1
|
Desta IT, Kotelnikov S, Jones G, Ghani U, Abyzov M, Kholodov Y, Standley DM, Beglov D, Vajda S, Kozakov D. The ClusPro AbEMap web server for the prediction of antibody epitopes. Nat Protoc 2023; 18:1814-1840. [PMID: 37188806 PMCID: PMC10898366 DOI: 10.1038/s41596-023-00826-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Antibodies play an important role in the immune system by binding to molecules called antigens at their respective epitopes. These interfaces or epitopes are structural entities determined by the interactions between an antibody and an antigen, making them ideal systems to analyze by using docking programs. Since the advent of high-throughput antibody sequencing, the ability to perform epitope mapping using only the sequence of the antibody has become a high priority. ClusPro, a leading protein-protein docking server, together with its template-based modeling version, ClusPro-TBM, have been re-purposed to map epitopes for specific antibody-antigen interactions by using the Antibody Epitope Mapping server (AbEMap). ClusPro-AbEMap offers three different modes for users depending on the information available on the antibody as follows: (i) X-ray structure, (ii) computational/predicted model of the structure or (iii) only the amino acid sequence. The AbEMap server presents a likelihood score for each antigen residue of being part of the epitope. We provide detailed information on the server's capabilities for the three options and discuss how to obtain the best results. In light of the recent introduction of AlphaFold2 (AF2), we also show how one of the modes allows users to use their AF2-generated antibody models as input. The protocol describes the relative advantages of the server compared to other epitope-mapping tools, its limitations and potential areas of improvement. The server may take 45-90 min depending on the size of the proteins.
Collapse
Affiliation(s)
- Israel T Desta
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | | | - Daron M Standley
- Department of Genome Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Desta IT, Kotelnikov S, Jones G, Ghani U, Abyzov M, Kholodov Y, Standley DM, Sabitova M, Beglov D, Vajda S, Kozakov D. Mapping of antibody epitopes based on docking and homology modeling. Proteins 2023; 91:171-182. [PMID: 36088633 PMCID: PMC9822860 DOI: 10.1002/prot.26420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
Collapse
Affiliation(s)
- Israel T. Desta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | - Daron M. Standley
- Department of Genome Informatics, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Maria Sabitova
- Department of Mathematics, CUNY Queens College, Flushing, NY 11367, USA
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Aguilar MF, Garay AS, Attallah C, Rodrigues DE, Oggero M. Changes in antibody binding and functionality after humanizing a murine scFv anti-IFN-α2: From in silico studies to experimental analysis. Mol Immunol 2022; 151:193-203. [PMID: 36166900 DOI: 10.1016/j.molimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.
Collapse
Affiliation(s)
- María Fernanda Aguilar
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - A Sergio Garay
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Carolina Attallah
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - Daniel E Rodrigues
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina; INTEC, CONICET-UNL, Predio CONICET Santa Fe, Pje. "El Pozo", S3000 Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
4
|
Chowdhury R, Allan MF, Maranas CD. OptMAVEn-2.0: De novo Design of Variable Antibody Regions against Targeted Antigen Epitopes. Antibodies (Basel) 2018; 7:antib7030023. [PMID: 31544875 PMCID: PMC6640672 DOI: 10.3390/antib7030023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/03/2023] Open
Abstract
Monoclonal antibodies are becoming increasingly important therapeutic agents for the treatment of cancers, infectious diseases, and autoimmune disorders. However, laboratory-based methods of developing therapeutic monoclonal antibodies (e.g., immunized mice, hybridomas, and phage display) are time-consuming and are often unable to target a specific antigen epitope or reach (sub)nanomolar levels of affinity. To this end, we developed Optimal Method for Antibody Variable region Engineering (OptMAVEn) for de novo design of humanized monoclonal antibody variable regions targeting a specific antigen epitope. In this work, we introduce OptMAVEn-2.0, which improves upon OptMAVEn by (1) reducing computational resource requirements without compromising design quality; (2) clustering the designs to better identify high-affinity antibodies; and (3) eliminating intra-antibody steric clashes using an updated set of clashing parts from the Modular Antibody Parts (MAPs) database. Benchmarking on a set of 10 antigens revealed that OptMAVEn-2.0 uses an average of 74% less CPU time and 84% less disk storage relative to OptMAVEn. Testing on 54 additional antigens revealed that computational resource requirements of OptMAVEn-2.0 scale only sub-linearly with respect to antigen size. OptMAVEn-2.0 was used to design and rank variable antibody fragments targeting five epitopes of Zika envelope protein and three of hen egg white lysozyme. Among the top five ranked designs for each epitope, recovery of native residue identities is typically 45–65%. MD simulations of two designs targeting Zika suggest that at least one would bind with high affinity. OptMAVEn-2.0 can be downloaded from our GitHub repository and webpage as (links in Summary and Discussion section).
