1
|
Szaflarska A, Lenart M, Rutkowska-Zapała M, Siedlar M. Clinical and experimental treatment of primary humoral immunodeficiencies. Clin Exp Immunol 2024; 216:120-131. [PMID: 38306460 PMCID: PMC11036112 DOI: 10.1093/cei/uxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Selective IgA deficiency (sIgAD), common variable immunodeficiency (CVID), and transient hypogammaglobulinemia of infancy (THI) are the most frequent forms of primary antibody deficiencies. Difficulties in initial diagnosis, especially in the early childhood, the familiar occurrence of these diseases, as well as the possibility of progression to each other suggest common cellular and molecular patomechanism and a similar genetic background. In this review, we discuss both similarities and differences of these three humoral immunodeficiencies, focusing on current and novel therapeutic approaches. We summarize immunoglobulin substitution, antibiotic prophylaxis, treatment of autoimmune diseases, and other common complications, i.e. cytopenias, gastrointestinal complications, and granulomatous disease. We discuss novel therapeutic approaches such as allogenic stem cell transplantation and therapies targeting-specific proteins, dependent on the patient's genetic defect. The diversity of possible therapeutics models results from a great heterogeneity of the disease variants, implying the need of personalized medicine approach as a future of primary humoral immunodeficiencies treatment.
Collapse
Affiliation(s)
- Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| |
Collapse
|
2
|
Maier J, Sieme D, Wong LE, Dar F, Wienands J, Becker S, Griesinger C. Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex. PNAS NEXUS 2024; 3:pgae079. [PMID: 38463037 PMCID: PMC10923291 DOI: 10.1093/pnasnexus/pgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Biomolecular condensates play a major role in cell compartmentalization, besides membrane-enclosed organelles. The multivalent SLP65 and CIN85 proteins are proximal B-cell antigen receptor (BCR) signal effectors and critical for proper immune responses. In association with intracellular vesicles, the two effector proteins form phase separated condensates prior to antigen stimulation, thereby preparing B lymphocytes for rapid and effective activation upon BCR ligation. Within this tripartite system, 6 proline-rich motifs (PRMs) of SLP65 interact promiscuously with 3 SH3 domains of the CIN85 monomer, establishing 18 individual SH3-PRM interactions whose individual dissociation constants we determined. Based on these 18 dissociation constants, we measured the phase-separation properties of the natural SLP65/CIN85 system as well as designer constructs that emphasize the strongest SH3/PRM interactions. By modeling these various SLP65/CIN85 constructs with the program LASSI (LAttice simulation engine for Sticker and Spacer Interactions), we reproduced the observed phase-separation properties. In addition, LASSI revealed a deviation in the experimental measurement, which was independently identified as a previously unknown intramolecular interaction. Thus, thermodynamic properties of the individual PRM/SH3 interactions allow us to model the phase-separation behavior of the SLP65/CIN85 system faithfully.
