-BCR signaling.
Collapse
Affiliation(s)
- Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hana Kim
- Graduate Field of Immunology and Infectious Disease, Cornell University, Ithaca, NY 14853, USA
| | - Liu Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Christopher A Roman
- Department of Cell Biology, College of Medicine and Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York, Downstate Medical Center at Brooklyn, New York, NY 11203, USA
| | - Qiaoming Long
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou 215006, Jiangsu, China
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Immunology and Infectious Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Budzko L, Marcinkowska-Swojak M, Jackowiak P, Kozlowski P, Figlerowicz M. Copy number variation of genes involved in the hepatitis C virus-human interactome. Sci Rep 2016; 6:31340. [PMID: 27510840 PMCID: PMC4980658 DOI: 10.1038/srep31340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
33
|
Wu Z, Liang R, Ohnesorg T, Cho V, Lam W, Abhayaratna WP, Gatenby PA, Perera C, Zhang Y, Whittle B, Sinclair A, Goodnow CC, Field M, Andrews TD, Cook MC. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion. PLoS Genet 2016; 12:e1006067. [PMID: 27227454 PMCID: PMC4882059 DOI: 10.1371/journal.pgen.1006067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1), which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.
Collapse
Affiliation(s)
- Zuopeng Wu
- Translational Research Unit, Canberra Hospital, Woden, Australian Capital Territory, Australia
- Clinical Trials Unit, Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Rong Liang
- Australian Phenomics Facility, Australian National University, Australian Capital Territory, Australia
| | - Thomas Ohnesorg
- Murdoch Children’s Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicky Cho
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Wesley Lam
- Translational Research Unit, Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Walter P. Abhayaratna
- Clinical Trials Unit, Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Paul A. Gatenby
- Department of Immunology, Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Chandima Perera
- Department of Rheumatology, Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Yafei Zhang
- Australian Phenomics Facility, Australian National University, Australian Capital Territory, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, Australian National University, Australian Capital Territory, Australia
| | - Andrew Sinclair
- Murdoch Children’s Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Christopher C. Goodnow
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Matthew Field
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - T. Daniel Andrews
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Matthew C. Cook
- Translational Research Unit, Canberra Hospital, Woden, Australian Capital Territory, Australia
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
- Department of Immunology, Canberra Hospital, Woden, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
34
|
Rodríguez-Cortez VC, Del Pino-Molina L, Rodríguez-Ubreva J, López-Granados E, Ballestar E. Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies. J Clin Immunol 2016; 36 Suppl 1:48-56. [PMID: 26984849 DOI: 10.1007/s10875-016-0267-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/04/2023]
Abstract
Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.
Collapse
Affiliation(s)
- Virginia C Rodríguez-Cortez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lucia Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
35
|
Abolhassani H, Vitali M, Lougaris V, Giliani S, Parvaneh N, Parvaneh L, Mirminachi B, Cheraghi T, Khazaei H, Mahdaviani SA, Kiaei F, Tavakolinia N, Mohammadi J, Negahdari B, Rezaei N, Hammarstrom L, Plebani A, Aghamohammadi A. Cohort of Iranian Patients with Congenital Agammaglobulinemia: Mutation Analysis and Novel Gene Defects. Expert Rev Clin Immunol 2016; 12:479-86. [DOI: 10.1586/1744666x.2016.1139451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Chaubey K, Rao MK, Alam SI, Waghmare C, Bhattacharya BK. Increased expression of immune modulator proteins and decreased expression of apolipoprotein A-1 and haptoglobin in blood plasma of sarin exposed rats. Chem Biol Interact 2016; 246:36-44. [DOI: 10.1016/j.cbi.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/28/2022]
|
37
|
Ren W, Grimsholm O, Bernardi AI, Höök N, Stern A, Cavallini N, Mårtensson IL. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells. Eur J Immunol 2015; 45:1228-37. [PMID: 25546233 DOI: 10.1002/eji.201444917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.