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA 16802, USA.
| | - Matthew F Allan
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA 16802, USA.
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
5
|
Liu T, Fu G, Luo X, Liu Y, Wang Y, Wang RE, Schultz PG, Wang F. Rational design of antibody protease inhibitors. J Am Chem Soc 2015; 137:4042-5. [PMID: 25775396 DOI: 10.1021/ja5130786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The bovine antibody BLV1H12, which has an ultralong CDR3H, provides a novel scaffold for engineering new functions into the antibody's variable region. By modifying the β-strand "stalk" of BLV1H12 with sequences derived from natural or synthetic protease inhibitors, we have generated antibodies that inhibit bovine trypsin and human neutrophil elastase (HNE) with low nanomolar affinities. We were also able to generate a humanized variant using a human immunoglobulin scaffold that shares a high degree of homology with BLV1H12. Further optimization yielded a highly selective humanized anti-HNE antibody with sub-nanomolar affinity. This work demonstrates a novel strategy for generating antibodies with potent and selective inhibitory activities against extracellular proteases involved in human disease.
Collapse
Affiliation(s)
- Tao Liu
- †Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Guangsen Fu
- ‡California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Xiaozhou Luo
- †Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yan Liu
- ‡California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Ying Wang
- ‡California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Rongsheng E Wang
- †Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter G Schultz
- †Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,‡California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Feng Wang
- ‡California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| |
Collapse
|
6
|
La Porte SL, Eigenbrot C, Ultsch M, Ho WH, Foletti D, Forgie A, Lindquist KC, Shelton DL, Pons J. Generation of a high-fidelity antibody against nerve growth factor using library scanning mutagenesis and validation with structures of the initial and optimized Fab-antigen complexes. MAbs 2015; 6:1059-68. [PMID: 24830649 DOI: 10.4161/mabs.28677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) is indispensable during normal embryonic development and critical for the amplification of pain signals in adults. Intervention in NGF signaling holds promise for the alleviation of pain resulting from human diseases such as osteoarthritis, cancer and chronic lower back disorders. We developed a fast, high-fidelity method to convert a hybridoma-derived NGF-targeted mouse antibody into a clinical candidate. This method, termed Library Scanning Mutagenesis (LSM), resulted in the ultra-high affinity antibody tanezumab, a first-in-class anti-hyperalgesic specific for an NGF epitope. Functional and structural comparisons between tanezumab and the mouse 911 precursor antibody using neurotrophin-specific cell survival assays and X-ray crystal structures of both Fab-antigen complexes illustrated high fidelity retention of the NGF epitope. These results suggest the potential for wide applicability of the LSM method for optimization of well-characterized antibodies during humanization.