Collapse
Affiliation(s)
- Joachim Maier
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Daniel Sieme
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Leo E Wong
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Furqan Dar
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Sieme D, Engelke M, Rezaei-Ghaleh N, Becker S, Wienands J, Griesinger C. Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation. J Am Chem Soc 2024; 146:399-409. [PMID: 38111344 PMCID: PMC10786037 DOI: 10.1021/jacs.3c09586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Engelke
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute
of Physical Biology, Heinrich Heine University
Düsseldorf, Universitätsstraße
1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Stefan Becker
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Noman AA, Islam MK, Feroz T, Hossain MM, Shakil MSK. A Systems Biology Approach for Investigating Significant Biomarkers and Drug Targets Common Among Patients with Gonorrhea, Chlamydia, and Prostate Cancer: A Pilot Study. Bioinform Biol Insights 2023; 17:11779322231214445. [PMID: 38033384 PMCID: PMC10683397 DOI: 10.1177/11779322231214445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Having a previous history of sexually transmitted diseases (STDs) such as gonorrhea and chlamydia increases the chance of developing prostate cancer, the second most frequent malignant cancer among men. However, the molecular functions that cause the development of prostate cancer in persons with gonorrhea and chlamydia are yet unknown. In this study, we studied RNA-seq gene expression profiles using computational biology methods to find out potential biomarkers that could help us in understanding the patho-biological mechanisms of gonorrhea, chlamydia, and prostate cancer. Using statistical methods on the Gene Expression Omnibus (GEO) data sets, it was found that a total of 22 distinct differentially expressed genes were shared among these 3 diseases of which 14 were up-regulated (PGRMC1, TSC22D1, SH3BGRL, NNT, CTSC, FRMD3, CCR2, FAM210B, VCL, PTGS1, SLFN11, SLC40A1, PROS1, and DSE) and the remaining 8 genes were down-regulated (PRNP, HINT3, MARCKSL1, TMED10, SH3KBP1, ENSA, DERL1, and KMT2B). Investigation on these 22 unique dysregulated genes using Gene Ontology, BioCarta, KEGG, and Reactome revealed multiple altered molecular pathways, including regulation of amyloid precursor protein catabolic process, ferroptosis, effects on gene expression of Homo sapiens PPAR pathway, and innate immune system R-HSA-168249. Four significant hub proteins namely VCL, SH3KBP1, PRNP, and PGRMC1 were revealed by protein-protein interaction network analysis. By analyzing gene-transcription factors and gene-miRNAs interactions, significant transcription factors (POU2F2, POU2F1, GATA6, and HIVEP1) and posttranscriptional regulator microRNAs (hsa-miR-7-5p) were also identified. Three potential therapeutic compounds namely INCB3284, CCX915, and MLN-1202 were found to interact with up-regulated protein C-C chemokine receptor type 2 (CCR2) in protein-drug interaction analysis. The proposed biomarkers and therapeutic potential molecules could be investigated for potential pharmacological targets and activity in the fight against in patients with gonorrhea, chlamydia, and prostate cancer.
Collapse
Affiliation(s)
- Abdulla Al Noman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Kobirul Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tasmiah Feroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Monir Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Shahariar Kabir Shakil
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
5
|
Peng XP, Al-Ddafari MS, Caballero-Oteyza A, El Mezouar C, Mrovecova P, Dib SE, Massen Z, Smahi MCE, Faiza A, Hassaïne RT, Lefranc G, Aribi M, Grimbacher B. Next generation sequencing (NGS)-based approach to diagnosing Algerian patients with suspected inborn errors of immunity (IEIs). Clin Immunol 2023; 256:109758. [PMID: 37678716 DOI: 10.1016/j.clim.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The advent of next-generation sequencing (NGS) technologies has greatly expanded our understanding of both the clinical spectra and genetic landscape of inborn errors of immunity (IEIs). Endogamous populations may be enriched for unique, ancestry-specific disease-causing variants, a consideration that significantly impacts molecular testing and analysis strategies. Herein, we report on the application of a 2-step NGS-based testing approach beginning with targeted gene panels (TGPs) tailored to specific IEI subtypes and reflexing to whole exome sequencing (WES) if negative for Northwest Algerian patients with suspected IEIs. Our overall diagnostic yield of 57% is comparable to others broadly applying short-read NGS to IEI detection, but data from our localized cohort show some similarities and differences from NGS studies performed on larger regional IEI cohorts. This suggests the importance of tailoring diagnostic strategies to local demographics and needs, but also highlights ongoing concerns inherent to the application of genomics for clinical IEI diagnostics.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Andres Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Chahrazed El Mezouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Saad Eddin Dib
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Zoheir Massen
