1
|
Bindu S, Bibi R, Pradeep R, Sarkar K. The evolving role of B cells in malignancies. Hum Immunol 2025; 86:111301. [PMID: 40132250 DOI: 10.1016/j.humimm.2025.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
B cells play diverse roles in different pathological circumstances, such as neoplastic diseases, autoimmune disorders, and neurological maladies. B cells, which are essential elements of the adaptive immune system, demonstrate exceptional functional variety, including the generation of antibodies, the presentation of antigens, and the secretion of cytokines. Within the field of oncology, B cells display a multifaceted nature in the tumor microenvironment, simultaneously manifesting both tumor-promoting and tumor-suppressing characteristics. Studies have found that the existence of tertiary lymphoid structures, which consist of B cells, is linked to better survival rates in different types of cancers. This article examines the involvement of B cells in different types of malignancies, emphasizing their importance in the development of the diseases and their potential as biomarkers. Additionally, the review also examines the crucial role of B cells in autoimmune illnesses and their potential as targets for therapy. The article also analyses the role of B cells in immunization and exploring their potential uses in cancer immunotherapy. This analysis highlights the intricate and occasionally contradictory roles of B cells, underlining the necessity for additional research to clarify their varied actions in various illness scenarios.
Collapse
Affiliation(s)
- Soham Bindu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Roshni Bibi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - R Pradeep
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Diehl R, Hübner S, Lehr S, Rizzi M, Eyerich K, Nyström A. Skin Deep and Beyond: Unravelling B Cell Extracellular Matrix Interactions in Cutaneous Immunity and Disease. Exp Dermatol 2025; 34:e70068. [PMID: 40051023 PMCID: PMC11885703 DOI: 10.1111/exd.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
The extracellular matrix (ECM) is a crucial component in multicellular organisms, serving as both a structural scaffold and active signalling units. While the role of the ECM, namely, to maintain homeostasis and steer adaptive immunity, is well described in secondary lymphoid organs, it is underappreciated in the skin-despite remarkable molecular similarity. Here, we examine how the specialised organisation of the ECM influences B cell development and function in both skin and secondary lymphoid organs with a special focus on ECM-integrin signalling. We discuss the presence and function of B cells in healthy and diseased skin, including their role in wound healing, autoimmune responses and inflammatory conditions. Additionally, we explore the formation of tertiary lymphoid structures in chronic skin diseases as a window into studying B cell-ECM interactions. By integrating fundamental immunology with skin biology, we aim to identify key knowledge gaps and explore potential clinical implications of B cell-ECM interactions in dermatology and beyond.
Collapse
Affiliation(s)
- Rebecca Diehl
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Stefanie Hübner
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Saskia Lehr
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCIUniversity Clinics and Medical FacultyFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Kilian Eyerich
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Alexander Nyström
- Department of DermatologyUniversity Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
3
|
Gherardi L, Aubergeon L, Sayah M, Fauny JD, Dumortier H, Monneaux F. Targeting B and T Lymphocyte Attenuator Regulates Lupus Disease Development in NZB/W Mice. Immunotargets Ther 2025; 14:7-23. [PMID: 39845702 PMCID: PMC11750947 DOI: 10.2147/itt.s490573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose The co-inhibitory receptor B and T Lymphocyte Attenuator (BTLA) negatively regulates B and T cell activation. We have previously shown an altered BTLA expression by regulatory T cells and an impaired capacity of BTLA to inhibit CD4+ T cell activation in lupus patients. In this study, we analyzed BTLA expression and function in the NZB/W lupus-mouse model and examined the therapeutic potential of BTLA targeting. Methods BTLA expression and function were analyzed in young (10-12-week-old) and old-diseased NZB/W mice (>35-week-old with proteinuria) in comparison to age-related BALB/W control mice. 20-22 weeks old NZB/W mice (n=10) were injected i.p with 3 mg/kg, twice a week for ten weeks, with the anti-BTLA antibody 6F7 or its isotype control. Results In old-diseased NZB/W mice, BTLA expression is slightly modified in B cell subsets whereas CD4+ T cells display impaired BTLA functionality. Administration of the 6F7 anti-BTLA antibody into 20-22 week-old NZB/W mice resulted in a delayed onset of proteinuria (p<0.01), limited kidney damages (p<0.05) and an increased survival rate (p<0.01) compared to isotype-treated mice. This beneficial effect was associated with a decrease in circulating B cell and spleen follicular B cell numbers. Regarding its mode of action, we demonstrated that the 6F7 antibody is not a depleting antibody and does not block HVEM binding to BTLA, but instead induces BTLA down modulation and exhibits in vivo agonist activity. Conclusion Overall, our data confirm the involvement of BTLA in lupus pathogenesis and provide the first evidence that BTLA is a potential therapeutic target for the treatment of lupus.
Collapse
Affiliation(s)
- Léa Gherardi
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Lucie Aubergeon
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Mélanie Sayah
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Jean-Daniel Fauny
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Hélène Dumortier
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Fanny Monneaux
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| |
Collapse
|
4
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Luan Y, Min Q, Zhang R, Wen Z, Meng X, Hu Z, Feng X, Yu M, Dong L, Wang JY. EAF2 deficiency attenuates autoimmune disease in Fas lpr mice by modulating B cell activation and apoptosis. iScience 2024; 27:111220. [PMID: 39555413 PMCID: PMC11565555 DOI: 10.1016/j.isci.2024.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
MRL/lpr mice develop systemic lupus erythematosus-like autoimmunity due to defective FAS-mediated apoptosis. We generated Fas lpr mice deficient in EAF2, a transcription elongation-associated factor known to promote apoptosis in germinal center (GC) B cells and crucial for preventing autoimmunity. Contrary to expectations, EAF2 deficiency significantly reduced lymphadenopathy and splenomegaly, extended lifespan, and alleviated nephritis by decreasing renal immune complex deposition. Additionally, EAF2 deficiency markedly reduced accumulation of activated B cells, GC B cells, plasma cells, and the abnormal B220+CD3+ T cells in Fas lpr mice. Further analysis revealed that Eaf2 -/- Fas lpr B cells showed hyperactivation upon various stimulations, followed by increased death. RNA sequencing of the B220+CD3+ cells revealed a downregulation in survival-promoting genes such as Bcl-2 and Akt and an upregulation of proapoptotic genes. We conclude that the combined deficiency in FAS- and EAF2-mediated apoptotic pathways leads to B cell hyperactivation and subsequent death, thereby ameliorating systemic autoimmunity in this model.
Collapse
Affiliation(s)
- Yingying Luan
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Runyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zichao Wen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Feng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
6
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
8
|
Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, Bastacky SI, Kashgarian M, Perl A, Nickerson KM, Shlomchik MJ. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight 2024; 9:e178563. [PMID: 39042716 PMCID: PMC11343599 DOI: 10.1172/jci.insight.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haylee A. Cosgrove
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Jeremy S. Tilstra
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | | |
Collapse
|
9
|
Iperi C, Fernández-Ochoa Á, Pers JO, Barturen G, Alarcón-Riquelme M, Quirantes-Piné R, Borrás-Linares I, Segura-Carretero A, Cornec D, Bordron A, Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin Immunol 2024; 264:110243. [PMID: 38735509 DOI: 10.1016/j.clim.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.