Collapse
|
7
|
Malviya G, Salemi S, Laganà B, Diamanti AP, D'Amelio R, Signore A. Biological therapies for rheumatoid arthritis: progress to date. BioDrugs 2014; 27:329-45. [PMID: 23558378 DOI: 10.1007/s40259-013-0021-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biologic drugs for the management of rheumatoid arthritis (RA) have revolutionized the therapeutic armamentarium with the development of several novel monoclonal antibodies, which include murine, chimeric, humanized, fully human antibodies and fusion proteins. These biologics bind to their targets with high affinity and specificity. Since 1998, nine different biologics have been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of RA, and several others are in different stages of clinical trials. This field is in continuous evolution and new biologics are tested every year. Therefore a precise analysis is required in order to have a detailed and updated state of the art of this field. In this review, our main aim is to analyse all available biological therapies that are FDA and EMA approved for the treatment of RA and also those that are in clinical trials for the management of RA patients.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antirheumatic Agents/adverse effects
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Biological Products/adverse effects
- Biological Products/pharmacology
- Biological Products/therapeutic use
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Humans
- Immunoglobulin Fab Fragments/adverse effects
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/pharmacology
- Immunoglobulin Fab Fragments/therapeutic use
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/metabolism
- Recombinant Fusion Proteins/adverse effects
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
Collapse
Affiliation(s)
- Gaurav Malviya
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Grellier B, Le Pogam F, Vitorino M, Starck JP, Geist M, Duong V, Haegel H, Menguy T, Bonnefoy JY, Marchand JB, Ancian P. 3D modeling and characterization of the human CD115 monoclonal antibody H27K15 epitope and design of a chimeric CD115 target. MAbs 2014; 6:533-46. [PMID: 24492308 PMCID: PMC3984341 DOI: 10.4161/mabs.27736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jean-Yves Bonnefoy
- TRANSGENE S.A.; Illkirch-Graffenstade, France; ElsaLys Biotech; Illkirch-Graffenstaden, France
| | | | | |
Collapse
|
9
|
Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Ma Z, Polakoff D, Razo J, Wilson K, Powers DB. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs 2013; 5:523-32. [PMID: 23765106 PMCID: PMC3906306 DOI: 10.4161/mabs.24979] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We developed a method for deep mutational scanning of antibody complementarity-determining regions (CDRs) that can determine in parallel the effect of every possible single amino acid CDR substitution on antigen binding. The method uses libraries of full length IgGs containing more than 1000 CDR point mutations displayed on mammalian cells, sorted by flow cytometry into subpopulations based on antigen affinity and analyzed by massively parallel pyrosequencing. Higher, lower and neutral affinity mutations are identified by their enrichment or depletion in the FACS subpopulations. We applied this method to a humanized version of the anti-epidermal growth factor receptor antibody cetuximab, generated a near comprehensive data set for 1060 point mutations that recapitulates previously determined structural and mutational data for these CDRs and identified 67 point mutations that increase affinity. The large-scale, comprehensive sequence-function data sets generated by this method should have broad utility for engineering properties such as antibody affinity and specificity and may advance theoretical understanding of antibody-antigen recognition.
Collapse
|
10
|
Baio JE, Cheng F, Ratner DM, Stayton PS, Castner DG. Probing orientation of immobilized humanized anti-lysozyme variable fragment by time-of-flight secondary-ion mass spectrometry. J Biomed Mater Res A 2011; 97:1-7. [PMID: 21308984 DOI: 10.1002/jbm.a.33025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/02/2010] [Indexed: 11/10/2022]
Abstract
As methods to orient proteins are conceived, techniques must also be developed that provide an accurate characterization of immobilized protein orientation. In this study, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of a surface immobilized variant of the humanized anti-lysozyme variable fragment (HuLys Fv, 26 kDa). This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo(ethylene glycol) (MEG)-terminated substrates, respectively. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. SPR results showed a 10-fold difference in lysozyme binding between the two different HuLys Fv orientations. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv (histidine: 81, 82, and 110 m/z; phenylalanine: 120 and 131 m/z). An intensity ratio of the secondary ion peaks from the histidine and phenylalanine residues at either end of the protein was then calculated directly from the ToF-SIMS data. The 45% change in this ratio, observed between the NTA and MEG substrates with similar HuLys Fv surface coverages, indicates that the HuLys Fv fragment has opposite orientations on two different surfaces.
Collapse
Affiliation(s)
- J E Baio
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750
| | | | | | | | | |
Collapse
|
11
|
Malviya G, Conti F, Chianelli M, Scopinaro F, Dierckx RA, Signore A. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies. Eur J Nucl Med Mol Imaging 2009; 37:386-98. [PMID: 19777175 PMCID: PMC2816238 DOI: 10.1007/s00259-009-1272-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/25/2009] [Indexed: 01/03/2023]
Abstract
The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-alpha, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with (99m)Tc or (111)In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up.