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Specialized Mother-Child Hospital of Tlemcen, Department of Neonatology, Faculty of Medicine, University of Tlemcen, Algeria
| | - Alddafari Faiza
- Department of Internal Medicine, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | | | - Gérard Lefranc
- Institute of Human Genetics, UMR 9002 CNRS-University of Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
6
|
Tilemis FN, Marinakis NM, Veltra D, Svingou M, Kekou K, Mitrakos A, Tzetis M, Kosma K, Makrythanasis P, Traeger-Synodinos J, Sofocleous C. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes (Basel) 2023; 14:1490. [PMID: 37510394 PMCID: PMC10379589 DOI: 10.3390/genes14071490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Whole-Exome Sequencing (WES) has proven valuable in the characterization of underlying genetic defects in most rare diseases (RDs). Copy Number Variants (CNVs) were initially thought to escape detection. Recent technological advances enabled CNV calling from WES data with the use of accurate and highly sensitive bioinformatic tools. Amongst 920 patients referred for WES, 454 unresolved cases were further analysed using the ExomeDepth algorithm. CNVs were called, evaluated and categorized according to ACMG/ClinGen recommendations. Causative CNVs were identified in 40 patients, increasing the diagnostic yield of WES from 50.7% (466/920) to 55% (506/920). Twenty-two CNVs were available for validation and were all confirmed; of these, five were novel. Implementation of the ExomeDepth tool promoted effective identification of phenotype-relevant and/or novel CNVs. Among the advantages of calling CNVs from WES data, characterization of complex genotypes comprising both CNVs and SNVs minimizes cost and time to final diagnosis, while allowing differentiation between true or false homozygosity, as well as compound heterozygosity of variants in AR genes. The use of a specific algorithm for calling CNVs from WES data enables ancillary detection of different types of causative genetic variants, making WES a critical first-tier diagnostic test for patients with RDs.
Collapse
Affiliation(s)
- Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anastasios Mitrakos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Tzetis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Genetic Medicine and Development, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
Hu J, Xu X, Li J, Jiang Y, Hong X, Rexrode KM, Wang G, Hu FB, Zhang H, Karmaus WJ, Wang X, Liang L. Sex differences in the intergenerational link between maternal and neonatal whole blood DNA methylation: a genome-wide analysis in 2 birth cohorts. Clin Epigenetics 2023; 15:51. [PMID: 36966332 PMCID: PMC10040137 DOI: 10.1186/s13148-023-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/06/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The mother-child inheritance of DNA methylation (DNAm) variations could contribute to the inheritance of disease susceptibility across generations. However, no study has investigated patterns of mother-child associations in DNAm at the genome-wide scale. It remains unknown whether there are sex differences in mother-child DNAm associations. RESULTS Using genome-wide DNAm profiling data (721,331 DNAm sites, including 704,552 on autosomes and 16,779 on the X chromosome) of 396 mother-newborn pairs (54.5% male) from the Boston Birth Cohort, we found significant sex differences in mother-newborn correlations in genome-wide DNAm patterns (Spearman's rho = 0.91-0.98; p = 4.0 × 10-8), with female newborns having stronger correlations. Sex differences in correlations were attenuated but remained significant after excluding X-chromosomal DNAm sites (Spearman's rho = 0.91-0.98; p = 0.035). Moreover, 89,267 DNAm sites (12.4% of all analyzed, including 88,051 [12.5% of analyzed] autosomal and 1,216 [7.2% of analyzed] X-chromosomal sites) showed significant mother-newborn associations in methylation levels, and the top autosomal DNAm sites had high heritability than the genome-wide background (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.92). Additionally, significant interactions between newborn sex and methylation levels were observed for 11 X-chromosomal and 4 autosomal DNAm sites that were mapped to genes that have been associated with sex-specific disease/traits or early development (e.g., EFHC2, NXY, ADCYAP1R1, and BMP4). Finally, 18,769 DNAm sites (14,482 [77.2%] on the X chromosome) showed mother-newborn differences in methylation levels that were significantly associated with newborn sex, and the top autosomal DNAm sites had relatively small heritability (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.23). These DNAm sites were mapped to 2,532 autosomal genes and 978 X-chromosomal genes with significant enrichment in pathways involved in neurodegenerative and psychological diseases, development, neurophysiological process, immune response, and sex-specific cancers. Replication analysis in the Isle of Wight birth cohort yielded consistent results. CONCLUSION In two independent birth cohorts, we demonstrated strong mother-newborn correlations in whole blood DNAm on both autosomes and ChrX, and such correlations vary substantially by sex. Future studies are needed to examine to what extent our findings contribute to developmental origins of pediatric and adult diseases with well-observed sex differences.
