1
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 PMCID: PMC11688546 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingwei Lei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuyang Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daochen Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Chiang PT, Tsai LK, Tsai HH. New targets in spontaneous intracerebral hemorrhage. Curr Opin Neurol 2025; 38:10-17. [PMID: 39325041 PMCID: PMC11706352 DOI: 10.1097/wco.0000000000001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Intracerebral hemorrhage (ICH) is a devastating stroke with limited medical treatments; thus, timely exploration of emerging therapeutic targets is essential. This review focuses on the latest strategies to mitigate secondary brain injury post-ICH other than targeting surgery or hemostasis, addressing a significant gap in clinical practice and highlighting potential improvements in patient outcomes. RECENT FINDINGS Promising therapeutic targets to reduce secondary brain injury following ICH have recently been identified, including attenuation of iron toxicity and inhibition of ferroptosis, enhancement of endogenous resorption of hematoma, and modulation of perihematomal inflammatory responses and edema. Additionally, novel insights suggest the lymphatic system of the brain may potentially play a role in hematoma clearance and edema management. Various experimental and early-phase clinical trials have demonstrated these approaches may potentially offer clinical benefits, though most research remains in the preliminary stages. SUMMARY Continued research is essential to identify multifaceted treatment strategies for ICH. Clinical translation of these emerging targets could significantly enhance the efficacy of therapeutic interventions and potentially reduce secondary brain damage and improve neurological recovery. Future efforts should focus on large-scale clinical trials to validate these approaches, to pave the way for more effective treatment protocols for spontaneous ICH.
Collapse
Affiliation(s)
- Pu-Tien Chiang
- Department of Neurology, National Taiwan University Hospital
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital
| |
Collapse
|
3
|
Akhter N, Contreras J, Ansari MA, Ducruet AF, Hoda MN, Ahmad AS, Gangwani LD, Bhatia K, Ahmad S. Remote Ischemic Post-Conditioning (RIC) Mediates Anti-Inflammatory Signaling via Myeloid AMPKα1 in Murine Traumatic Optic Neuropathy (TON). Int J Mol Sci 2024; 25:13626. [PMID: 39769388 PMCID: PMC11728166 DOI: 10.3390/ijms252413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial. AMPKα1 is the catalytic subunit of the heterotrimeric enzyme AMPK, the master regulator of cellular energetics and metabolism. The α1 isoform predominates in immune cells including macrophages (Mφs). Myeloid-specific AMPKα1 KO mice were generated by crossing AMPKα1Flox/Flox and LysMcre to carry out the study. We induced TON in mice by using a controlled impact system. Mice (mixed sex) were randomized in six experimental groups for Sham (mock); Sham (RIC); AMPKα1F/F (TON); AMPKα1F/F (TON+RIC); AMPKα1F/F LysMCre (TON); AMPKα1F/F LysMCre (TON+RIC). RIC therapy was given every day (5-7 days following TON). Data were generated by using Western blotting (pAMPKα1, ICAM1, Brn3 and GAP43), immunofluorescence (pAMPKα1, cd11b, TMEM119 and ICAM1), flow cytometry (CD11b, F4/80, CD68, CD206, IL-10 and LY6G), ELISA (TNF-α and IL-10) and transmission electron microscopy (TEM, for demyelination and axonal degeneration), and retinal oxygenation was measured by a Unisense sensor system. First, we observed retinal morphology with funduscopic images and found TON has vascular inflammation. H&E staining data suggested that TON increased retinal inflammation and RIC attenuates retinal ganglion cell death. Immunofluorescence and Western blot data showed increased microglial activation and decreased retinal ganglion cell (RGCs) marker Brn3 and axonal regeneration marker GAP43 expression in the TON [AMPKα1F/F] vs. Sham group, but TON+RIC [AMPKα1F/F] attenuated the expression level of these markers. Interestingly, higher microglia activation was observed in the myeloid AMPKα1F/F KO group following TON, and RIC therapy did not attenuate microglial expression. Flow cytometry, ELISA and retinal tissue oxygen data revealed that RIC therapy significantly reduced the pro-inflammatory signaling markers, increased anti-inflammatory macrophage polarization and improved oxygen level in the TON+RIC [AMPKα1F/F] group; however, RIC therapy did not reduce inflammatory signaling activation in the myeloid AMPKα1 KO mice. The transmission electron microscopy (TEM) data of the optic nerve showed increased demyelination and axonal degeneration in the TON [AMPKα1F/F] group, and RIC improved the myelination process in TON [AMPKα1F/F], but RIC had no significant effect in the AMPKα1 KO mice. The myeloid AMPKα1c deletion attenuated RIC induced anti-inflammatory macrophage polarization, and that suggests a molecular link between RIC and immune activation. Overall, these data suggest that RIC therapy provided protection against inflammation and neurodegeneration via myeloid AMPKα1 activation, but the deletion of myeloid AMPKα1 is not protective in TON. Further investigation of RIC and AMPKα1 signaling is warranted in TON.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
| | - Mairaj A. Ansari
- Department of Biotechnology, Centre for Virology, Hamdard University, New Delhi 110062, India
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Abdullah S. Ahmad
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Laxman D. Gangwani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kanchan Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- Phoenix Veteran Affairs (VA), Phoenix, AZ 85012, USA
| |
Collapse
|
4
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