Collapse
Affiliation(s)
- G Malviya
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Nakanishi T, Tsumoto K, Yokota A, Kondo H, Kumagai I. Critical contribution of VH-VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 2008; 17:261-70. [PMID: 18227432 DOI: 10.1110/ps.073156708] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To clarify the effects of humanizing a murine antibody on its specificity and affinity for its target, we examined the interaction between hen egg white lysozyme (HEL) and its antibody, HyHEL-10 variable domain fragment (Fv). We selected a human antibody framework sequence with high homology, grafted sequences of six complementarity-determining regions of murine HyHEL-10 onto the framework, and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the humanization led to 10-fold reduced affinity of the antibody for its target, due to an unfavorable entropy change. Two mutations together into the interface of the variable domains, however, led to complete recovery of antibody affinity and specificity for the target, due to reduction of the unfavorable entropy change. X-ray crystallography of the complex of humanized antibodies, including two mutants, with HEL demonstrated that the complexes had almost identical structures and also paratope and epitope residues were almost conserved, except for complementary association of variable domains. We conclude that adjustment of the interfacial structures of variable domains can contribute to the reversal of losses of affinity or specificity caused by humanization of murine antibodies, suggesting that appropriate association of variable domains is critical for humanization of murine antibodies without loss of function.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|
13
|
Grünberg R, Nilges M, Leckner J. Flexibility and Conformational Entropy in Protein-Protein Binding. Structure 2006; 14:683-93. [PMID: 16615910 DOI: 10.1016/j.str.2006.01.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
To better understand the interplay between protein-protein binding and protein dynamics, we analyzed molecular dynamics simulations of 17 protein-protein complexes and their unbound components. Complex formation does not restrict the conformational freedom of the partner proteins as a whole, but, rather, it leads to a redistribution of dynamics. We calculate the change in conformational entropy for seven complexes with quasiharmonic analysis. We see significant loss, but also increased or unchanged conformational entropy. Where comparison is possible, the results are consistent with experimental data. However, stringent error estimates based on multiple independent simulations reveal large uncertainties that are usually overlooked. We observe substantial gains of pseudo entropy in individual partner proteins, and we observe that all complexes retain residual stabilizing intermolecular motions. Consequently, protein flexibility has an important influence on the thermodynamics of binding and may disfavor as well as favor association. These results support a recently proposed unified model for flexible protein-protein association.
Collapse
Affiliation(s)
- Raik Grünberg
- Unité de Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur, 25-28 rue du docteur Roux, F-75015 Paris, France
| | | | | |
Collapse
|
14
|
Berquand A, Xia N, Castner DG, Clare BH, Abbott NL, Dupres V, Adriaensen Y, Dufrêne YF. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5517-23. [PMID: 15924483 DOI: 10.1021/la050162e] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We used atomic force microscopy (AFM) to explore the antigen binding forces of individual Fv fragments of antilysozyme antibodies (Fv). To detect single molecular recognition events, genetically engineered histidine-tagged Fv fragments were coupled onto AFM tips modified with mixed self-assembled monolayers (SAMs) of nitrilotriacetic acid- and tri(ethylene glycol)-terminated alkanethiols while lysozyme (Lyso) was covalently immobilized onto mixed SAMs of carboxyl- and hydroxyl-terminated alkanethiols. The quality of the functionalization procedure was validated using X-ray photoelectron spectroscopy (surface chemical composition), AFM imaging (surface morphology in aqueous solution), and surface plasmon resonance (SPR, specific binding in aqueous solution). AFM force-distance curves recorded at a loading rate of 5000 pN/s between Fv- and Lyso-modified surfaces yielded a distribution of unbinding forces composed of integer multiples of an elementary force quantum of approximately 50 pN that we attribute to the rupture of a single antibody-antigen pair. Injection of a solution containing free Lyso caused a dramatic reduction of adhesion probability, indicating that the measured 50 pN unbinding forces are due to the specific antibody-antigen interaction. To investigate the dynamics of the interaction, force-distance curves were recorded at various loading rates. Plots of unbinding force vs log(loading rate) revealed two distinct linear regimes with ascending slopes, indicating multiple barriers were present in the energy landscape. The kinetic off-rate constant of dissociation (k(off) approximately = 1 x 10(-3) s(-1)) obtained by extrapolating the data of the low-strength regime to zero force was in the range of the k(off) estimated by SPR.