Collapse
Affiliation(s)
| | | | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | |
Collapse
|
10
|
Zhou L, Cai SZ, Dong LL. Recent advances in pathogenesis, diagnosis, and therapeutic approaches for digestive system involvement in systemic lupus erythematosus. J Dig Dis 2024; 25:410-423. [PMID: 39317429 DOI: 10.1111/1751-2980.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the presence of large amounts of autoantibodies and immune complex formation. Because of their atypical clinical symptoms, SLE patients with digestive system involvement may not be recognized or treated precisely and extensively. Clinicians should pay close attention to SLE with digestive system involvement, as these conditions can easily worsen the condition and possibly endanger the patient's life. In this review we summarized the pathogenesis, pathological characteristics, clinical manifestations, diagnosis, and therapies for digestive system involvement in SLE.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao Zhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Li Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Figueiredo Galvao HB, Lieu M, Moodley S, Diep H, Jelinic M, Bobik A, Sobey CG, Drummond GR, Vinh A. Depletion of follicular B cell-derived antibody secreting cells does not attenuate angiotensin II-induced hypertension or vascular compliance. Front Cardiovasc Med 2024; 11:1419958. [PMID: 38883991 PMCID: PMC11176447 DOI: 10.3389/fcvm.2024.1419958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Maggie Lieu
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Seyuri Moodley
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alexander Bobik
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Immunology, Monash University, Clayton, VIC, Australia
- Center for Inflammatory Diseases, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Lovell CD, Jiwrajka N, Amerman HK, Cancro MP, Anguera MC. Xist Deletion in B Cells Results in Systemic Lupus Erythematosus Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594175. [PMID: 38798403 PMCID: PMC11118349 DOI: 10.1101/2024.05.15.594175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease preferentially observed in females. X-linked gene expression in XX females is normalized to that of XY males by X-Chromosome Inactivation (XCI). However, B cells from female SLE patients and mouse models of SLE exhibit mislocalization of Xist RNA, a critical regulator of XCI, and aberrant expression of X-linked genes, suggesting that impairment of XCI may contribute to disease. Here, we find that a subset of female mice harboring a conditional deletion of Xis t in B cells ("Xist cKO") spontaneously develop SLE phenotypes, including expanded activated B cell subsets, disease-specific autoantibodies, and glomerulonephritis. Moreover, pristane-induced SLE-like disease is more severe in Xist cKO mice. Activated B cells from Xist cKO mice with SLE phenotypes have increased expression of proinflammatory X-linked genes implicated in SLE. Together, this work indicates that impaired XCI maintenance in B cells directly contributes to the female-bias of SLE.
Collapse
|
13
|
Kellermann G, Leulliot N, Cherfils-Vicini J, Blaud M, Brest P. Activated B-Cells enhance epitope spreading to support successful cancer immunotherapy. Front Immunol 2024; 15:1382236. [PMID: 38571942 PMCID: PMC10989059 DOI: 10.3389/fimmu.2024.1382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint therapies (ICT) have transformed the treatment of cancer over the past decade. However, many patients do not respond or suffer relapses. Successful immunotherapy requires epitope spreading, but the slow or inefficient induction of functional antitumoral immunity delays the benefit to patients or causes resistances. Therefore, understanding the key mechanisms that support epitope spreading is essential to improve immunotherapy. In this review, we highlight the major role played by B-cells in breaking immune tolerance by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that diversify the T-cell response against self-antigens, such as ribonucleoproteins, in autoimmunity but also during successful cancer immunotherapy. This has important implications for the design of future cancer vaccines.
Collapse
Affiliation(s)
| | - Nicolas Leulliot
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Julien Cherfils-Vicini
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| | - Magali Blaud
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| |
Collapse
|
14
|
Nunez D, Patel D, Volkov J, Wong S, Vorndran Z, Müller F, Aigner M, Völkl S, Mackensen A, Schett G, Basu S. Cytokine and reactivity profiles in SLE patients following anti-CD19 CART therapy. Mol Ther Methods Clin Dev 2023; 31:101104. [PMID: 37744005 PMCID: PMC10514439 DOI: 10.1016/j.omtm.2023.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19+ B cells have demonstrated efficacy in refractory systemic lupus erythematosus (SLE). Although initial clinical data suggest that anti-CD19 CAR T cell therapy is well tolerated and highly effective, the immunologic consequences of CAR T cell therapy in SLE patients remain unclear. We profiled serum in six refractory SLE patients prior to and 3 months following CAR T cell infusion. Three months post T cell infusion, the inflammatory cytokines IL-6 and TNFα decreased in patient sera. This was accompanied by elevations in serum IL-7 and BAFF. Furthermore, SLE-associated antibodies dropped profoundly in five of six patients. Last, consistent with other reports of CD19 CAR T therapy in B cell malignancies, we were able to show marginal impact of anti-CD19 CART therapy on pre-existing humoral immune responses in SLE patients. Together, these results provide insights into the mechanisms of efficacy of anti-CD19 CAR T cell therapy in SLE.
Collapse
Affiliation(s)
- Daniel Nunez
- Department of Computational Biology, Cabaletta Bio, Philadelphia, PA, USA
| | - Darshil Patel
- Department of Protein and Molecular Biology, Cabaletta Bio, Philadelphia, PA, USA
| | - Jenell Volkov
- Department of Translational Medicine, Cabaletta Bio, Philadelphia, PA, USA
| | - Steven Wong
- Department of Protein and Molecular Biology, Cabaletta Bio, Philadelphia, PA, USA
| | - Zachary Vorndran
- Department of Translational Medicine, Cabaletta Bio, Philadelphia, PA, USA
| | - Fabian Müller
- Department of Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Samik Basu
- Department of Translational Medicine, Cabaletta Bio, Philadelphia, PA, USA
| |
Collapse
|
15
|
Echavarria R, Cardona-Muñoz EG, Ortiz-Lazareno P, Andrade-Sierra J, Gómez-Hermosillo LF, Casillas-Moreno J, Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Miranda-Díaz AG. The Role of the Oxidative State and Innate Immunity Mediated by TLR7 and TLR9 in Lupus Nephritis. Int J Mol Sci 2023; 24:15234. [PMID: 37894915 PMCID: PMC10607473 DOI: 10.3390/ijms242015234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) and is considered one of the leading causes of mortality. Multiple immunological pathways are involved in the pathogenesis of SLE, which makes it imperative to deepen our knowledge about this disease's immune-pathological complexity and explore new therapeutic targets. Since an altered redox state contributes to immune system dysregulation, this document briefly addresses the roles of oxidative stress (OS), oxidative DNA damage, antioxidant enzymes, mitochondrial function, and mitophagy in SLE and LN. Although adaptive immunity's participation in the development of autoimmunity is undeniable, increasing data emphasize the importance of innate immunity elements, particularly the Toll-like receptors (TLRs) that recognize nucleic acid ligands, in inflammatory and autoimmune diseases. Here, we discuss the intriguing roles of TLR7 and TLR9 in developing SLE and LN. Also included are the essential characteristics of conventional treatments and some other novel and little-explored alternatives that offer options to improve renal function in LN.