He Q, Lin FX, Su JY, Zhuo LY, Zhu Q, Sun XC, Jiang RC, Yao ZG, Wang L, Dang YW, Liu DZ, Liu Y, Fang WH, Wang FY, Lin YX, Wang AX, Wang DL, Kang DZ. Naoxueshu Oral Liquid Accelerates Post-Craniotomy Hematoma Absorption in Patients: An Open-Label, Multicenter, and Randomized Controlled Trial. Chin J Integr Med 2024; 30:675-683. [PMID: 38570473 DOI: 10.1007/s11655-024-3902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To investigate whether Naoxueshu Oral Liquid (NXS) could promote hematoma absorption in post-craniotomy hematoma (PCH) patients. METHODS This is an open-label, multicenter, and randomized controlled trial conducted at 9 hospitals in China. Patients aged 18-80 years with post-craniotomy supratentorial hematoma volume ranging from 10 to 30 mL or post-craniotomy infratentorial hematoma volume less than 10 mL, or intraventricular hemorrhage following cranial surgery were enrolled. They were randomly assigned at a 1:1 ratio to the NXS (10 mL thrice daily for 15 days) or control groups using a randomization code table. Standard medical care was administered in both groups. The primary outcome was the percentage reduction in hematoma volume from day 1 to day 15. The secondary outcomes included the percentage reduction in hematoma volume from day 1 to day 7, the absolute reduction in hematoma volume from day 1 to day 7 and 15, and the change in neurological function from day 1 to day 7 and 15. The safety was closely monitored throughout the study. Moreover, subgroup analysis was performed based on age, gender, history of diabetes, and etiology of intracerebral hemorrhage (ICH). RESULTS A total of 120 patients were enrolled and randomly assigned between March 30, 2018 and April 15, 2020. One patient was lost to follow-up in the control group. Finally, there were 119 patients (60 in the NXS group and 59 in the control group) included in the analysis. In the full analysis set (FAS) analysis, the NXS group had a greater percentage reduction in hematoma volume from day 1 to day 15 than the control group [median (Q1, Q3): 85% (71%, 97%) vs. 76% (53%, 93%), P<0.05]. The secondary outcomes showed no statistical significance between two groups, either in FAS or per-protocol set (P>0.05). Furthermore, no adverse events were reported during the study. In the FAS analysis, the NXS group exhibited a higher percentage reduction in hematoma volume on day 15 in the following subgroups: male patients, patients younger than 65 years, patients without diabetes, or those with initial cranial surgery due to ICH (all P<0.05). CONCLUSIONS The administration of NXS demonstrated the potential to promote the percentage reduction in hematoma volume from day 1 to day 15. This intervention was found to be safe and feasible. The response to NXS may be influenced by patient characteristics. (Registration No. ChiCTR1800017981).
Collapse
Affiliation(s)
- Qiu He
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
| | - Fu-Xin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Jin-Ye Su
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
| | - Ling-Yun Zhuo
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Qing Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Zhi-Gang Yao
- Department of Neurosurgery, The Third Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Lei Wang
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
| | - Yan-Wei Dang
- Department of Neurosurgery, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangfan, Hubei Province, 441100, China
| | - De-Zhong Liu
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan Province, 466000, China
| | - Yang Liu
- Department of Neurosurgery, The Third Hospital of Mianyang, Mianyang, Sichuan Province, 621000, China
| | - Wen-Hua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Fang-Yu Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - An-Xin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, 100000, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100000, China
| | - Deng-Liang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350209, China.
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Fujian Clinical Research Center for Neurological Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
6
|
Kakarla R, Bhangoo G, Pandian J, Shuaib A, Kate MP. Remote Ischemic Conditioning to Reduce Perihematoma Edema in Patients with Intracerebral Hemorrhage (RICOCHET): A Randomized Control Trial. J Clin Med 2024; 13:2696. [PMID: 38731225 PMCID: PMC11084750 DOI: 10.3390/jcm13092696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Early perihematomal edema (PHE) growth is associated with worse functional outcomes at 90 days. Remote Ischemic conditioning (RIC) may reduce perihematomal inflammation if applied early to patients with intracerebral hemorrhage (ICH). We hypothesize that early RIC, delivered for seven days in patients with spontaneous ICH, may reduce PHE growth. Methods: ICH patients presenting within 6 h of symptom onset and hematoma volume < 60 milliliters (mL) were randomized to an RIC + standard care or standard care (SC) group. The primary outcome measure was calculated edema extension distance (EED), with the cm assessed on day seven. Results: Sixty patients were randomized with a mean ± SD age of 57.5 ± 10.8 years, and twenty-two (36.7%) were female. The relative baseline median PHE were similar (RIC group 0.75 (0.5-0.9) mL vs. SC group 0.91 (0.5-1.2) mL, p = 0.30). The median EEDs at baseline were similar (RIC group 0.58 (0.3-0.8) cm vs. SC group 0.51 (0.3-0.8) cm, p = 0.76). There was no difference in the median day 7 EED (RIC group 1.1 (0.6-1.2) cm vs. SC group 1 (0.9-1.2) cm, p = 0.75). Conclusions: Early RIC therapy delivered daily for seven days was feasible. However, no decrease in EED was noted with the intervention.
Collapse
Affiliation(s)
- Raviteja Kakarla
- Department of Neurology, Rangaraya Medical College, Kakinada 533003, India;
| | - Gurpriya Bhangoo
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Jeyaraj Pandian
- Department of Neurology, Christian Medical College, Ludhiana 141008, India;
| | - Ashfaq Shuaib
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Mahesh P. Kate
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| |
Collapse
|
7
|
Keevil H, Phillips BE, England TJ. Remote ischemic conditioning for stroke: A critical systematic review. Int J Stroke 2024; 19:271-279. [PMID: 37466245 PMCID: PMC10903142 DOI: 10.1177/17474930231191082] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Remote ischemic conditioning (RIC) is the application of brief periods of ischemia to an organ or tissue with the aim of inducing protection from ischemia in a distant organ. It was first developed as a cardioprotective strategy but has been increasingly investigated as a neuroprotective intervention. The mechanisms by which RIC achieves neuroprotection are incompletely understood. Preclinical studies focus on the hypothesis that RIC can protect the brain from ischemia reperfusion (IR) injury following the restoration of blood flow after occlusion of a large cerebral artery. However, increasingly, a role of chronic RIC (CRIC) is being investigated as a means of promoting recovery following an ischemic insult to the brain. The recent publication of two large, randomized control trials has provided promise that RIC could improve functional outcomes after acute ischemic stroke, and that there may be a role for CRIC in the prevention of recurrent stroke. Although less developed, there is also proof-of-concept to suggest that RIC may be used to reduce vasospasm after subarachnoid hemorrhage or improve cognitive outcomes in vascular dementia. As a cheap, well-tolerated and almost universally applicable intervention, the motivation for investigating possible benefit of RIC in patients with cerebrovascular disease is great. In this review, we shall review the current evidence for RIC as applied to cerebrovascular disease.