Collapse
Affiliation(s)
- Alexandre Berquand
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pavlou AK, Belsey MJ. The therapeutic antibodies market to 2008. Eur J Pharm Biopharm 2005; 59:389-96. [PMID: 15760719 DOI: 10.1016/j.ejpb.2004.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
The therapeutic biologics market is currently dominated by recombinant protein products. However, many of these products are mature, and growth of the biologics market will increasingly rely on the expansion of the therapeutic monoclonal antibody sector. Successive technology waves have driven the growth of the monoclonal antibody sector, which is currently dominated by chimeric antibodies. Chimeric products, led by Remicade and Rituxan, will continue to drive market share through to 2008. However, over the forecast period, humanized and fully human monoclonal antibodies, together with technologies such as Fabs and conjugated antibodies, will play an increasingly important role, driving monoclonal antibody market growth at a forecast compound annual growth rate of 20.9%, to reach $16.7 billion by 2008. In terms of therapeutic focus, the monoclonal antibody market is heavily focused on oncology and arthritis, immune and inflammatory disorders, and products within these therapeutic areas are set to continue to be the key growth drivers over the forecast period. Underlying the growth of the market is the evolution of the monoclonal antibody company business model, set to transition towards the highly successful innovator model.
Collapse
Affiliation(s)
- Alex K Pavlou
- Biotechnology Analysis Team, Datamonitor, Charles House, London, UK.
| | | |
Collapse
|
16
|
Segal D, Eisenstein M. The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking. Proteins 2005; 59:580-91. [PMID: 15778956 DOI: 10.1002/prot.20432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Docking unbound molecules presents a challenge in the case where no prior biological or bioinformatic knowledge exists. This is mainly due to differences between the structures of the molecules when in a complex and in the free state. Presumably, these differences interfere with the ability of protein-protein docking algorithms, which rely on a dominant shape descriptor, to identify the correct solution and rank it higher than false solutions. In this study we verify the notion that small discords in the molecular fit can be eliminated by using appropriately designed low-resolution shape descriptors, thereby improving the docking results. We exploit the inherent gradual resolution dependency of Fourier transforms and formulate a resolution-dependent shape descriptor by truncating selected Fourier transform terms. Thus, different levels of shape modification are attained, affecting the degree of detail in the depiction of the molecular surface. We applied the modified descriptor to a selection of 23 protein-protein systems, using the unbound structures where possible. The docking results obtained with the new geometric descriptor were considerably superior to former results, improving the ranks of nearly correct solutions for 17 systems. Unification of the results of scans in which different resolutions were employed further improved the ranks of nearly correct solutions to less than 100 for 12 of the 23 systems and less than 300 for 20 systems. The new geometric descriptor can be combined with other descriptors, which typify the electrostatic or hydrophobic character of the molecular surface, and with external experimental or bioinformatic data.
Collapse
Affiliation(s)
- Dadi Segal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
17
|
Abstract
Formation of hydrophobic contacts across a newly formed interface is energetically favorable. Based on this observation we developed a geometric-hydrophobic docking algorithm that estimates quantitatively the hydrophobic complementarity at protein-protein interfaces. Each molecule to be docked is represented as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the hydropathy of the surface in the imaginary part. The grid representations are correlated using fast Fourier transformations. The algorithm is used to compare the extent of hydrophobic complementarity in oligomers (represented by D2 tetramers) and in hetero-dimers of soluble proteins (complexes). We also test the implication of hydrophobic complementarity in distinguishing correct from false docking solutions. We find that hydrophobic complementarity at the interface exists in oligomers and in complexes, and in both groups the extent of such complementarity depends on the size of the interface. Thus, the non-polar portions of large interfaces are more often juxtaposed than non-polar portions of small interfaces. Next we find that hydrophobic complementarity helps to point out correct docking solutions. In oligomers it significantly improves the ranks of nearly correct reassembled and modeled tetramers. Combining geometric, electrostatic and hydrophobic complementarity for complexes gives excellent results, ranking a nearly correct solution < 10 for 5 of 23 tested systems, < 100 for 8 systems and < 1000 for 19 systems.