Collapse
Affiliation(s)
- Raquel Echavarria
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
- Investigadores por México, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Pablo Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
| | - Jorge Andrade-Sierra
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Jorge Casillas-Moreno
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| |
Collapse
|
16
|
Figueiredo Galvao HB, Dinh QN, Thomas JM, Wassef F, Diep H, Bobik A, Sobey CG, Drummond GR, Vinh A. Proteasome inhibition reduces plasma cell and antibody secretion, but not angiotensin II-induced hypertension. Front Cardiovasc Med 2023; 10:1184982. [PMID: 37332591 PMCID: PMC10272792 DOI: 10.3389/fcvm.2023.1184982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Depletion of mature B cells affords protection against experimental hypertension. However, whether B cell-mediated hypertension is dependent on differentiation into antibody-secreting cells (ASCs) remains unclear. Using the proteasome inhibitor, bortezomib, the present study tested the effect of ASC reduction on angiotensin II-induced hypertension. Methods Male C57BL6/J mice were infused with angiotensin II (0.7 mg/kg/day; s.c.) for 28 days via osmotic minipump to induce hypertension. Normotensive control mice received saline infusion. Bortezomib (750 μg/kg) or vehicle (0.1% DMSO) was administered (i.v.) 3 days prior to minipump implantation, and twice weekly thereafter. Systolic blood pressure was measured weekly using tail-cuff plethysmography. Spleen and bone marrow B1 (CD19+B220-), B2 (B220+CD19+) and ASCs (CD138hiSca-1+Blimp-1+) were enumerated by flow cytometry. Serum immunoglobulins were quantified using a bead-based immunoassay. Results Bortezomib treatment reduced splenic ASCs by ∼68% and ∼64% compared to vehicle treatment in normotensive (2.00 ± 0.30 vs. 0.64 ± 0.15 × 105 cells; n = 10-11) and hypertensive mice (0.52 ± 0.11 vs. 0.14 ± 0.02 × 105 cells; n = 9-11), respectively. Bone marrow ASCs were also reduced by bortezomib in both normotensive (4.75 ± 1.53 vs. 1.71 ± 0.41 × 103 cells; n = 9-11) and hypertensive mice (4.12 ± 0.82 vs. 0.89 ± 0.18 × 103 cells; n = 9-11). Consistent with ASC reductions, bortezomib reduced serum IgM and IgG2a in all mice. Despite these reductions in ASCs and antibody levels, bortezomib did not affect angiotensin II-induced hypertension over 28 days (vehicle: 182 ± 4 mmHg vs. bortezomib: 177 ± 7 mmHg; n = 9-11). Conclusion Reductions in ASCs and circulating IgG2a and IgM did not ameliorate experimental hypertension, suggesting other immunoglobulin isotypes or B cell effector functions may promote angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Jordyn M. Thomas
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Flavia Wassef
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Prahran, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Christopher G. Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, Australia
| | - Grant R. Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Huang SUS, Kulatunge O, O'Sullivan KM. Deciphering the Genetic Code of Autoimmune Kidney Diseases. Genes (Basel) 2023; 14:genes14051028. [PMID: 37239388 DOI: 10.3390/genes14051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune kidney diseases occur due to the loss of tolerance to self-antigens, resulting in inflammation and pathological damage to the kidneys. This review focuses on the known genetic associations of the major autoimmune kidney diseases that result in the development of glomerulonephritis: lupus nephritis (LN), anti-neutrophil cytoplasmic associated vasculitis (AAV), anti-glomerular basement disease (also known as Goodpasture's disease), IgA nephropathy (IgAN), and membranous nephritis (MN). Genetic associations with an increased risk of disease are not only associated with polymorphisms in the human leukocyte antigen (HLA) II region, which governs underlying processes in the development of autoimmunity, but are also associated with genes regulating inflammation, such as NFkB, IRF4, and FC γ receptors (FCGR). Critical genome-wide association studies are discussed both to reveal similarities in gene polymorphisms between autoimmune kidney diseases and to explicate differential risks in different ethnicities. Lastly, we review the role of neutrophil extracellular traps, critical inducers of inflammation in LN, AAV, and anti-GBM disease, where inefficient clearance due to polymorphisms in DNase I and genes that regulate neutrophil extracellular trap production are associated with autoimmune kidney diseases.
Collapse
Affiliation(s)
- Stephanie U-Shane Huang
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Oneli Kulatunge
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Kim Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
18
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Chernova I, Song W, Steach H, Hafez O, Al Souz J, Chen PM, Chandra N, Cantley L, Veselits M, Clark MR, Craft J. The ion transporter Na +-K +-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. SCIENCE ADVANCES 2023; 9:eadf8156. [PMID: 36724234 PMCID: PMC9891690 DOI: 10.1126/sciadv.adf8156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidney is a comparatively hostile microenvironment characterized by highsodium concentrations; however, lymphocytes infiltrate and survive therein in autoimmune diseases such as lupus. The effects of sodium-lymphocyte interactions on tissue injury in autoimmune diseases and the mechanisms used by infiltrating lymphocytes to survive the highsodium environment of the kidney are not known. Here, we show that kidney-infiltrating B cells in lupus adapt to elevated sodium concentrations and that expression of sodium potassium adenosine triphosphatase (Na+-K+-ATPase) correlates with the ability of infiltrating cells to survive. Pharmacological inhibition of Na+-K+-ATPase and genetic knockout of Na+-K+-ATPase γ subunit resulted in reduced B cell infiltration into kidneys and amelioration of proteinuria. B cells in human lupus nephritis biopsies also had high expression of Na+-K+-ATPase. Our study reveals that kidney-infiltrating B cells in lupus initiate a tissue adaption program in response to sodium stress and identifies Na+-K+-ATPase as an organ-specific therapeutic target.
Collapse
Affiliation(s)
- Irene Chernova
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Omeed Hafez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jafar Al Souz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nisha Chandra
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd Cantley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Marcus R. Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Joe Craft
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| |
Collapse
|
20
|
Van Meerhaeghe T, Néel A, Brouard S, Degauque N. Regulation of CD8 T cell by B-cells: A narrative review. Front Immunol 2023; 14:1125605. [PMID: 36969196 PMCID: PMC10030846 DOI: 10.3389/fimmu.2023.1125605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Activation of CD4 T cells by B cells has been extensively studied, but B cell-regulated priming, proliferation, and survival of CD8 T cells remains controversial. B cells express high levels of MHC class I molecules and can potentially act as antigen-presenting cells (APCs) for CD8 T cells. Several in vivo studies in mice and humans demonstrate the role of B cells as modulators of CD8 T cell function in the context of viral infections, autoimmune diseases, cancer and allograft rejection. In addition, B-cell depletion therapies can lead to impaired CD8 T-cell responses. In this review, we attempt to answer 2 important questions: 1. the role of B cell antigen presentation and cytokine production in the regulation of CD8 T cell survival and cell fate determination, and 2. The role of B cells in the formation and maintenance of CD8 T cell memory.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Department of Nephrology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Antoine Néel
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- Internal Medicine Department, Nantes University Hospital, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- *Correspondence: Nicolas Degauque,
| |
Collapse
|
21
|
Matsumura Y, Watanabe R, Koguchi-Yoshioka H, Nakamura Y, Saito A, Kume M, Nakai S, Ishitsuka Y, Furuta J, Fujimoto M. IL-10‒Producing Potency from Blood B Cells Correlates with the Prognosis of Alopecia Areata. J Invest Dermatol 2022; 143:871-874.e5. [PMID: 36502940 DOI: 10.1016/j.jid.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yutaka Matsumura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Aki Saito
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Miki Kume
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shuichi Nakai
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Furuta
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
B Cell Kinetics upon Therapy Commencement for Active Extrarenal Systemic Lupus Erythematosus in Relation to Development of Renal Flares: Results from Three Phase III Clinical Trials of Belimumab. Int J Mol Sci 2022; 23:ijms232213941. [PMID: 36430417 PMCID: PMC9698874 DOI: 10.3390/ijms232213941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Renal flares constitute major determinants of poor prognosis in people living with systemic lupus erythematosus (SLE). The aim of the present study was to investigate changes in B cell subsets in relation to renal flares upon initiation of standard therapy (ST) plus belimumab or placebo in patients with SLE. Using data from the BLISS-76, BLISS-SC, and BLISS Northeast Asia trials, we investigated associations of relative to baseline rapid (through week 8) and early (through week 24) percentage changes in circulating CD19+ B cell subsets characterised through flow cytometry, anti-dsDNA antibodies, and complement levels with the occurrence of renal flares over one year. Patients who developed renal flares showed more prominent rapid decreases in CD19+CD20+CD138+ short-lived plasma cells (-50.4% vs. -16.7%; p = 0.019) and CD19+CD20-CD27bright plasmablasts (-50.0% vs. -29.9%; p = 0.020) compared to non-flaring patients, followed by a subsequent return. Less prominent rapid reductions in CD19+CD27-CD24brightCD38bright transitional B cells (-42.9% vs. -75.0%; p = 0.038) and CD19+CD20-CD138+ peripheral long-lived plasma cells (-11.3% vs. -29.2%; p = 0.019) were seen in belimumab-treated-but not placebo-treated-patients who developed renal flares compared to belimumab-treated patients who did not. Rapid and early changes in anti-dsDNA or complement levels showed no clear association with renal flares. In summary, a rapid drop followed by a subsequent return in circulating short-lived plasma cells and plasmablasts upon treatment for active extra-renal SLE portended renal flares, indicating a need for therapeutic adjustments in patients showing such B cell patterns. Rapid decreases in transitional B cells and peripheral long-lived plasma cells upon belimumab therapy commencement may signify a greater protection against renal flares. B cell kinetics may prove useful in early drug evaluation.