Collapse
Affiliation(s)
- Harry Keevil
- Stroke Trials Unit, Division of Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, and NIHR Nottingham Biomedical Research Centre, Division of Injury, Recovery & Inflammation Sciences, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, and NIHR Nottingham Biomedical Research Centre, Division of Injury, Recovery & Inflammation Sciences, University of Nottingham, Nottingham, UK
| | - Timothy J England
- Stroke Trials Unit, Division of Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Department of Stroke, University Hospitals of Derby and Burton, Derby, UK
| |
Collapse
|
8
|
Guo ZN, Qu Y, Abuduxukuer R, Zhang P, Wang L, Liu Y, Teng RH, Gao JH, Jin F, Wang HF, Cao Y, Xue YQ, Zhao JF, Selim MH, Nguyen TN, Yang Y. Safety and efficacy of remote ischemic conditioning for spontaneous intracerebral hemorrhage (SERIC-ICH): A multicenter, randomized, parallel-controlled clinical trial study design and protocol. Eur Stroke J 2024; 9:259-264. [PMID: 37752799 PMCID: PMC10916805 DOI: 10.1177/23969873231201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Previous studies have revealed that remote ischemic conditioning (RIC) may have a neuroprotective function. However, the potential benefit of RIC for patients with ICH remain unclear. OBJECTIVE The primary aim of this study is to assess the safety and efficacy of RIC for patients with ICH. METHODS The Safety and Efficacy of RIC for Spontaneous ICH (SERIC-ICH) is an ongoing prospective, randomized, multicenter, parallel-controlled, and blinded-endpoint clinical trial. The study will enroll an estimated 2000 patients aged ⩾18 years within 24 h after ICH onset, with National Institutes of Health Stroke Scale ⩾6 and Glasgow Coma Scale ⩾8 upon presentation. The patients will be randomly assigned to the RIC or control groups (1:1) and will be treated with cuffs inflated to a pressure of 200 or 60 mmHg, respectively, twice daily for 7 days. Each RIC treatment will consist of four cycles of arm ischemia for 5 min, followed by reperfusion for another 5 min, for a total procedure time of 35 min. The primary efficacy outcome measure is the proportion of patients with good functional outcomes (modified Rankin scale 0-2) at 180 days. The safety outcome measures will include all adverse events and severe adverse events occurring in the course of the study. DISCUSSION RIC is an inexpensive intervention and might be a strategy to improve outcomes in patients with ICH. The SERIC-ICH trial will investigate whether RIC treatment can be applied as an adjuvant treatment in the acute phase of ICH and identify safety issues.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Lijuan Wang
- Department of Neurology, Songyuan Central Hospital, Songyuan, China
| | - Ying Liu
- Department of Neurology, Tonghua Liuhe Hospital, Tonghua, China
| | - Rui-Hong Teng
- Department of Neurology, Dongliao First People’s Hospital, Liaoyuan, China
| | - Jian-Hua Gao
- Department of Neurology, Jilin Neuropsychiatric Hospital, Siping, China
| | - Feng Jin
- Department of Neurology, Dongfeng County Hospital, Liaoyuan, China
| | - Hai-Feng Wang
- Department of Neurosurgery, Liaoyuan City Central Hospital, Liaoyuan, China
| | - Yu Cao
- Department of Neurology, Nongan People Hospital, Changchun, China
| | - Yong-Quan Xue
- Department of Neurology, Dunhua City Hospital, Yanbian, China
| | - Jun-Feng Zhao
- Stroke Center, Department of Neurology, Siping Central People’s Hospital, Siping, China
| | - Magdy H Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Thanh N Nguyen
- Neurology, Radiology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
9
|
Gao R, Lv C, Qu Y, Yang H, Hao C, Sun X, Hu X, Yang Y, Tang Y. Remote Ischemic Conditioning Mediates Cardio-protection After Myocardial Ischemia/Reperfusion Injury by Reducing 4-HNE Levels and Regulating Autophagy via the ALDH2/SIRT3/HIF1α Signaling Pathway. J Cardiovasc Transl Res 2024; 17:169-182. [PMID: 36745288 DOI: 10.1007/s12265-023-10355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.
Collapse
Affiliation(s)
- Rifeng Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China
| | - Chunyu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Hen Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuangze Hao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaosheng Hu
- First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Yiqing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
10
|
Baranova K, Nalivaeva N, Rybnikova E. Neuroadaptive Biochemical Mechanisms of Remote Ischemic Conditioning. Int J Mol Sci 2023; 24:17032. [PMID: 38069355 PMCID: PMC10707673 DOI: 10.3390/ijms242317032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.
Collapse
Affiliation(s)
| | | | - Elena Rybnikova
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (K.B.); (N.N.)