Collapse
Affiliation(s)
- Alexander Berchanski
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
18
|
Kumagai I, Nishimiya Y, Kondo H, Tsumoto K. Structural consequences of target epitope-directed functional alteration of an antibody. The case of anti-hen lysozyme antibody, HyHEL-10. J Biol Chem 2003; 278:24929-36. [PMID: 12709438 DOI: 10.1074/jbc.m301149200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decreased affinity of an antibody for a mutated epitope in an antigen can be enhanced and reversed by mutations in certain antibody residues. Here we describe the crystal structures of (a) the complex between a naturally mutated proteinaceous antigen and an antibody that was mutated and selected in vitro, and (b) the complex between the normal antigen and the mutated antibody. The mutated and selected antibody recognizes essentially the same epitope as in the wild-type antibody, indicating successful target site-directed functional alteration of the antibody. In comparing the structure of the mutated antigen-mutant antibody complex with the previously established structure of the wild-type antigen-wild-type antibody complex, we found that the enhanced affinity of the mutated antibody for the mutant antigen originated not from improvements in local complementarity around the mutated sites but from subtle and critical structural changes in nonmutated sites, including an increase in variable domain interactions. Our findings indicate that only a few mutations in the antigen-binding region of an antibody can lead to some structural changes in its paratopes, emphasizing the critical roles of the plasticity of loops in the complementarity-determining region and also the importance of the plasticity of the interaction between the variable regions of immunoglobulin heavy and light chains in determining the specificity of an antibody.
Collapse
Affiliation(s)
- Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
19
|
Caldas C, Coelho V, Kalil J, Moro AM, Maranhão AQ, Brígido MM. Humanization of the anti-CD18 antibody 6.7: an unexpected effect of a framework residue in binding to antigen. Mol Immunol 2003; 39:941-52. [PMID: 12695120 DOI: 10.1016/s0161-5890(03)00022-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Humanization of monoclonal antibodies by complementary determinant region (CDR)-grafting has become a standard procedure to improve the clinical usage of animal antibodies. However, antibody humanization may result in loss of activity that has been attributed to structural constraints in the framework structure. In this paper, we report the complete humanization of the 6.7 anti-human CD18 monoclonal antibody in a scFv form. We used a germline-based approach to design a humanized VL gene fragment and expressed it together with a previously described humanized VH. The designed humanized VL has only 14 mutations compared to the closest human germline sequence. The resulting humanized scFv maintained the binding capacity and specificity to human CD18 expressed on the cell surface of peripheral blood mononuclear cells (PBMC), and showed the same pattern of staining T-lymphocytes sub-populations, in comparison to the original monoclonal antibody. We observed an unexpected effect of a conserved mouse-human framework position (L37) that hinders the binding of the humanized scFv to antigen. This paper reveals a new framework residue that interferes with paratope and antigen binding and also reinforces the germline approach as a successful strategy to humanize antibodies.