Collapse
|
23
|
Liu J, Guan F. B cell phenotype, activity, and function in idiopathic nephrotic syndrome. Pediatr Res 2022:10.1038/s41390-022-02336-w. [PMID: 36316536 DOI: 10.1038/s41390-022-02336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Idiopathic nephrotic syndrome (INS) is the most frequent glomerular disease in childhood. However, its underlying etiology mechanism lacks thorough understanding. Previous studies have described INS as a T cell functional disorder resulting in increased plasma lymphocyte-derived permeability factors. In children with frequent relapses of nephrotic syndrome, the mechanism underlying the therapeutic efficacy of CD20 monoclonal antibodies in depleting B cells may provide additional evidence in exploring the critical role of B lymphocytes in INS pathogenesis. Previous studies have proposed that RTX bound to CD20 through antibody-dependent and complement-dependent cytotoxicity and led to lytic clearance of B cells. Additionally, RTX exerted an effect by blocking the interaction between B and T cells or regulating homeostasis and functions of T cell subsets. Recent studies on the development, differentiation, and activation of B-lymphocytes in glomerular diseases have suggested that the B-lymphocytes participate in the INS pathogenesis through interaction with T cells, secretion of antibodies, or production of cytokines. In this study, we aimed to provide a detailed description of the current knowledge on the development, differentiation, activity, functions, and related regulating factors of B cells involved in INS. Thus, further understanding of the immunopathogenesis of INS may offer some opportunities in precisely targeting B cells during therapeutic interventions. IMPACT: The topic "B cells play a role in glomerular disease" is a novel point, which is not completely described previously. We described interactions between T and B cells and immunoglobulin, IgG, IgM, IgE, etc. as well in glomerular disease. The research of regulatory factors associated with B cell's function, like BAFF, is a hot topic in other diseases; however, it is rare in glomerular disease.
Collapse
Affiliation(s)
- Junhan Liu
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Soto JA, Melo-González F, Riedel CA, Bueno SM, Kalergis AM. Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus. Int J Mol Sci 2022; 23:10706. [PMID: 36142624 PMCID: PMC9504747 DOI: 10.3390/ijms231810706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disorder like systemic lupus erythematosus (SLE). Both SLE and CLE characterize autoantibody secretion and immune cell recruitment. In particular, CLE can be divided into three more frequent types, varying in the severity of the skin lesions they present. The role of type I IFN was shown to be one of the leading causes of the development of this pathology in the skin. Different treatments have been developed and tested against these different variants of CLE to decrease the increasing levels of CLE in humans. In this article, a literature revision discussing the similarities between SLE and CLE is carried out. In addition, new advances in understanding the development of CLE and the leading treatments being evaluated in animal models and clinical trials are reviewed.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Felipe Melo-González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| |
Collapse
|
26
|
Parodis I, Gatto M, Sjöwall C. B cells in systemic lupus erythematosus: Targets of new therapies and surveillance tools. Front Med (Lausanne) 2022; 9:952304. [PMID: 36111105 PMCID: PMC9468481 DOI: 10.3389/fmed.2022.952304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
B cell hyperactivity is a hallmark of the complex autoimmune disease systemic lupus erythematosus (SLE), which has justified drug development focusing on B cell altering agents during the last decades, as well as the off-label use of B cell targeting biologics. About a decade ago, the anti-B cell activating factor (BAFF) belimumab was the first biological agent to be licensed for the treatment of adult patients with active yet non-renal and non-neuropsychiatric SLE, to later be expanded to include treatment of pediatric SLE and, recently, lupus nephritis. B cell depletion is recommended as an off-label option in refractory cases, with the anti-CD20 rituximab having been the most used B cell depleting agent to date while agents with a slightly different binding specificity to CD20 such as obinutuzumab have also shown promise, forming a part of the current pipeline. In addition, terminally differentiated B cells have also been the targets of experimental therapies, with the proteasome inhibitor bortezomib being one example. Apart from being promising drug targets, B and plasma cells have also shown promise in the surveillance of patients with SLE, especially for monitoring B cell depleting or B cell altering therapies. Inadequate B cell depletion may signify poor expected clinical response to rituximab, for example, while prominent reductions in certain B cell subsets may signify a protection against flare development in patients treated with belimumab. Toward an era with a richer therapeutic armamentarium in SLE, including to a large extent B cell altering treatments, the challenge that emerges is to determine diagnostic means for evidence-based therapeutic decision-making, that uses clinical information, serological markers, and gene expression patterns to guide individualized precision strategies.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Yamada J, Peracchi OA, Terreri MT, de Moraes-Pinto MI. Cell activation, PD-1 expression and in vitro cytokine production in patients with juvenile systemic lupus erythematosus. Lupus 2022; 31:1237-1244. [PMID: 35849633 DOI: 10.1177/09612033221112809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Juvenile systemic lupus erythematosus (jSLE) is known to be more severe and with a higher frequency of renal and central nervous system impairment when compared to systemic lupus erythematosus in adults. The study of immunological characteristics of jSLE patients might help to envisage better treatment strategies to reduce the burden of the disease. OBJECTIVE To characterize peripheral lymphocytes, assessing activation markers, and PD-1 expression on T cells; to evaluate in vitro cytokine expression upon stimulation in jSLE patients and age-matched controls. METHODOLOGY Eighteen jSLE patients on low disease activity and 25 matched healthy adolescents were evaluated for immune activation and PD-1 expression on peripheral blood lymphocytes by flow cytometry. Twenty-one cytokines were assessed by X-MAP technology after in vitro stimulation of peripheral blood with phytohemagglutinin. RESULTS jSLE patients had lower numbers of CD4 T, CD8 T, B, and NK cells; higher central memory CD8 T cell percentages were noted in jSLE adolescents in comparison with controls (p = 0.014). B cells subsets showed a higher percentage of exhausted memory subset than controls (p = 0.014). The expression of PD-1 on CD4 T and CD8 T cells did not show relevant changes in jSLE adolescents. After stimulation of peripheral blood, cell supernatant of jSLE patients showed a trend to lower concentrations of IL-10 (p=0.080) and higher concentrations of IL-23 (p = 0.063) than controls. CONCLUSIONS jSLE patients on low disease activity maintain lymphopenia of all subsets, with a B cell profile of exhaustion. Upon in vitro stimulation, peripheral blood cell supernatant showed a shift to IL-23, suggesting a role of inhibitors of this cytokine as another potential therapeutic target for those patients.
Collapse
Affiliation(s)
- Juliana Yamada
- Research Laboratory, Division of Pediatric Infectious Diseases, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Octávio Ab Peracchi
- Unit of Pediatric Rheumatology, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Unit of Pediatric Rheumatology, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Research Laboratory, Division of Pediatric Infectious Diseases, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Lin J, Sun J. Rituximab May Have Positive Effect on Refractory Nephrotic Syndrome: A Meta-Analysis of Randomized Trials. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3008597. [PMID: 35813445 PMCID: PMC9262522 DOI: 10.1155/2022/3008597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Purpose This study was aimed at demonstrating the role of rituximab (RTX) on the influence of nephrotic syndrome (NS) and on urinary protein which was not significant. Methods The clinical randomized controlled trials were performed by eight databases. Meanwhile, the confidence interval (CI) of either relative risk or mean difference was set to 95%. Besides, the heterogeneity of the research results is tested by I 2. Results A total of 1658 references were found using the search method. This meta-analysis will be done by the ultimately eight different studies. Each study is described as random controlled trial. According to these eight studies, the remission of test group and control group was quite higher (OR: 1.60; 95% Cl: 1.17, 2.20; P < 0.01) than the control group, serum albumin (SMD: 4.19; 95% Cl: 1.49, 6.89; P < 0.01), and urine protein (SMD: 0.79; 95% Cl: -0.64, 2.22; P = 0.28). Despite the fact that the remission rate's funnel plot was asymmetrically distributed, Egger's test and Begg's test revealed no probable publish bias. Conclusion The results of this study suggest that rituximab (RTX) may be effective in RNS, as evidenced by remission rates and serum albumin. However, the effect on urinary protein was not significant. The clear evidence is missing in this literature. Therefore, large sample, multicenter, low risk of bias clinical studies, as well as basic medical research, is needed.