| |
Collapse
|
11
|
Yu L, Zhang Z, Chen H, Wang M, Mao W, Hu J, Zuo D, Lv B, Wu W, Qi S, Cui G. Remote limb ischemic postconditioning inhibits microglia pyroptosis by modulating HGF after acute ischemia stroke. Bioeng Transl Med 2023; 8:e10590. [PMID: 38023701 PMCID: PMC10658568 DOI: 10.1002/btm2.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023] Open
Abstract
The repetitive inflation-deflation of a blood pressure cuff on a limb is known as remote limb ischemic postconditioning (RIPostC). It prevents brain damage induced by acute ischemia stroke (AIS). Pyroptosis, executed by the pore-forming protein gasdermin D (GSDMD), is a type of regulated cell death triggered by proinflammatory signals. It contributes to the pathogenesis of ischemic brain injury. However, the effects of RIPostC on pyroptosis following AIS remain largely unknown. In our study, linear correlation analysis confirmed that serum GSDMD levels in AIS patients upon admission were positively correlated with NIHSS scores. RIPostC treatment significantly reduced GSDMD level compared with patients without RIPostC at 3 days post-treatment. Besides, middle cerebral artery occlusion (MCAO) surgery was performed on C57BL/6 male mice and RIPostC was induced immediately after MCAO. We found that RIPostC suppressed the activation of NLRP3 inflammasome to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia after AIS. Hepatocyte growth factor (HGF) was identified using the high throughput screening. Importantly, HGF siRNA, exogenous HGF, and ISG15 siRNA were used to reveal that HGF/ISG15 is a possible mechanism of RIPostC regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Miao Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Wenqi Mao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jinxia Hu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Dandan Zuo
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Weifeng Wu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory DiagnosticsXuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
12
|
Bao B, Yin XP, Wen XQ, Suo YJ, Chen ZY, Li DL, Lai Q, Cao XM, Qu QM. The protective effects of EGCG was associated with HO-1 active and microglia pyroptosis inhibition in experimental intracerebral hemorrhage. Neurochem Int 2023; 170:105603. [PMID: 37633650 DOI: 10.1016/j.neuint.2023.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Intracerebral hemorrhage (ICH), which has high mortality and disability rate is associated with microglial pyroptosis and neuroinflammation, and the effective treatment methods are limited Epigallocatechin-3-gallate (EGCG) has been found to play a cytoprotective role by regulating the anti-inflammatory response to pyroptosis in other systemic diseases. However, the role of EGCG in microglial pyroptosis and neuroinflammation after ICH remains unclear. In this study, we investigated the effects of EGCG pretreatment on neuroinflammation-mediated neuronal pyroptosis and the underlying neuroprotective mechanisms in experimental ICH. EGCG pretreatment was found to remarkably improved neurobehavioral performance, and decreased the hematoma volume and cerebral edema in mice. We found that EGCG pretreatment attenuated the release of hemin-induced inflammatory cytokines (IL-1β, IL-18, and TNF-α). EGCG significantly upregulated the expression of heme oxygenase-1 (HO-1), and downregulated the levels of pyroptotic molecules and inflammatory cytokines including Caspase-1, GSDMD, NLRP3, mature IL-1β, and IL-18. EGCG pretreatment also decreased the number of Caspase-1-positive microglia and GSDMD along with NLRP3-positive microglia after ICH. Conversely, an HO-1-specific inhibitor (ZnPP), significantly inhibited the anti-pyroptosis and anti-neuroinflammation effects of EGCG. Therefore, EGCG pretreatment alleviated microglial pyroptosis and neuroinflammation, at least in part through the Caspase-1/GSDMD/NLRP3 pathway by upregulating HO-1 expression after ICH. In addition, EGCG pretreatment promoted the polarization of microglia from the M1 phenotype to M2 phenotype after ICH. The results suggest that EGCG is a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.
Collapse
Affiliation(s)
- Bing Bao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Xiao-Ping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Xiao-Qing Wen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Yi-Jun Suo
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Zhi-Ying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Dong-Ling Li
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Qin Lai
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Xian-Ming Cao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No.57 Xunyang East Rode, Xunyang District, Jiujiang, 332000, China
| | - Qiu-Min Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
13
|
Blauenfeldt RA, Hjort N, Valentin JB, Homburg AM, Modrau B, Sandal BF, Gude MF, Hougaard KD, Damgaard D, Poulsen M, Diedrichsen T, Schmitz ML, von Weitzel-Mudersbach P, Christensen AA, Figlewski K, Grove EL, Hreiðarsdóttir MK, Lassesen HM, Wittrock D, Mikkelsen S, Væggemose U, Juelsgaard P, Kirkegaard H, Rostgaard-Knudsen M, Degn N, Vestergaard SB, Damsbo AG, Iversen AB, Mortensen JK, Petersson J, Christensen T, Behrndtz AB, Bøtker HE, Gaist D, Fisher M, Hess DC, Johnsen SP, Simonsen CZ, Andersen G. Remote Ischemic Conditioning for Acute Stroke: The RESIST Randomized Clinical Trial. JAMA 2023; 330:1236-1246. [PMID: 37787796 PMCID: PMC10548297 DOI: 10.1001/jama.2023.16893] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
Importance Despite some promising preclinical and clinical data, it remains uncertain whether remote ischemic conditioning (RIC) with transient cycles of limb ischemia and reperfusion is an effective treatment for acute stroke. Objective To evaluate the effect of RIC when initiated in the prehospital setting and continued in the hospital on functional outcome in patients with acute stroke. Design, Setting, and Participants This was a randomized clinical trial conducted at 4 stroke centers in Denmark that included 1500 patients with prehospital stroke symptoms for less than 4 hours (enrolled March 16, 2018, to November 11, 2022; final follow-up, February 3, 2023). Intervention The intervention was delivered using an inflatable cuff on 1 upper extremity (RIC cuff pressure, ≤200 mm Hg [n = 749] and sham cuff pressure, 20 mm Hg [n = 751]). Each treatment application consisted of 5 cycles of 5 minutes of cuff inflation followed by 5 minutes of cuff deflation. Treatment was started in the ambulance and repeated at least once in the hospital and then twice daily for 7 days among a subset of participants. Main Outcomes and Measures The primary end point was improvement in functional outcome measured as a shift across the modified Rankin Scale (mRS) score (range, 0 [no symptoms] to 6 [death]) at 90 days in the target population with a final diagnosis of ischemic or hemorrhagic stroke. Results Among 1500 patients who were randomized (median age, 71 years; 591 women [41%]), 1433 (96%) completed the trial. Of these, 149 patients (10%) were diagnosed with transient ischemic attack and 382 (27%) with a stroke mimic. In the remaining 902 patients with a target diagnosis of stroke (737 [82%] with ischemic stroke and 165 [18%] with intracerebral hemorrhage), 436 underwent RIC and 466 sham treatment. The median mRS score at 90 days was 2 (IQR, 1-3) in the RIC group and 1 (IQR, 1-3) in the sham group. RIC treatment was not significantly associated with improved functional outcome at 90 days (odds ratio [OR], 0.95; 95% CI, 0.75 to 1.20, P = .67; absolute difference in median mRS score, -1; -1.7 to -0.25). In all randomized patients, there were no significant differences in the number of serious adverse events: 169 patients (23.7%) in the RIC group with 1 or more serious adverse events vs 175 patients (24.3%) in the sham group (OR, 0.97; 95% CI, 0.85 to 1.11; P = .68). Upper extremity pain during treatment and/or skin petechia occurred in 54 (7.2%) in the RIC group and 11 (1.5%) in the sham group. Conclusions and Relevance RIC initiated in the prehospital setting and continued in the hospital did not significantly improve functional outcome at 90 days in patients with acute stroke. Trial Registration ClinicalTrials.gov Identifier: NCT03481777.