Collapse
Affiliation(s)
- Jie Hu
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Xin Xu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Jun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiumei Hong
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoying Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried J Karmaus
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiaobin Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Sakka R, Abdelhedi F, Sellami H, Pichon B, Lajmi Y, Mnif M, Kebaili S, Derbel R, Kamoun H, Gdoura R, Delbaere A, Desir J, Abramowicz M, Vialard F, Dupont JM, Ammar-Keskes L. An unusual familial Xp22.12 microduplication including EIF1AX: A novel candidate dosage-sensitive gene for premature ovarian insufficiency. Eur J Med Genet 2022; 65:104613. [PMID: 36113757 DOI: 10.1016/j.ejmg.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
We report on the results of array-CGH and Whole exome sequencing (WES) studies carried out in a Tunisian family with 46,XX premature ovarian insufficiency (POI). This study has led to the identification of a familial Xp22.12 tandem duplication with a size of 559.4 kb, encompassing only three OMIM genes (RPS6KA3, SH3KBP1and EIF1AX), and a new heterozygous variant in SPIDR gene: NM_001080394.3:c.1845_1853delTATAATTGA (p.Ile616_Asp618del) segregating with POI. Increased mRNA expression levels were detected for SH3KBP1 and EIF1AX, while a normal transcript level for RPS6KA3 was detected in the three affected family members, explaining the absence of intellectual disability (ID). To the best of our knowledge, this is the first duplication involving the Xp22.12 region, reported in a family without ID, but rather with secondary amenorrhea (SA) and female infertility. As EIF1AX is a regulatory gene escaping X-inactivation, which has an extreme dosage sensitivity and highly expressed in the ovary, we suggest that this gene might be a candidate gene for ovarian function. Homozygous nonsense pathogenic variants of SPIDR gene have been reported in familial cases in POI. It has been suggested that chromosomal instability associated with SPIDR molecular defects supports the role of SPIDR protein in double-stranded DNA damage repair in vivo in humans and its causal role in POI. In this family, the variant (p.Ile616_Asp618del), present in a heterozygous state, is located in the domain that interacts with BLM and might disrupt the BLM binding ability of SPIDR protein. These findings strengthen the hypothesis that the additional effect of this variant could lead to POI in this family. Although the work represents the first evidence that EIF1AX duplication might be responsible for POI through its over-expression, further functional studies are needed to clarify and prove EIF1AX involvement in POI phenotype.
Collapse
Affiliation(s)
- Rim Sakka
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatma Abdelhedi
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Hanen Sellami
- Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, Nabeul, Tunisia; Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Bruno Pichon
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yosra Lajmi
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Sahbi Kebaili
- Department of Gynecology, HediChaker Hospital, Sfax, Tunisia
| | - Rihab Derbel
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Radhouane Gdoura
- Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, UniversitéLibre de Bruxelles, Brussels, Belgium
| | - Julie Desir
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - François Vialard
- Genetics Department, CHI Poissy St Germain-en-Laye, F-78300, Poissy, France; RHuMA Team, UMR-BREED, INRAE-UVSQ-ENVA, UFR-SVS, F-78180, Montigny le Bretonneux, France
| | - Jean-Michel Dupont
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Leila Ammar-Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
10
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|
11
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
12
|
Lougaris V, Plebani A. Predominantly Antibody Deficiencies. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:482-496. [DOI: 10.1016/b978-0-12-818731-9.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
14
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The advent of enhanced genetic testing has allowed for the discovery of gene defects underlying two broad categories of antibody deficiency in children: agammaglobulinemia and common variable immunodeficiency (CVID). This review describes the underlying gene defects and the clinical manifestations. RECENT FINDINGS Because novel monogenetic defects have been discovered in both categories, a strict dichotomous classification of B cell disorders as either X-linked agammaglobulinemia or common variable immunodeficiency is no longer appropriate. Advances in genetic testing technology and the decreasing cost of such testing permit more precise diagnosis of B cell disorders, more helpful information for genetic counselors, and a better understanding of the complex process of B cell development and function. More disorders await discovery.