Collapse
Affiliation(s)
- Jingjing Lin
- Nephrology Department, First People's Hospital of Linping District, Hangzhou, China
| | - Jia Sun
- Nephrology Department, First People's Hospital of Linping District, Hangzhou, China
| |
Collapse
|
30
|
Sun W, Yan S, Yang C, Yang J, Wang H, Li C, Zhang L, Zhao L, Zhang J, Cheng M, Li X, Xu D. Mesenchymal Stem Cells-derived Exosomes Ameliorate Lupus by Inducing M2 Macrophage Polarization and Regulatory T Cell Expansion in MRL/lpr Mice. Immunol Invest 2022; 51:1785-1803. [PMID: 35332841 DOI: 10.1080/08820139.2022.2055478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.
Collapse
Affiliation(s)
- Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jinghan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Hui Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chaoran Li
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jiaojiao Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
31
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
32
|
CD4+ T Cells Promote IgG Production in MHC-Independent and ICAM-1-Dependent Manners in Pristane-Induced Lupus Mice. Mediators Inflamm 2022; 2022:9968847. [PMID: 35095344 PMCID: PMC8799362 DOI: 10.1155/2022/9968847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and chronic inflammation. The etiology and pathogenesis of SLE are complicated in which dysfunction of CD4+ T cells is largely engaged. In this study, we investigated the manners of CD4+ T cells in antibody production in a lupus-like mouse model through peritoneal injection of pristane reagent. With the increase in total IgG/IgM and autoantibody production after 6 months, CD4+ T cells exhibited activated phenotypes with the elevated CD44, ICOS, OX40, and PD-1 expression. Pristane injection induced the increase in IgM levels in both wild-type and T cell-deficient TCRα−/− mice whereas IgG, IgG1, and IgG2a production was impaired. When adoptively transferring CD4+ T cells into T cell-deficient mice or coculturing CD4+ T cells and B cells in vitro, it was found that CD4+ T cells derived from pristane-treated mice could help the production of total IgG as well as IgG1/IgG2a in a more efficient manner both in vivo and in vitro. While MHC was dispensable for IgG production, ICAM-1 likely functioned as an attenuating factor for IgG production. Our study thus reveals that CD4+ T cells in pristane-treated mice play important roles in IgG production, which implies the critical roles in the induction of pathological autoantibodies in MHC-independent and ICAM-1-dependent manners.
Collapse
|
33
|
Néel A, Degauque N, Bruneau S, Braudeau C, Bucchia M, Caristan A, De Mornac D, Genin V, Glemain A, Oriot C, Rimbert M, Brouard S, Josien R, Hamidou M. [Pathogenesis of ANCA-associated vasculitides in 2021: An update]. Rev Med Interne 2022; 43:89-97. [PMID: 35033384 DOI: 10.1016/j.revmed.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Anticytoplasmic neutrophil antibodies (ANCA)-associated vasculitis (AAV) are rare systemic immune-mediated diseases characterized by small vessel necrotizing vasculitis and/or respiratory tract inflammation. Over the last 2 decades, anti-MPO vasculitis mouse model has enlightened the role of ANCA, neutrophils, complement activation, T helper cells (Th1, Th17) and microbial agents. In humans, CD4T cells have been extensively studied, while the dramatic efficacy of rituximab demonstrated the key role of B cells. Many areas of uncertainty remain, such as the driving force of GPA extra-vascular granulomatous inflammation and the relapse risk of anti-PR3 AAV pathogenesis. Animal models eventually led to identify complement activation as a promising therapeutic target. New investigation tools, which permit in depth immune profiling of human blood and tissues, may open a new era for the studying of AAV pathogenesis.
Collapse
Affiliation(s)
- A Néel
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Centre de référence maladies auto-immunes systémiques Rares, hôpital Cochin, AP-HP, Paris, France.
| | - N Degauque
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - S Bruneau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Braudeau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Bucchia
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - A Caristan
- Service de médecine interne, CHD Vendée, La-Roche-Sur-Yon, France
| | - D De Mornac
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - V Genin
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - A Glemain
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Oriot
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - M Rimbert
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - S Brouard
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - R Josien
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| |
Collapse
|
34
|
Dang VD, Stefanski AL, Lino AC, Dörner T. B- and Plasma Cell Subsets in Autoimmune Diseases: Translational Perspectives. J Invest Dermatol 2021; 142:811-822. [PMID: 34955289 DOI: 10.1016/j.jid.2021.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
B lymphocytes play a central role in immunity owing to their unique antibody-producing capacity that provides protection against certain infections and during vaccination. In autoimmune diseases, B cells can gain pathogenic relevance through autoantibody production, antigen presentation, and proinflammatory cytokine secretion. Recent data indicate that B and plasma cells can function as regulators through the production of immunoregulatory cytokines and/or employing checkpoint molecules. In this study, we review the key findings that define subsets of B and plasma cells with pathogenic and protective functions in autoimmunity. In addition to harsh B-cell depletion, we discuss the strategies that have the potential to reinstall the balance of pathogenic and protective B cells with the potential of more specific and personalized therapies.
Collapse
Affiliation(s)
- Van Duc Dang
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ana-Luisa Stefanski
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, Markowitz DM, E Markowitz C, Mexhitaj I, Jacobs D, Babb A, Betts MR, Prak ETL, Weiskopf D, Grifoni A, Lundgreen KA, Gouma S, Sette A, Bates P, Hensley SE, Greenplate AR, Wherry EJ, Li R, Bar-Or A. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med 2021; 27:1990-2001. [PMID: 34522051 PMCID: PMC8604727 DOI: 10.1038/s41591-021-01507-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.