Collapse
Affiliation(s)
- Rolf Ankerlund Blauenfeldt
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Hjort
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Brink Valentin
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne-Mette Homburg
- Research Unit for Neurology, Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Boris Modrau
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Martin Faurholdt Gude
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Research and Development, Prehospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
| | | | - Dorte Damgaard
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Marika Poulsen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Tove Diedrichsen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Marie Louise Schmitz
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Paul von Weitzel-Mudersbach
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Regional Hospital Gødstrup, Gødstrup, Denmark
| | - Alex Alban Christensen
- Research Unit for Neurology, Department of Neurology, Odense University Hospital, Odense, Denmark
| | | | - Erik Lerkevang Grove
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Daniel Wittrock
- Prehospital Research Unit, the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Søren Mikkelsen
- Prehospital Research Unit, the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Ulla Væggemose
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Research and Development, Prehospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
| | - Palle Juelsgaard
- Department of Research and Development, Prehospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
| | - Hans Kirkegaard
- Department of Research and Development, Prehospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Niels Degn
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | - Sigrid Breinholt Vestergaard
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Gammelgaard Damsbo
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ane Bull Iversen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Kærgård Mortensen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jesper Petersson
- Department of Neurology, Lund University, Lund, Sweden
- Department of Health Care Management, Region Skåne, Malmö, Sweden
| | - Thomas Christensen
- Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Brink Behrndtz
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David Gaist
- Research Unit for Neurology, Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Marc Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Charles Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta
| | - Søren Paaske Johnsen
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claus Ziegler Simonsen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Grethe Andersen
- Danish Stroke Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Jarrahi A, Khodadadi H, Moore NS, Lu Y, Awad ME, Salles EL, Vaibhav K, Baban B, Dhandapani KM. Recombinant human DNase-I improves acute respiratory distress syndrome via neutrophil extracellular trap degradation. J Thromb Haemost 2023; 21:2473-2484. [PMID: 37196848 PMCID: PMC10185489 DOI: 10.1016/j.jtha.2023.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nicholas S Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Evila L Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
15
|
Huang J, Zhou J, Dai Y, Liu Y, Li F, Gong S, Zhang Y, Kou J. Ruscogenin ameliorates dasatinib-induced intestinal barrier dysfunction via ErbB4/YAP and ROCK/MLC pathways. J Nat Med 2023; 77:735-747. [PMID: 37347409 DOI: 10.1007/s11418-023-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Dasatinib is effective in the treatment of chronic and acute myeloid leukemia, which could cause the side effect of gastrointestinal bleeding by overdose or longtime use. Ruscogenin (RUS) from the traditional Chinese medicine Ophiopogon japonicas could protect endothelial microvascular barrier function. In this study, the therapeutic effect and underlying mechanisms of RUS were investigated on intestinal barrier dysfunction induced by dasatinib. Male C57BL/6 J mice were given three doses of dasatinib (70, 140, 210 mg/kg, ig) and RUS (3, 10, 30 μg/kg, ip) to explore the effect of dasatinib on intestinal barrier and the intervention of RUS. It was proved that dasatinib could reduce intestinal blood flow, inhibit phosphorylation of EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4)/YES-associated protein (YAP) and activation of Rho-associated coiled coil-containing protein kinase (ROCK)/phosphorylation of (myosin light chain) MLC. RUS could significantly increase intestinal blood flow, improve intestinal injury, reduce Evans blue leakage and serum content of FITC-dextran 4 kDa, and increase the expression of connexin (ZO-1, Occludin and VE-cadherin). Meanwhile, the in vitro effect of RUS (0.01, 0.1, 1 μM) on the dysfunction of the endothelial barrier was observed in dasatinib (150 nM)-pretreated HUVECs. The results showed that RUS suppressed dasatinib-induced the leakage of Evans blue, and degradation of F-actin and connexin. Furthermore, RUS could significantly increase the phosphorylation of ErbB4 at Tyr1284 site and YAP at Ser397 site, and inhibit ROCK expression and phosphorylation of MLC at Ser19 site in vivo and in vitro. In conclusion, the present research proved that RUS could suppress the side effects of dasatinib-induced intestinal barrier dysfunction by regulating ErbB4/YAP and ROCK/MLC pathways.
Collapse
Affiliation(s)
- Juan Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Jianhao Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yujie Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuankai Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Shuaishuai Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
16
|
Ahluwalia M, Gaur P, Vaibhav K. Brain Injury and Neurodegeneration: Molecular, Functional, and Translational Approach. Biomedicines 2023; 11:1947. [PMID: 37509586 PMCID: PMC10377691 DOI: 10.3390/biomedicines11071947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, we have achieved substantial progress in our understanding of brain injury and neurodegeneration [...].