Collapse
Affiliation(s)
- Weicheng Ren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Buchner M, Swaminathan S, Chen Z, Müschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev 2015; 263:192-209. [PMID: 25510278 DOI: 10.1111/imr.12235] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pre-B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B-cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin-7 (IL-7) for murine developing B cells. With expression of a functional pre-B-cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre-BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B-cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre-B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non-B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre-BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre-BCR signaling is engaged by genetic lesions, such as BCR-ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine- and pre-BCR signaling and how normal checkpoint control mechanisms are circumvented in pre-B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre-BCR signaling pathways.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
39
|
Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. ACTA ACUST UNITED AC 2014; 211:2137-49. [PMID: 25311508 PMCID: PMC4203950 DOI: 10.1084/jem.20140520] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Casanova and colleagues discuss the importance of single-patient genetic studies in the discovery of novel primary immunodeficiencies and offer insight into the standards and criteria that should accompany these studies. Can genetic and clinical findings made in a single patient be considered sufficient to establish a causal relationship between genotype and phenotype? We report that up to 49 of the 232 monogenic etiologies (21%) of human primary immunodeficiencies (PIDs) were initially reported in single patients. The ability to incriminate single-gene inborn errors in immunodeficient patients results from the relative ease in validating the disease-causing role of the genotype by in-depth mechanistic studies demonstrating the structural and functional consequences of the mutations using blood samples. The candidate genotype can be causally connected to a clinical phenotype using cellular (leukocytes) or molecular (plasma) substrates. The recent advent of next generation sequencing (NGS), with whole exome and whole genome sequencing, induced pluripotent stem cell (iPSC) technology, and gene editing technologies—including in particular the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology—offer new and exciting possibilities for the genetic exploration of single patients not only in hematology and immunology but also in other fields. We propose three criteria for deciding if the clinical and experimental data suffice to establish a causal relationship based on only one case. The patient’s candidate genotype must not occur in individuals without the clinical phenotype. Experimental studies must indicate that the genetic variant impairs, destroys, or alters the expression or function of the gene product (or two genetic variants for compound heterozygosity). The causal relationship between the candidate genotype and the clinical phenotype must be confirmed via a relevant cellular phenotype, or by default via a relevant animal phenotype. When supported by satisfaction of rigorous criteria, the report of single patient–based discovery of Mendelian disorders should be encouraged, as it can provide the first step in the understanding of a group of human diseases, thereby revealing crucial pathways underlying physiological and pathological processes.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Howard Hughes Medical Institute, New York, NY 10065 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France Paris Descartes University, Imagine Institute, 75015 Paris, France Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Mary Ellen Conley
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Howard Hughes Medical Institute, New York, NY 10065 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics and Pathology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Lougaris V, Vitali M, Baronio M, Moratto D, Tampella G, Biasini A, Badolato R, Plebani A. Autosomal Recessive Agammaglobulinemia: The Third Case of Igβ Deficiency Due to a Novel Non-sense Mutation. J Clin Immunol 2014; 34:425-7. [DOI: 10.1007/s10875-014-0033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
|
41
|
Rattanachartnarong N, Tongkobpetch S, Chatchatee P, Daengsuwan T, Ittiwut C, Suphapeetiporn K, Shotelersuk V. In vitro correction of a novel splicing alteration in the BTK gene by using antisense morpholino oligonucleotides. Arch Immunol Ther Exp (Warsz) 2014; 62:431-6. [PMID: 24658450 DOI: 10.1007/s00005-014-0283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
A novel sequence variant, c.240+109C>A, in the Bruton's tyrosine kinase (BTK) gene was identified in a patient with X-linked agammaglobulinemia. This alteration resulted in an incorporation of 106 nucleotides of BTK intron 3 into its mRNA. Administration of the 25-mer antisense morpholino oligonucleotide analog in the patient's cultured peripheral blood mononuclear cells was able to restore correctly spliced BTK mRNA, a potential treatment for X-linked agammaglobulinemia.