Collapse
Affiliation(s)
- Cristina Caldas
- Departamento de Biologia Celular, Universidade de Brasi;lia, 70910-900, DF, Brasília, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Haruyama H, Ito S, Miyadai K, Takahashi T, Kawaida R, Takayama T, Hanzawa H, Hata T, Yamaguchi J, Yoshida-Kato H, Ichikawa K, Ohsumi J, Yonehara S, Serizawa N. Humanization of the mouse anti-Fas antibody HFE7A and crystal structure of the humanized HFE7A Fab fragment. Biol Pharm Bull 2002; 25:1537-45. [PMID: 12499636 DOI: 10.1248/bpb.25.1537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of Fas ligand to Fas induces apoptosis. The Fas-Fas ligand system plays important roles in many biological processes, including the elimination of autoreactive lymphoid cells. We have previously obtained the mouse anti-Fas antibody HFE7A (m-HFE7A), which specifically induces apoptosis in inflammatory cells. In order to apply m-HFE7A for human therapy, we performed antibody humanization of m-HFE7A by grafting the mouse complementarity-determining regions (CDRs) to a human antibody. Five versions of humanized HFE7A (h-HFE7A) demonstrated the same antigen-binding affinity and same competition-binding activity against Fas as the chimeric HFE7A. Furthermore, these h-HFE7As induced the same degree of apoptosis in WR19L12a cells that express human Fas on their surface as chimeric HFE7A does. To further probe the structural basis for antibody humanization, we determined the three-dimensional structure of the h-HFE7A antigen-binding fragment (Fab) by X-ray crystallography and compared it with the crystal structure of the parent m-HFE7A Fab previously determined. The main-chain conformation in each h-HFE7A CDR is almost identical to that in m-HFE7A with root mean square (rms) deviations of 0.14-0.77 A. However, a significant segmental shift was observed in the CDR-L1 loop. Together with the high temperature factors of the CDR-L1 residues, both the loops are flexible, suggesting that the CDR-L1 loop would undergo conformational change upon binding to the antigen. Our results indicate that the humanization of m-HFE7A succeeded in maintaining the main-chain conformation as well as the flexibility of the CDR loop.
Collapse
|
21
|
Fong RB, Ding Z, Hoffman AS, Stayton PS. Affinity separation using an Fv antibody fragment-"smart" polymer conjugate. Biotechnol Bioeng 2002; 79:271-6. [PMID: 12115415 DOI: 10.1002/bit.10315] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly(N-isopropylacrylamide), or PNIPAAm, is considered a "smart" polymer because it sharply precipitates when heated above a critical temperature, about 32 degrees C in water, and redissolves when cooled. Conjugates made of PNIPAAm and IgG antibodies also exhibit the same critical temperature behavior. Interestingly, antigens that are complexed with these conjugates can also be phase-separated along with the conjugates. In this work, we conjugated PNIPAAm for the first time to the immunoglobulin Fv fragment, the smallest fragment of an antibody that still retains the antigenic affinity of the whole antibody. For our studies, we used an Fv fragment that strongly binds hen egg white lysozyme (HEL). The purified Fv fragment-polymer conjugate precipitated at the same temperature as did the pure polymer. After addition of the conjugate to a mixture containing HEL and after thermal separation of the conjugate at 37 degrees C, the amount of HEL in solution was reduced by as much as 80%. We were able to demonstrate the reversibility of the separation through three cycles of precipitation and dissolution. It was also possible to recover free HEL by thermal separation of the conjugate in the presence of an eluant, 50 mM diethylamine. The conjugate can then be recycled for second use. In conclusion, immunoseparations can be performed using smart polymer conjugates made with just the variable domains of an antibody. Unlike whole antibodies, fragments of antibodies can be produced in Escherichia coli, allowing easier genetic engineering of the antibody and tailoring of the conjugate.
Collapse
Affiliation(s)
- Robin B Fong
- Department of Bioengineering, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
22
|
Tan P, Mitchell DA, Buss TN, Holmes MA, Anasetti C, Foote J. "Superhumanized" antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1119-25. [PMID: 12097421 DOI: 10.4049/jimmunol.169.2.1119] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Humanized Abs are created by combining, at the genetic level, the complementarity-determining regions of a murine mAb with the framework sequences of a human Ab variable domain. This leads to a functional Ab with reduced immunogenic side effects in human therapy. In this study, we report a new approach to humanizing murine mAbs that may reduce immunogenicity even further. This method is applied to humanize the murine anti-human CD28 Ab, 9.3. The canonical structures of the hypervariable loops of murine 9.3 were matched to human genomic V gene sequences whose hypervariable loops had identical or similar canonical structures. Framework sequences for those human V genes were then used, unmodified, with the 9.3 complementarity-determining regions to construct a humanized version of 9.3. The humanized 9.3 and a chimeric 9.3 control were expressed in Escherichia coli as Fab. The humanized Fab showed a moderate loss in avidity in a direct binding ELISA with immobilized CD28-Ig fusion protein (CD28-Ig). Humanized 9.3 blocked ligation of CD28-Ig to cells expressing the CD28 receptor CD80. Lastly, the humanized 9.3 showed biological activity as an immunosuppressant by inhibiting a MLR.