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pankaj Gaur
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Transdisciplinary Research Initiative in Inflammaging and Brain Aging (TRIBA), Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol 2023; 14:1115726. [PMID: 36970539 PMCID: PMC10036389 DOI: 10.3389/fneur.2023.1115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weixin Zhou
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuanjun Dan
- Emergency Department, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
18
|
Ahluwalia M, Mcmichael H, Kumar M, Espinosa MP, Bosomtwi A, Lu Y, Khodadadi H, Jarrahi A, Khan MB, Hess DC, Rahimi SY, Vender JR, Vale FL, Braun M, Baban B, Dhandapani KM, Vaibhav K. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. Exp Neurol 2023; 361:114320. [PMID: 36627040 PMCID: PMC9904276 DOI: 10.1016/j.expneurol.2023.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hannah Mcmichael
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mario P Espinosa
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Asamoah Bosomtwi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - David C Hess
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Scott Y Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States of America; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
19
|
Song SY, Jiao BL, Lan D, Liu YH, Wan SL, Guo YB, Ding YC, Ji XM, Meng R. Potential Anti-Inflammatory and Anti-Coagulation Effects of One-Time Application of Remote Ischemic Conditioning in Patients With Subacute/Chronic Cerebral Arteriostenosis and Venostenosis. Neurologist 2022; 27:324-332. [PMID: 35680386 PMCID: PMC9631780 DOI: 10.1097/nrl.0000000000000425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is an extremely simple, non-invasive, and cost-effective method with a neuroprotective effect. This study aimed to evaluate the immediate effects of one-time application of RIC on inflammation and coagulation in patients with chronic cerebral vascular stenosis, and compare the different effects of RIC on cerebral arteriostenosis and cerebral venostenosis. METHOD A total of 47 patients with defined cerebral arteriostenosis (n=21) or venostenosis (n=26) were prospectively enrolled. RIC intervention was given once with 5 cycles of inflating and deflating for 5 minutes alternately. Blood was sampled 5 minutes before and after RIC for inflammatory and thrombophilia biomarkers. Differences in inflammatory and thrombotic variables at differing time points in the group were assessed using paired t tests or Wilcoxon matched-pairs signed-rank test. RESULTS Patients with cerebral arteriostenosis had a higher level of pre-RIC neutrophil-to-lymphocyte ratio ( P =0.034), high-sensitivity C-reactive protein ( P =0.037), and fibrinogen ( P =0.002) than that with cerebral venostenosis. In the arterial group, levels of fibrinogen ( P =0.023) decreased, and interleukin-6 levels were elevated ( P =0.019) after a single RIC. Age was negatively related to interleukin-6, C-reactive protein, and fibrinogen. CONCLUSION One-time RIC interventions may show seemingly coexisted proinflammatory and anti-coagulation effects of a single bout on patients with cerebral arteriostenosis. Older age was a negative predictor for multiple biomarkers in the cerebral arteriostensosis group. The protective effect of RIC on cerebral venostenosis patients needs to be further studied in a larger sample size.
Collapse
Affiliation(s)
- Si-ying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Bao-lian Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Yun-huan Liu
- HuaDong Hospital, Fudan University, Shanghai, China
| | - Shu-ling Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Yi-bing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Yu-chuan Ding
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI
| | - Xun-ming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University
- Advanced Center of Stroke, Beijing Institute for Brain Disorders
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing
| |
Collapse
|
20
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
21
|
Hess DC, Blauenfeldt RA, Andersen G. Remote Ischemic Conditioning: Feasible and Potentially Beneficial for Ischemic Stroke. JAMA 2022; 328:622-624. [PMID: 35972503 PMCID: PMC9832743 DOI: 10.1001/jama.2022.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Rolf A Blauenfeldt
- Departments of Neurology and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Grethe Andersen
- Departments of Neurology and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Xu N, Li X, Weng J, Wei C, He Z, Doycheva DM, Lenahan C, Tang W, Zhou J, Liu Y, Xu Q, Liu Y, He X, Tang J, Zhang JH, Duan C. Adiponectin Ameliorates GMH-Induced Brain Injury by Regulating Microglia M1/M2 Polarization Via AdipoR1/APPL1/AMPK/PPARγ Signaling Pathway in Neonatal Rats. Front Immunol 2022; 13:873382. [PMID: 35720361 PMCID: PMC9203698 DOI: 10.3389/fimmu.2022.873382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Adiponectin (APN), a fat-derived plasma hormone, is a classic anti-inflammatory agent. Multiple studies have demonstrated the beneficial role of APN in acute brain injury, but the effect of APN in germinal matrix hemorrhage (GMH) is unclear, and the underlying molecular mechanisms remain largely undefined. In the current study, we used a GMH rat model with rh-APN treatment, and we observed that APN demonstrated a protective effect on neurological function and an inhibitory effect on neuroinflammation after GMH. To further explore the underlying mechanisms of these effects, we found that the expression of Adiponectin receptor 1 (AdipoR1) primarily colocalized with microglia and neurons in the brain. Moreover, AdiopR1, but not AdipoR2, was largely increased in GMH rats. Meanwhile, further investigation showed that APN treatment promoted AdipoR1/APPL1-mediated AMPK phosphorylation, further increased peroxisome proliferator-activated receptor gamma (PPARγ) expression, and induced microglial M2 polarization to reduce the neuroinflammation and enhance hematoma resolution in GMH rats. Importantly, either knockdown of AdipoR1, APPL1, or LKB1, or specific inhibition of AMPK/PPARγ signaling in microglia abrogated the protective effect of APN after GMH in rats. In all, we propose that APN works as a potential therapeutic agent to ameliorate the inflammatory response following GMH by enhancing the M2 polarization of microglia via AdipoR1/APPL1/AMPK/PPARγ signaling pathway, ultimately attenuating inflammatory brain injury induced by hemorrhage.
Collapse
Affiliation(s)
- Ningbo Xu
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wei
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Wenhui Tang
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhou
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Xu
- Department of Medical Science, Shunde Polytechnic College, Foshan, China
| | - Yahong Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Dai S, Wei J, Zhang H, Luo P, Yang Y, Jiang X, Fei Z, Liang W, Jiang J, Li X. Intermittent fasting reduces neuroinflammation in intracerebral hemorrhage through the Sirt3/Nrf2/HO-1 pathway. J Neuroinflammation 2022; 19:122. [PMID: 35624490 PMCID: PMC9137193 DOI: 10.1186/s12974-022-02474-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background Inflammation contributes to the poor prognosis of intracerebral hemorrhage (ICH). Intermittent fasting (IF) has been shown to be protective against inflammation in multiple pathogenic processes. In the present study, we aimed to investigated the beneficial effects of IF in attenuating neuroinflammation and neurological deficits in a mouse model of ICH and to investigate the underlying mechanism. Methods ICH was modeled by intrastriatal injection of autologous blood and IF was modeled by every-other-day feeding in male control mice (C57BL/6), mice with and microglia specific knockout Sirt3f/f;Cx3cr1-Cre (Sirt3 cKO), and Sirt3f/f (wild-type) mice. Brain tissues and arterial blood were harvested at 1, 3, 7 and 28 days after ICH for immunohistochemistry analysis of Iba-1, DARPP-32 and HO-1, morphological analysis by HE staining and inflammatory factor release tests by ELISA. Neurological functions were approached by corner test and cylinder test. Fluorescent double-labeled staining of Iba-1 with CD16, Arg1 or Sirt3 was used to provide direct image of co-expression of these molecules in microglia. TUNEL, cleaved caspase-3 and Nissl staining was performed to evaluate cellular injuries. Results IF alleviated neurological deficits in both acute and chronic phases after ICH. Morphologically, IF enhanced hematoma clearance, reduced brain edema in acute phase and attenuated striatum atrophy in chronic phase. In addition, IF decreased the numbers of TUNEL+ cells and increased Nissl+ neuron number at day 1, 3 and 7 after ICH. IF suppressed CD16+Iba-1+ microglia activation at day 3 after ICH and reduced inflammatory releases, such as IL-1β and TNF-α. The above effects of IF were attenuated by microglia Sirt3 deletion partly because of an inhibition of Nrf2/HO-1 signaling pathway. Interestingly, IF increased Iba-1+ microglia number at day 7 which mainly expressed Arg1 while decreased the proinflammatory factor levels. In mice with microglia-specific Sirt3 deletion, the effects of IF on Iba-1+ microglia activation and anti-inflammatory factor expressions were attenuated when compared with wild-type Sirt3f/f mice. Conclusions IF protects against ICH by suppressing the inflammatory responses via the Sirt3/Nrf2/HO-1 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02474-2.