Collapse
Affiliation(s)
- Natthakorn Rattanachartnarong
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
42
|
Zouali M. Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Mol Immunol 2014; 62:315-20. [PMID: 24602812 DOI: 10.1016/j.molimm.2014.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/01/2023]
Abstract
At the pre-B cell stage of lymphocyte development, immunoglobulin light-chains are not yet produced, and heavy-chains are covalently linked to surrogate light-chains composed of VpreB and λ5 to form the pre-B cell receptor (pre-BCR) in a non-covalent association with signal-transducing modules. Even tough the pre-BCR does not have the potential to bind conventional antigens, accumulating evidence indicates that pre-BCR-mediated checkpoints are important both for negative and positive selection of self-reactivity, and that defects in these regulatory nodes may be associated with autoimmune disease. Thus, the transcription factor BACH2, which represents a susceptibility locus for rheumatoid arthritis, has recently emerged as a crucial mediator of negative selection at a pre-BCR checkpoint. The lysosome-associated protein LAPTM5, which is highly expressed in an animal model of Sjögren's syndrome, plays a role in down-modulation of the pre-BCR. Studies of copy number variation in rheumatoid arthritis suggest that a reduced dosage of the VPREB1 gene is involved in disease pathogenesis. Notably, animal models of autoimmune disease exhibit defects in pre-B to naïve B cell checkpoints. Administration of a pre-BCR ligand, which also plays a role in anergy both in human and murine B lymphocytes, ameliorates disease in experimental models of autoimmunity. Further investigation is required to gain a better insight into the molecular mechanisms of pre-BCR-mediated checkpoints and to determine their relevance to autoimmune diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm, UMR 1132, F-75475 Paris, France; Université Paris Diderot, Sorbone Paris Cité, F-75475 Paris, France.
| |
Collapse
|
43
|
Berglöf A, Turunen JJ, Gissberg O, Bestas B, Blomberg KEM, Smith CIE. Agammaglobulinemia: causative mutations and their implications for novel therapies. Expert Rev Clin Immunol 2014; 9:1205-21. [DOI: 10.1586/1744666x.2013.850030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Abstract
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood. The expression of the various classes of the HC correlates with the distinct stages of B-cell development, types of B-cell subsets, and their effector functions. In this chapter, we summarize and discuss the accumulated knowledge on the role of the μ, δ, and γ HC isotypes of the conventional and precursor BCR in B-cell differentiation, selection, and engagement with (auto)antigens.
Collapse
Affiliation(s)
- Elena Surova
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hassan Jumaa
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany.
| |
Collapse
|
45
|
Mangum DS, Downie J, Mason CC, Jahromi MS, Joshi D, Rodic V, Müschen M, Meeker N, Trede N, Frazer JK, Zhou Y, Cheng C, Jeha S, Pui CH, Willman CL, Harvey RC, Hunger SP, Yang JJ, Barnette P, Mullighan CG, Miles RR, Schiffman JD. VPREB1 deletions occur independent of lambda light chain rearrangement in childhood acute lymphoblastic leukemia. Leukemia 2014; 28:216-20. [PMID: 23881307 PMCID: PMC4043450 DOI: 10.1038/leu.2013.223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- D S Mangum
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - J Downie
- Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - C C Mason
- Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - M S Jahromi
- University of Miami School of Medicine, Miami, FL, USA
| | - D Joshi
- University of Minnesota School of Pharmacy, Twin Cities, MN, USA
| | - V Rodic
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - M Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - N Meeker
- Mountain States Tumor Institute, St Luke's Regional Medical Center, Boise, ID, USA
| | - N Trede
- 1] Department of Pediatrics, University of Utah, Salt Lake City, UT, USA [2] Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - J K Frazer
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Y Zhou
- Department of Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - C Cheng
- Department of Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Jeha
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - C-H Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - C L Willman
- Department of Pathology, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - R C Harvey
- Department of Pathology, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - S P Hunger
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - J J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - P Barnette
- 1] Department of Pediatrics, University of Utah, Salt Lake City, UT, USA [2] Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - C G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - R R Miles
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - J D Schiffman
- 1] Department of Pediatrics, University of Utah, Salt Lake City, UT, USA [2] Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
46
|
Lim LM, Chang JM, Wang IF, Chang WC, Hwang DY, Chen HC. Atypical X-linked agammaglobulinaemia caused by a novel BTK mutation in a selective immunoglobulin M deficiency patient. BMC Pediatr 2013; 13:150. [PMID: 24074005 PMCID: PMC3849551 DOI: 10.1186/1471-2431-13-150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/24/2013] [Indexed: 01/13/2023] Open
Abstract
Background X-linked agammaglobulinaemia (XLA) is the most common inherited humoural immunodeficiency disorder. Mutations in the gene coding for Bruton’s tyrosine kinase (BTK) have been identified as the cause of XLA. Most affected patients exhibit a marked reduction of serum immunoglobulins, mature B cells, and an increased susceptibility to recurrent bacterial infections. However, the diagnosis of XLA can be a challenge in certain patients who have near-normal levels of serum immunoglobulin. Furthermore, reports on XLA with renal involvement are scant. Case presentation We report an atypical XLA patient who presented with selective immunoglobulin M (IgM) immunodeficiency and nephropathy. He was diagnosed with selective IgM immunodeficiency, based on his normal serum immunoglobulin G (IgG) and immunoglobulin A (IgA) levels but undetectable serum IgM level. Intravenous immunoglobulin was initiated due to increased infections and persistent proteinuria but no improvement in proteinuria was found. A lupus-like nephritis was detected in his kidney biopsy and the proteinuria subsided after receiving a mycophenolate mofetil regimen. Although he had a history of recurrent bacterial infections since childhood, XLA was not diagnosed until B-lymphocyte surface antigen studies and a genetic analysis were conducted. Conclusions We suggest that B-lymphocyte surface antigen studies and a BTK mutation analysis should be performed in familial patients with selective IgM deficiency to rule out atypical XLA.