Collapse
Affiliation(s)
- Philip Tan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
23
|
Holmes MA, Buss TN, Foote J. Structural effects of framework mutations on a humanized anti-lysozyme antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:296-301. [PMID: 11418663 DOI: 10.4049/jimmunol.167.1.296] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A humanized version of the mouse anti-lysozyme Ab D1.3 was previously constructed as an Fv fragment and its structure was crystallographically determined in the free form and in complex with lysozyme. Here we report five new crystal structures of single-amino acid substitution mutants of the humanized Fv fragment, four of which were determined as Fv-lysozyme complexes. The crystals were isomorphous with the parent forms, and were refined to free R values of 28-31% at resolutions of 2.7-2.9 A. Residue 27 in other Abs has been implicated in stabilizing the conformation of the first complementarity-determining region (CDR) of the H chain, residues 31-35. We find that a Phe-to-Ser mutation at 27 alters the conformation of immediately adjacent residues, but this change is only weakly transmitted to Ag binding residues in the nearby CDR. Residue 71 of the H chain has been proposed to control the relative disposition of H chain CDRs 1 and 2, based on the bulk of its side chain. However, in structures we determined with Val, Ala, or Arg substituted in place of Lys at position 71, no significant change in the conformation of CDRs 1 and 2 was observed.
Collapse
Affiliation(s)
- M A Holmes
- Program in Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
24
|
Abstract
Antibody libraries have come of age in the generation and evolution of monoclonal antibodies for therapeutic applications. Here, with an emphasis on cancer therapy, several examples are presented that illustrate the ability to design, engineer and select antibody libraries for different rationales in drug and target discovery.
Collapse
Affiliation(s)
- C Rader
- Department of Molecular Biology, BCC-526 The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| |
Collapse
|
25
|
Carpenter PA, Pavlovic S, Tso JY, Press OW, Gooley T, Yu XZ, Anasetti C. Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6205-13. [PMID: 11086054 DOI: 10.4049/jimmunol.165.11.6205] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human trials in organ allografts have demonstrated that murine anti-CD3 mAbs are immunosuppressive. By mimicking Ag, anti-CD3 can produce T cell activation, anergy, or death. Activation of resting T cells in vivo results in dose-limiting cytokine release and is caused by Ab-mediated cross-linking of T cells and Fcgamma receptor (FcR)-bearing cells. With the goal of minimizing cytokine-induced toxicity, anti-CD3 have been engineered to lower Fc binding avidity. Preclinical murine studies have indicated that non-FcR-binding anti-CD3 can induce apoptosis of Ag-activated T cells. Since induction of T cell apoptosis may be an important mechanism of immunosuppression by anti-CD3, we tested whether Fc mutations affect the ability of anti-human CD3 to induce apoptosis of activated T cells. We compared wild-type murine anti-CD3, M291, and OKT3 and their humanized, FcR- and non-FcR-binding structural variants in quantitative assays of T cell apoptosis. Non-FcR-binding variants produced more sustainable phosphorylation of extracellular signal-regulated kinase-2, greater release of IFN-gamma, and more effectively caused activation-dependent T cell apoptosis. Non-FcR-binding variants dissociated more quickly from the T cell surface and caused less internalization of the TCR, which then remained available in greater abundance on the cell surface for signaling. Cross-linking of non-FcR-binding variants by antiglobulin enhanced TCR internalization and minimized induction of T cell apoptosis. We conclude that non-FcR-binding, humanized anti-CD3 have improved ability to induce apoptosis of activated T cells, presumably by allowing durable expression of the TCR and sustained signaling.
Collapse
Affiliation(s)
- P A Carpenter
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Among the most important advances in antibody engineering of this past year is the advent of new tools to study the relationship between protein (including antibody) structure and function. Very rapid large-scale mutational analysis of antibodies is now possible by using in vitro transcription and translation. Ribosome display is a rapidly evolving technology for modifying antibody function that offers several potential advantages over phage display.
Collapse
Affiliation(s)
- W Dall'Acqua
- Department of Molecular Oncology, Genentech Incorporated, South San Francisco, CA 94080, USA
| | | |
Collapse
|