Collapse
Affiliation(s)
- Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China.,National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China.,Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China
| | - Wenbin Liang
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jianli Jiang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, China.
| |
Collapse
|
24
|
Jarrahi A, Shah M, Ahluwalia M, Khodadadi H, Vaibhav K, Bruno A, Baban B, Hess DC, Dhandapani KM, Vender JR. Pilot Study of Remote Ischemic Conditioning in Acute Spontaneous Intracerebral Hemorrhage. Front Neurosci 2022; 16:791035. [PMID: 35645722 PMCID: PMC9133418 DOI: 10.3389/fnins.2022.791035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10–15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH via craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation. Studies including, but not limited to, STICH, STICH-II, MISTIE, MISTIE-II, MISTIE-III, ENRICH, and ICES have all shown that, in certain limited patient populations, evacuation can be done safely and mortality can be decreased, but functional outcomes remain statistically no different compared to medical management alone. Only 10–15% of patients with ICH are surgical candidates based on clot location, medical comorbidities, and limitations regarding early surgical intervention. To date, no clearly effective treatment options are available to improve ICH outcomes, leaving medical and supportive management as the standard of care. We recently identified that remote ischemic conditioning (RIC), the non-invasive, repetitive inflation-deflation of a blood pressure cuff on a limb, non-invasively enhanced hematoma resolution and improved neurological outcomes via anti-inflammatory macrophage polarization in pre-clinical ICH models. Herein, we propose a pilot, placebo-controlled, open-label, randomized trial to test the hypothesis that RIC accelerates hematoma resorption and improves outcomes in ICH patients. Twenty ICH patients will be randomized to receive either mock conditioning or unilateral arm RIC (4 cycles × 5 min inflation/5 min deflation per cycle) beginning within 48 h of stroke onset and continuing twice daily for one week. All patients will receive standard medical care according to latest guidelines. The primary outcome will be the safety evaluation of unilateral RIC in ICH patients. Secondary outcomes will include hematoma volume/clot resorption rate and functional outcomes, as assessed by the modified Rankin Scale (mRS) at 1- and 3-months post-ICH. Additionally, blood will be collected for exploratory genomic analysis. This study will establish the feasibility and safety of RIC in acute ICH patients, providing a foundation for a larger, multi-center clinical trial.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Manan Shah
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John R. Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: John R. Vender,
| |
Collapse
|
25
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
26
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Liu J, Zhu Z, Leung GKK. Erythrophagocytosis by Microglia/Macrophage in Intracerebral Hemorrhage: From Mechanisms to Translation. Front Cell Neurosci 2022; 16:818602. [PMID: 35237132 PMCID: PMC8882619 DOI: 10.3389/fncel.2022.818602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition characterized by hematoma related mass effect. Microglia/macrophage (M φ) are rapidly recruited in order to remove the red blood cells through erythrophagocytosis. Efficient erythrophagocytosis can detoxify hemolytic products and facilitate neurological recovery after ICH. The underlying mechanisms include modulation of inflammatory response and oxidative stress, among others. It is a dynamic process mediated by a cascade of signal transduction, including “find-me” signals, “eat-me” signals and a set of phagocytotic receptors-ligand pairs that may be exploited as therapeutic targets. This review summarizes mechanistic signaling pathways of erythrophagocytosis and highlights the potential of harnessing M φ-mediated phagocytosis for ICH treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Gilberto Ka-Kit Leung,
| |
Collapse
|
28
|
Tsai HH, Hsieh YC, Lin JS, Kuo ZT, Ho CY, Chen CH, Chang CF. Functional Investigation of Meningeal Lymphatic System in Experimental Intracerebral Hemorrhage. Stroke 2022; 53:987-998. [DOI: 10.1161/strokeaha.121.037834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Promotion of hematoma resolution in a timely manner reduces intracerebral hemorrhage (ICH) brain injury induced by toxic blood components and subsequent neuroinflammation. The meningeal lymphatic system is responsible for clearance of macromolecules and pathogenic substances from the central nervous system; however, its role in intraparenchymal hematoma clearance and ICH outcomes is unknown. In the present study, we aimed to understand the contribution of the meningeal lymphatic system to ICH pathologies and to test whether pharmacological enhancement of meningeal lymphatic function promotes hematoma resolution and brain recovery after ICH.
Methods:
Immunofluorescence of whole-mount meninges was used to measure complexity and coverage level of meningeal lymphatic vasculature following ICH induction. Fluorescent microbeads and PKH-26-labeled erythrocytes were used to evaluate drainage function of the meningeal lymphatic system. Visudyne treatment, deep cervical lymph node ligation, and VEGF (vascular endothelial growth factor)-C injection were performed to manipulate meningeal lymphatic function. Neurobehavioral performance and hematoma volume were assayed by the cylinder test and histological measurements. Iron deposition, residual erythrocytes, neuronal loss, and astrogliosis were assessed by immunohistochemistry and antibody-based fluorescence staining.