Collapse
Affiliation(s)
- Bailee Gilchrist
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - William K Dolen
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat Commun 2020; 11:848. [PMID: 32051419 PMCID: PMC7016142 DOI: 10.1038/s41467-020-14544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 01/13/2020] [Indexed: 01/12/2023] Open
Abstract
Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers. Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and SLP65 is a key scaffold protein mediating BCR signaling. Here authors show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles.
Collapse
|
18
|
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2020; 40:24-64. [PMID: 31953710 PMCID: PMC7082301 DOI: 10.1007/s10875-019-00737-x] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, St Vincent's Clinical School, UNSW, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- King Hassan II University, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA at Faculty of Medicine and Pharmacy, Clinical Immunology Unit, Pediatric Infectiouse Disease Department, Children's Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Talal Chatila
- Division of Immunology, Children's Hospital Boston, Boston, MA, USA
| | | | - Amos Etzioni
- Ruth's Children's Hospital-Technion, Haifa, Israel
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Paris University, Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Chinese‐German Cooperation Group Tumor Immunology: Another inspiring Meeting in Deidesheim. Eur J Immunol 2019; 49:826-830. [DOI: 10.1002/eji.201970065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Kozlova N, Mennerich D, Samoylenko A, Dimova EY, Koivunen P, Biterova E, Richter K, Hassinen A, Kellokumpu S, Manninen A, Miinalainen I, Glumoff V, Ruddock L, Drobot LB, Kietzmann T. The Pro-Oncogenic Adaptor CIN85 Acts as an Inhibitory Binding Partner of Hypoxia-Inducible Factor Prolyl Hydroxylase 2. Cancer Res 2019; 79:4042-4056. [PMID: 31142511 DOI: 10.1158/0008-5472.can-18-3852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/17/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
The EGFR adaptor protein, CIN85, has been shown to promote breast cancer malignancy and hypoxia-inducible factor (HIF) stability. However, the mechanisms underlying cancer promotion remain ill defined. Here we show that CIN85 is a novel binding partner of the main HIF-prolyl hydroxylase, PHD2, but not of PHD1 or PHD3. Mechanistically, the N-terminal SRC homology 3 domains of CIN85 interacted with the proline-arginine-rich region within the N-terminus of PHD2, thereby inhibiting PHD2 activity and HIF degradation. This activity is essential in vivo, as specific loss of the CIN85-PHD2 interaction in CRISPR/Cas9-edited cells affected growth and migration properties, as well as tumor growth in mice. Overall, we discovered a previously unrecognized tumor growth checkpoint that is regulated by CIN85-PHD2 and uncovered an essential survival function in tumor cells by linking growth factor adaptors with hypoxia signaling. SIGNIFICANCE: This study provides unprecedented evidence for an oxygen-independent mechanism of PHD2 regulation that has important implications in cancer cell survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4042/F1.large.jpg.
Collapse
Affiliation(s)
- Nina Kozlova
- Cancer Center at Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anatoly Samoylenko
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.,Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.,Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.,Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ekaterina Biterova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kati Richter
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Virpi Glumoff
- The Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lyudmyla Borysivna Drobot
- Laboratory of Cell Signaling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, Onishi R, Carpino N, Ohara O, Kurosaki T, Phua KK, Saito T. Inhibition of T cell activation and function by the adaptor protein CIN85. Sci Signal 2019; 12:12/567/eaav4373. [PMID: 30723173 DOI: 10.1126/scisignal.aav4373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain-associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP76), and extracellular signal-regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling-2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.
Collapse
Affiliation(s)
- Mei Suen Kong
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Onishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-8434, USA
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kia Kien Phua
- Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan. .,Cell Signaling, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|