Collapse
Grants
- U19AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951 NIAMS NIH HHS
- AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R21 AI142638 NIAID NIH HHS
- AI108545 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI152236 NIAID NIH HHS
- 75N9301900065 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- AI149680 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 CA009140 NCI NIH HHS
- R01 AI118694 NIAID NIH HHS
- U19 AI082630 NIAID NIH HHS
- AI152236 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- P30-AI0450080 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951-01 U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- R01 AI105343 NIAID NIH HHS
- AI105343 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI155577 NIAID NIH HHS
- UM1 AI144288 NIAID NIH HHS
- U19 AI149680 NIAID NIH HHS
- AI155577 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- SI-2011-37160 National Multiple Sclerosis Society (National MS Society)
- UC4 DK112217 NIDDK NIH HHS
- P01 AI108545 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Penn | Perelman School of Medicine, University of Pennsylvania (Perelman School of Medicine at the University of Pennsylvania)
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mihir Kakara
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kerry Lenzi
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessy C Kadri
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel M Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Clyde E Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ina Mexhitaj
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dina Jacobs
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison Babb
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Chun W, Tian J, Zhang Y. Transplantation of mesenchymal stem cells ameliorates systemic lupus erythematosus and upregulates B10 cells through TGF-β1. Stem Cell Res Ther 2021; 12:512. [PMID: 34563233 PMCID: PMC8466915 DOI: 10.1186/s13287-021-02586-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considerable experimental and clinical evidences have proved that human umbilical cord mesenchymal stem cells (UC-MSCs) transplantation was powerful in systemic lupus erythematosus (SLE) treatment. MSCs could upregulate regulatory B cells (Bregs) in the mice model of the other immune disease. However, the regulation of MSCs on Bregs in SLE environment remains unclear. METHODS To assess the abilities of UC-MSCs to treat SLE, MSCs were transferred intravenously to 17- to 18-week-old MRL/lpr mice. Four weeks later, mice were sacrificed. Survival rates, anti-dsDNA antibodies and renal histology were evaluated. CD4+ T helper (Th) cell subgroups and interleukin (IL)-10+ Bregs (B10) in the spleen were quantitated by flow cytometry. The changes of transforming growth factor (TGF)-β1, IL-6 and indoleamine 2,3-dioxyenase (IDO) mRNAs expressed by MSCs after co-cultured with B cells were detected using real-time polymerase chain reaction (RT-PCR). MSCs were infected by lentivirus carrying TGF-β1 shRNAs, then MSCs with low expression of TGF-β1 were conducted for co-culture in vitro and transplantation experiments in vivo. RESULTS UC-MSCs transplantation could efficiently downregulate 24 h proteinuria and anti-dsDNA antibodies, correct Treg/Th17/Th1 imbalances and increase the frequency of B10 cells. The expression of TGF-β1 in MSCs was significantly increased after co-culture with B cells. Downregulation of TGF-β1 in MSCs could significantly attenuate the upregulation of B10 by MSCs in vitro and in vivo. Downregulation of TGF-β1 also compromised the immunomodulation effects of MSCs on Th17 and Treg cells and the therapeutic effects of MSC transplantation. CONCLUSIONS UC-MSCs could protect against SLE in mice and upregulate IL-10+ Bregs via TGF-β1.
Collapse
Affiliation(s)
- Wang Chun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| |
Collapse
|
37
|
Werner A, Schäfer S, Zaytseva O, Albert H, Lux A, Krištić J, Pezer M, Lauc G, Winkler T, Nimmerjahn F. Targeting B cells in the pre-phase of systemic autoimmunity globally interferes with autoimmune pathology. iScience 2021; 24:103076. [PMID: 34585117 PMCID: PMC8455742 DOI: 10.1016/j.isci.2021.103076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a loss of self-tolerance, systemic inflammation, and multi-organ damage. While a variety of therapeutic interventions are available, it has become clear that an early diagnosis and treatment may be key to achieve long lasting therapeutic responses and to limit irreversible organ damage. Loss of humoral tolerance including the appearance of self-reactive antibodies can be detected years before the actual onset of the clinical autoimmune disease, representing a potential early point of intervention. Not much is known, however, about how and to what extent this pre-phase of disease impacts the onset and development of subsequent autoimmunity. By targeting the B cell compartment in the pre-disease phase of a spontaneous mouse model of SLE we now show, that resetting the humoral immune system during the clinically unapparent phase of the disease globally alters immune homeostasis delaying the downstream development of systemic autoimmunity.
The clinically unapparent pre-phase of SLE impacts clinical disease Autoreactive IgM antibodies represent a biomarker for early therapeutic intervention Pre-phase B cells orchestrate clinical disease Depleting pre-phase B cells diminishes disease pathology
Collapse
Affiliation(s)
- Anja Werner
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Simon Schäfer
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Olga Zaytseva
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Heike Albert
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Jasminka Krištić
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Marija Pezer
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
38
|
Canny SP, Jackson SW. B Cells in Systemic Lupus Erythematosus: From Disease Mechanisms to Targeted Therapies. Rheum Dis Clin North Am 2021; 47:395-413. [PMID: 34215370 PMCID: PMC8357318 DOI: 10.1016/j.rdc.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B cells exert a prominent contribution to the pathogenesis of systemic lupus erythematosus (SLE). Here, we review the immune mechanisms underlying autoreactive B cell activation in SLE, focusing on how B cell receptor and Toll-like receptor signals integrate to drive breaks in tolerance to nuclear antigens. In addition, we discuss autoantibody-dependent and autoantibody-independent B cell effector functions during lupus pathogenesis. Finally, we address efforts to target B cells therapeutically in human SLE. Despite initial disappointing clinical trials testing B cell depletion in lupus, more recent studies show promise, emphasizing how greater understanding of underlying immune mechanisms can yield clinical benefits.
Collapse
Affiliation(s)
- Susan P Canny
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
39
|
Atisha-Fregoso Y, Toz B, Diamond B. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus. J Clin Invest 2021; 131:149095. [PMID: 34128474 PMCID: PMC8203443 DOI: 10.1172/jci149095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B cells have a prominent role in the pathogenesis of systemic lupus erythematosus (SLE). They are mediators of inflammation through the production of pathogenic antibodies that augment inflammation and cause direct tissue and cell damage. Multiple therapeutic agents targeting B cells have been successfully used in mouse models of SLE; however, these preclinical studies have led to approval of only one new agent to treat patients with SLE: belimumab, a monoclonal antibody targeting B cell-activating factor (BAFF). Integrating the experience acquired from previous clinical trials with the knowledge generated by new studies about mechanisms of B cell contributions to SLE in specific groups of patients is critical to the development of new treatment strategies that will help to improve outcomes in patients with SLE. In particular, a sharper focus on B cell differentiation to plasma cells is warranted.
Collapse
Affiliation(s)
- Yemil Atisha-Fregoso
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, New York, USA
| | - Bahtiyar Toz
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, New York, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
40
|
Dixit N, Fanton C, Langowski JL, Kirksey Y, Kirk P, Chang T, Cetz J, Dixit V, Kim G, Kuo P, Maiti M, Tang Y, VanderVeen LA, Zhang P, Lee M, Ritz J, Kamihara Y, Ji C, Rubas W, Sweeney TD, Doberstein SK, Zalevsky J. NKTR-358: A novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J Transl Autoimmun 2021; 4:100103. [PMID: 34041473 PMCID: PMC8141531 DOI: 10.1016/j.jtauto.2021.100103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/04/2022] Open
Abstract
Impaired interleukin-2 (IL-2) production and regulatory T-cell dysfunction have been implicated as immunological mechanisms central to the pathogenesis of multiple autoimmune and inflammatory diseases. NKTR-358, a novel regulatory T-cell stimulator, is an investigational therapeutic that selectively restores regulatory T-cell homeostasis in these diseases. We investigated NKTR-358's selectivity for regulatory T-cells, receptor-binding properties, ex vivo and in vivo pharmacodynamics, ability to suppress conventional T-cell proliferation in mice and non-human primates, and functional activity in a murine model of systemic lupus erythematosus. In vitro, NKTR-358 demonstrated decreased affinity for IL-2Rα, IL-2Rβ, and IL-2Rαβ compared with recombinant human IL-2 (rhIL-2). A single dose of NKTR-358 in cynomolgus monkeys produced a greater than 15-fold increase in regulatory T-cells, and the increase lasted until day 14, while daily rhIL-2 administration for 5 days only elicited a 3-fold increase, which lasted until day 7. Repeated dosing of NKTR-358 over 6 months in cynomolgus monkeys elicited cyclical, robust increases in regulatory T-cells with no loss in drug activity over the course of treatment. Regulatory T-cells isolated from NKTR-358-treated mice displayed a sustained, higher suppression of conventional T-cell proliferation than regulatory T-cells isolated from vehicle-treated mice. NKTR-358 treatment in a mouse model (MRL/MpJ-Faslpr) of systemic lupus erythematosus for 12 weeks maintained elevated regulatory T-cells for the treatment duration and ameliorated disease progression. Together, these results suggest that NKTR-358 has the ability to elicit sustained and preferential proliferation and activation of regulatory T-cells without corresponding effects on conventional T-cells, with improved pharmacokinetics compared with rhIL-2.