Collapse
Affiliation(s)
- Lee-Moay Lim
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Tze-You First Road, Kaohsiung City 807, Taiwan.
| | | | | | | | | | | |
Collapse
|
47
|
Sen K, Ghosh TC. Pseudogenes and their composers: delving in the 'debris' of human genome. Brief Funct Genomics 2013; 12:536-47. [PMID: 23900003 DOI: 10.1093/bfgp/elt026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudogenes, the nonfunctional homologs of functional genes and thus exemplified as 'genomic fossils' provide intriguing snapshots of the evolutionary history of human genome. These defunct copies generally arise by retrotransposition or duplication followed by various genetic disablements. In this study, focusing on human pseudogenes and their functional homologues we describe their characteristic features and relevance to protein sequence evolution. We recapitulate that pseudogenes harbor disease-causing degenerative sequence variations in conjunction with the immense disease gene association of their progenitors. Furthermore, we also discuss the issue of functional resurrection and the potentiality observed in some pseudogenes to regulate their functional counterparts.
Collapse
Affiliation(s)
- Kamalika Sen
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India. Tel.: +91 33 2355 6626; Fax: +91 33 2355 3886;
| | | |
Collapse
|
48
|
Casanova JL, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genomics Hum Genet 2013; 14:215-43. [PMID: 23724903 PMCID: PMC4980761 DOI: 10.1146/annurev-genom-091212-153448] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
| | | |
Collapse
|
49
|
A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 2013; 122:112-23. [PMID: 23553769 DOI: 10.1182/blood-2012-08-439083] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders identified by pathological erythroid precursors with perinuclear mitochondrial iron deposition in bone marrow. An international collaborative group of physicians and laboratory scientists collated clinical information on cases of CSA lacking known causative mutations, identifying a clinical subgroup of CSA associated with B immunodeficiency, periodic fevers, and development delay. Twelve cases from 10 families were identified. Median age at presentation was 2 months. Anemia at diagnosis was sideroblastic, typically severe (median hemoglobin, 7.1 g/dL) and markedly microcytic (median mean corpuscular volume, 62.0 fL). Clinical course involved recurrent febrile illness and gastrointestinal disturbance, lacking an infective cause. Investigation revealed B-cell lymphopenia (CD19⁺ range, 0.016-0.22 × 10⁹/L) and panhypogammaglobulinemia in most cases. Children displayed developmental delay alongside variable neurodegeneration, seizures, cerebellar abnormalities, sensorineural deafness, and other multisystem features. Most required regular blood transfusion, iron chelation, and intravenous immunoglobulin replacement. Median survival was 48 months, with 7 deaths caused by cardiac or multiorgan failure. One child underwent bone marrow transplantation aged 9 months, with apparent cure of the hematologic and immunologic manifestations. We describe and define a novel CSA and B-cell immunodeficiency syndrome with additional features resembling a mitochondrial cytopathy. The molecular etiology is under investigation.
Collapse
|
50
|
Piątosa B, Birbach M, Siewiera K, Ussowicz M, Kałwak K, Drabko K, Rękawek A, Tkaczyk K, Kurowski PN. Significant changes in the composition of the precursor B-cell compartment in children less than 2 years old. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:179-86. [DOI: 10.1002/cyto.b.21085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
|