NKTR-358 is a pegylated IL-2 designed to induce Treg activation and proliferation. This preclinical study compared NKTR-358 vs recombinant IL-2 for effects on Tregs. NKTR-358 induced a greater increase in Treg:CD8+ T cell ratio compared with rhIL-2.
Collapse
Affiliation(s)
- Neha Dixit
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Christie Fanton
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - John L Langowski
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Yolanda Kirksey
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Peter Kirk
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Thomas Chang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Janet Cetz
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Vidula Dixit
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Grace Kim
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Peiwen Kuo
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Mekhala Maiti
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Yinyan Tang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Laurie A VanderVeen
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Ping Zhang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Myong Lee
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yusuke Kamihara
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Chunmei Ji
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Werner Rubas
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Theresa D Sweeney
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Stephen K Doberstein
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Jonathan Zalevsky
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| |
Collapse
|
41
|
Liossis SN, Staveri C. What's New in the Treatment of Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:655100. [PMID: 33748165 PMCID: PMC7973110 DOI: 10.3389/fmed.2021.655100] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune multisystem disease with a variable presentation and manifestations ranging from mild to severe or even life-threatening. There is an ongoing and unmet need for novel, disease-specific, effective and safe treatment modalities. The aim of this review is to summarize data on SLE treatment that have emerged over the last 3 years. We will put emphasis on studies evaluating potential treatments on severe lupus manifestations such as lupus nephritis. Despite the existence of several therapeutic agents in SLE, the disease keeps causing significant morbidity. It is encouraging that a variety of therapeutic options are currently under investigation, although there are occasional trial failures.
Collapse
Affiliation(s)
- Stamatis Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece.,Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Chrysanthi Staveri
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, Patras, Greece
| |
Collapse
|
42
|
Cai Z, Zhang S, Wu P, Ren Q, Wei P, Hong M, Feng Y, Wong CK, Tang H, Zeng H. A novel potential target of IL-35-regulated JAK/STAT signaling pathway in lupus nephritis. Clin Transl Med 2021; 11:e309. [PMID: 33634995 PMCID: PMC7851357 DOI: 10.1002/ctm2.309] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In this study, we have investigated the potential regulatory mechanisms of IL-35 to relieve lupus nephritis (LN) through regulating Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway in mesangial cells. RESULTS Among 105 significant differentially expressed proteins (DEPs) between juvenile systemic lupus erythematosus (JSLE) patients with LN and healthy controls, LAIR1, PDGFRβ, VTN, EPHB4, and EPHA4 were downregulated in JSLE-LN. They consist of an interactive network with PTPN11 and FN1, which involved in IL-35-related JAK/STAT signaling pathway. Besides, urinary LAIR1 was significantly correlated with JSLE-LN clinical parameters such as SLEDAI-2K, %CD19+ B, and %CD3+ T cells. Through bioinformatics analysis of co-immunoprecipitation with mass spectrometry results, including GO, KEGG, and STRING, five genes interacted with Lair1 were upregulated by IL-35, but only Myh10 was downregulated. Therefore, we presumed an interactive network among these DEPs, JAK/STAT, and IL-35. Moreover, the downregulated phosphorylated (p)-STAT3, p-p38 MAPK, and p-ERK, and the upregulated p-JAK2/p-STAT1/4 in IL-35 overexpressed mesangial cells, and RNA-sequencing results validated the potential regulatory mechanisms of IL-35 in alleviating JSLE-LN disease. Moreover, the relieved histopathological features of nephritis including urine protein and leukocyte scores, a decreased %CD90+ αSMA+ mesangial cells and pro-inflammatory cytokines, the inactivated JAK/STAT signals and the significant upregulated Tregs in spleen, thymus and peripheral blood were validated in Tregs and IL-35 overexpression plasmid-treated lupus mice. CONCLUSIONS Our study provided a reference proteomic map of urinary biomarkers for JSLE-LN and elucidated evidence that IL-35 may regulate the interactive network of LAIR1-PTPN11-JAK-STAT-FN1 to affect JAK/STAT and MAPK signaling pathways to alleviate inflammation in JSLE-LN. This finding may provide a further prospective mechanism for JSLE-LN clinical treatment.
Collapse
Affiliation(s)
- Zhe Cai
- The Joint Center for Infection and Immunity, Guangzhou Institute of PediatricsGuangzhou Women and Children's Medical Center, Guangzhou Meidcal University, Guangzhou, ChinaInstitute Pasteur of ShanghaiChinese Academy of ScienceShanghaiChina
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
- Department of Chemical PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | - Song Zhang
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
- Jinan UniversityGuangzhouChina
| | - Ping Wu
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Qi Ren
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Ping Wei
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People's HospitalGuangzhou University & Zhongshan People's Hospital Joint Biomedical Institute2 Sunwen East RoadZhongshanChina
| | - Yu Feng
- Department of TraumatologyNingxia Hui Autonomous RegionGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Chun Kwok Wong
- Department of Chemical PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | - Hong Tang
- Institute Pasteur of ShanghaiChinese Academy of ScienceShanghaiChina
| | - Huasong Zeng
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| |
Collapse
|
43
|
Egbeto IA, Garelli CJ, Piedra-Mora C, Wong NB, David CN, Robinson NA, Richmond JM. Case Series: Gene Expression Analysis in Canine Vogt-Koyanagi-Harada/Uveodermatologic Syndrome and Vitiligo Reveals Conserved Immunopathogenesis Pathways Between Dog and Human Autoimmune Pigmentary Disorders. Front Immunol 2020; 11:590558. [PMID: 33384688 PMCID: PMC7770226 DOI: 10.3389/fimmu.2020.590558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Vogt-Koyanagi-Harada syndrome (VKH) and vitiligo are autoimmune diseases that target melanocytes. VKH affects several organs such as the skin, hair follicle, eyes, ears, and meninges, whereas vitiligo is often limited to the skin and mucosa. Many studies have identified immune genes, pathways and cells that drive the pathogeneses of VKH and vitiligo, including interleukins, chemokines, cytotoxic T-cells, and other leukocytes. Here, we present case studies of 2 canines with VKH and 1 with vitiligo, which occurred spontaneously in client-owned companion dogs. We performed comparative transcriptomics and immunohistochemistry studies on lesional skin biopsies from these cases in order to determine if the immunopathogenesis of autoimmune responses against melanocytes are conserved. In dogs, we found enrichment of T cell gene signatures, with upregulation of IFNG, TNF, PRF1, IL15, CTSW, CXCL10, and CCL5 in both VKH and vitiligo in dogs compared to healthy controls. Similar findings were reported in humans, suggesting that these genes play a role in the pathogenesis of spontaneous VKH and vitiligo. T cell-associated genes, including FOXP3 and TBX21, were enriched, while IGFBP5, FOXO1, and PECAM1 were decreased compared to healthy controls. Further, we identified TGFB3, SFRP2, and CXCL7 as additional potential drivers of autoimmune pigmentary disorders. Future studies exploring the immunopathogenesis of spontaneous autoimmunity will expand our understanding of these disorders, and will be useful in developing targeted therapies, repurposing drugs for veterinary and human medicine, and predicting disease prognosis and treatment response.
Collapse
Affiliation(s)
- Ista A Egbeto
- Department of Dermatology, UMass Medical School, Worcester, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Colton J Garelli
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | - Cesar Piedra-Mora
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Neil B Wong
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | | | - Nicholas A Robinson
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| |
Collapse
|
44
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
45
|
Tesch S, Abdirama D, Grießbach AS, Brand HA, Goerlich N, Humrich JY, Bacher P, Hiepe F, Riemekasten G, Enghard P. Identification and characterization of antigen-specific CD4 + T cells targeting renally expressed antigens in human lupus nephritis with two independent methods. Sci Rep 2020; 10:21312. [PMID: 33277543 PMCID: PMC7718878 DOI: 10.1038/s41598-020-78223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
In the search for anti-renal autoreactivity in human lupus nephritis, we stimulated blood-derived CD4+ T cells from patients with systemic lupus erythematosus with various kidney lysates. Although only minor responses were detectable, these experiments led to the development of a search algorithm that combined autoantibody association with human lupus nephritis and target gene expression in inflamed kidneys. Applying this algorithm, five potential T cell antigens were identified. Blood-derived CD4+ T cells were then stimulated with these antigens. The cells were magnetically enriched prior to measurement with flow cytometry to facilitate the detection of very rare autoantigen-specific cells. The detected responses were dominated by IFN-γ-producing CD4+ T cells. Additionally, IL-10-producing CD4+ T cells were found. In a next step, T cell reactivity to each single antigen was independently evaluated with T cell libraries and [3H]-thymidine incorporation assays. Here, Vimentin and Annexin A2 were identified as the main T cell targets. Finally, Vimentin reactive T cells were also found in the urine of three patients with active disease. Overall, our experiments show that antigen-specific CD4+ T cells targeting renally expressed antigens arise in human lupus nephritis and correlate with disease activity and are mainly of the Th1 subset.
Collapse
Affiliation(s)
- Sebastian Tesch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Dimas Abdirama
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anna-Sophie Grießbach
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hannah Antonia Brand
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Petra Bacher
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Institute of Immunology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany. .,Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.
| |
Collapse
|
46
|
Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, Ley AM, Kyu S, Howell JC, Ozturk T, Lee S, Suryadevara N, Case JB, Bugrovsky R, Chen W, Estrada J, Morrison-Porter A, Derrico A, Anam FA, Sharma M, Wu HM, Le SN, Jenks SA, Tipton CM, Staitieh B, Daiss JL, Ghosn E, Diamond MS, Carnahan RH, Crowe JE, Hu WT, Lee FEH, Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol 2020; 21:1506-1516. [PMID: 33028979 PMCID: PMC7739702 DOI: 10.1038/s41590-020-00814-z] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Ankur Singh Saini
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Atlanta, GA, USA
| | - Ariel M Ley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Tugba Ozturk
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Saeyun Lee
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Jacob Estrada
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Andrew Derrico
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Monika Sharma
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Henry M Wu
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Sang N Le
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Bashar Staitieh
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William T Hu
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
47
|
Horii M, Matsushita T. Regulatory B cells and T cell Regulation in Cancer. J Mol Biol 2020; 433:166685. [PMID: 33096106 DOI: 10.1016/j.jmb.2020.10.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.
Collapse
Affiliation(s)
- Motoki Horii
- Department of Dermatology, Kanazawa University, Graduate School of Medical Sciences, Kanazawa 920-8641, Japan.
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University, Graduate School of Medical Sciences, Kanazawa 920-8641, Japan.
| |
Collapse
|
48
|
Mathias LM, Stohl W. Systemic lupus erythematosus (SLE): emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1283-1302. [PMID: 33034541 DOI: 10.1080/14728222.2020.1832464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a heterogeneous clinical presentation whose etiologies are multifactorial. A myriad of genetic, hormonal, immunologic, and environmental factors contribute to its pathogenesis, and its diverse biological basis and phenotypic presentations make development of therapeutics difficult. In the past decade, tens of therapeutic targets with hundreds of individual candidate therapeutics have been investigated. AREAS COVERED We used a PUBMED database search through April 2020 to review the relevant literature. This review discusses therapeutic targets in the adaptive and innate immune systems, specifically: B cell surface antigens, B cell survival factors, Bruton's tyrosine kinase, costimulators, IL-12/IL-23, the calcineurin pathway, the JAK/STAT pathway, and interferons. EXPERT OPINION Our ever-improving understanding of SLE pathophysiology in the past decade has allowed us to identify new therapeutic targets. Multiple new drugs are on the horizon that target different elements of the adaptive and innate immune systems. SLE research remains challenging due to the heterogenous clinical presentation of SLE, confounding from background immunosuppressives being taken by SLE patients, animal models that inadequately recapitulate human disease, and imperfect and complicated outcome measures. Despite these limitations, research is promising and ongoing. The search for new therapies that target specific elements of SLE pathophysiology are discussed as well as key findings, pitfalls, and questions surrounding these targets.
Collapse
Affiliation(s)
- Lauren M Mathias
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
49
|
Halliday N, Dyson JK, Thorburn D, Lohse AW, Heneghan MA. Review article: experimental therapies in autoimmune hepatitis. Aliment Pharmacol Ther 2020; 52:1134-1149. [PMID: 32794592 DOI: 10.1111/apt.16035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Current therapeutic options for autoimmune hepatitis (AIH) are limited by adverse events associated with corticosteroids and thiopurines and the limited evidence base for second- and third-line treatment options. Furthermore, current treatment approaches require long-term exposure of patients to pharmacological agents. There have been significant advances in the understanding of the mechanisms underpinning autoimmunity and an expansion in the available therapeutic agents for suppressing autoimmune responses or potentially restoring self-tolerance. AIM To review the mechanisms and evidence for experimental therapies that are being actively explored in the management of AIH. METHODS We have reviewed the literature relating to a range of novel therapeutic immunomodulatory treatment strategies and drugs. RESULTS Drugs which block B cell-activating factor of the tumour necrosis factor family (BAFF) and tumour necrosis factor α are currently in clinical trials for the treatment of AIH. Experimental therapies and technologies to increase immune tolerance, such as pre-implantation factor and regulatory T cell therapies, are undergoing development for application in autoimmune disorders. There is also evidence for targeting inflammatory pathways to control other autoimmune conditions, such as blockade of IL1 and IL6 and Janus-associated kinase (JAK) inhibitors. CONCLUSIONS With the range of tools available to clinicians and patients increasing, it is likely that the therapeutic landscape of AIH will change over the coming years and treatment approaches offering lower corticosteroid use and aiming to restore immune self-tolerance should be sought.
Collapse
Affiliation(s)
- Neil Halliday
- Institute of Liver and Digestive Health, University College London, London, UK.,The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - Jessica Katharine Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Hepatology Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Douglas Thorburn
- Institute of Liver and Digestive Health, University College London, London, UK.,The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
50
|
Yap DYH, Yung S, Lee P, Yam IYL, Tam C, Tang C, Chan TM. B Cell Subsets and Cellular Signatures and Disease Relapse in Lupus Nephritis. Front Immunol 2020; 11:1732. [PMID: 33013825 PMCID: PMC7511550 DOI: 10.3389/fimmu.2020.01732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction Renal relapses adversely affect the long-term outcomes of patients with lupus nephritis (LN), but the pathogenic mechanisms remain elusive. B cell signatures of miR-148a, BACH1, BACH2, and PAX5 expression are relevant to the regulation of B lymphocyte homeostasis. It is unknown whether B cell signature is related to the relapse of LN. Methods We compared B lymphocyte subsets and cellular signatures during disease quiescence between LN patients with multiple relapses (MR, ≥3 LN relapses within 36 months) and those with no relapse (NR). Also, circulating B lymphocytes were isolated from treatment-naïve patients with active LN and treated with antagomir-148a in vitro to investigate the relationship between miR-148a, BACH1, BACH2, and PAX5. Results MR patients (n = 19), when compared with NR (n = 14), showed significantly lower percentage of circulating naïve B cells and higher memory B cell-to-naïve B cell ratio. MR patients also showed higher miR-148a levels in sera and B cells, and lower BACH1, BACH2, and PAX5 expression in naïve and memory B cells. Antagomir-148a upregulated BACH1, BACH2, and PAX5 expression, and reduced B cell proliferation upon stimulation, in naïve and memory B cells isolated from treatment-naïve active LN patients. Conclusion Altered B cell subsets and cellular signatures of miR-148a, BACH1, BACH2, and PAX5 may be associated with distinct patient phenotypes related to the risk of LN relapse.
Collapse
Affiliation(s)
- Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Susan Yung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Paul Lee
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Y L Yam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheryl Tam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Colin Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tak Mao Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|