Results:
Meningeal lymphangiogenesis and enhanced lymphatic drainage occurred during the late phase of ICH. Ablation and blockage of meningeal lymphatic vessels impeded hematoma clearance, whereas pharmacological enhancement of their function reduced hematoma volume, improved behavioral performance, and reduced brain residual erythrocytes, iron deposition, neuronal loss, and astroglial activation.
Conclusions:
Early enhancement of meningeal lymphatic function is beneficial for ICH recovery. Targeting the meningeal lymphatic system is therefore a potential therapeutic approach for treating ICH.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei (H.-H.T.)
- Department of Neurology, National Taiwan University Hospital, Taipei (H.-H.T.)
| | - Yung-Chia Hsieh
- School of Medicine, National Taiwan University College of Medicine, Taipei. (Y.-C.H.)
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Jhih Syuan Lin
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Zi-Ting Kuo
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Chi-Ying Ho
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Chih-Hung Chen
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Che-Feng Chang
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| |
Collapse
|
29
|
Zhang B, Zhao W, Ma H, Zhang Y, Che R, Bian T, Yan H, Xu J, Wang L, Yu W, Liu J, Song H, Duan J, Chang H, Ma Q, Zhang Q, Ji X. Remote Ischemic Conditioning in the Prevention for Stroke-Associated Pneumonia: A Pilot Randomized Controlled Trial. Front Neurol 2022; 12:723342. [PMID: 35185744 PMCID: PMC8850400 DOI: 10.3389/fneur.2021.723342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023] Open
Abstract
BackgroundDespite the continuing effort in investigating the preventive therapies for stroke-associated pneumonia (SAP), which is closely associated with unfavorable outcomes, conclusively effective therapy for the prevention of SAP is still lacking. Remote ischemic conditioning (RIC) has been proven to improve the survival in the sepsis model and inflammatory responses have been indicated as important mechanisms involved in the multi-organ protection effect of RIC. This study aimed to assess the safety and the preliminary efficacy of RIC in the prevention of SAP in patients with acute ischemic stroke.MethodsWe performed a proof-of-concept, pilot open-label randomized controlled trial. Eligible patients (age > 18 years) within 48 h after stroke onset between March 2019 and October 2019 with acute ischemic stroke were randomly allocated (1:1) to the RIC group and the control group. All participants received standard medical therapy. Patients in the RIC group underwent RIC twice daily for 6 consecutive days. The safety outcome included any adverse events associated with RIC procedures. The efficacy outcome included the incidence of SAP, changes of immunological profiles including mHLA-DR, TLR-2, and TLR-4 as well as other plasma parameters from routine blood tests.ResultsIn total, 46 patients aged 63.1 ± 12.5 years, were recruited (23 in each group). Overall, 19 patients in the RIC group and 22 patients in the control group completed this study. No severe adverse event was attributed to RIC procedures. The incidence of SAP was lower in the remote ischemic conditioning group (2 patients [10.5%]) than that in the control group (6 patients [27.3%]), but no significant difference was detected in both univariate and multivariate analysis (p = 0.249 and adjusted p = 0.666). No significance has been found in this pilot trial in the level of immunological profiles HLA-DR, TLR4 and TLR2 expressed on monocytes as well as blood parameters tested through routine blood tests between the two groups (p > 0.05). The IL-6 and IL-1β levels at day 5 after admission in the RIC group were lower than those in the control group (p < 0.05).InterpretationThis proof-of-concept pilot randomized controlled trial was to investigate RIC as a prevention method for SAP. Remote ischemic conditioning is safe in the prevention of SAP in patients with acute ischemic stroke. The preventive effect of RIC on SAP should be further validated in future studies.
Collapse
Affiliation(s)
- Bowei Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongrui Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yunzhou Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ruiwen Che
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tingting Bian
- Department of Neurology, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Heli Yan
- Department of Neurology, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wantong Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jia Liu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
30
|
Jin Z. Macrophage Targeting for Therapy of Cardiovascular Diseases (CVD). MACROPHAGE TARGETED DELIVERY SYSTEMS 2022:339-356. [DOI: 10.1007/978-3-030-84164-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
32
|
Ren C, Liu Y, Stone C, Li N, Li S, Li H, Cheng Z, Hu J, Li W, Jin K, Ji X, Ding Y. Limb Remote Ischemic Conditioning Ameliorates Cognitive Impairment in Rats with Chronic Cerebral Hypoperfusion by Regulating Glucose Transport. Aging Dis 2021; 12:1197-1210. [PMID: 34341702 PMCID: PMC8279524 DOI: 10.14336/ad.2020.1125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 11/01/2022] Open
Abstract
Cognitive impairment is closely associated with the slowing of glucose metabolism in the brain. Glucose transport, a rate-limiting step of glucose metabolism, plays a key role in this phenomenon. Previous studies have reported that limb remote ischemic conditioning (LRIC) improves cognitive performance in rats with chronic cerebral hypoperfusion (CCH). Here, we determined whether LRIC could ameliorate cognitive impairment in rats with CCH by regulating glucose transport. A total of 170 male Sprague-Dawley rats were used. Animals subjected to permanent double carotid artery occlusion (2VO) were assigned to the control or LRIC treatment group. LRIC was applied beginning 3 days after the 2VO surgery. We found that LRIC can improve learning and memory; decrease the ratio of ADP/ATP; increase glucose content; upregulate the expression of pAMPKα, GLUT1 and GLUT3; and increase the number of GLUT1 and GLUT3 transporters in cerebral cortical neurons. The expression of GLUT1 and GLUT3 in the cortex displayed a strong correlation with learning and memory. Pearson correlation analysis showed that the levels of GLUT1 and GLUT3 are correlated with neurological function scores. All of these beneficial effects of LRIC were ablated by application of the AMPK inhibitor, dorsomorphin. In summary, LRIC ameliorated cognitive impairment in rats with CCH by regulating glucose transport via the AMPK/GLUT signaling pathway. We conclude that AMPK-mediated glucose transport plays a key role in LRIC. These data also suggest that supplemental activation of glucose transport after CCH may provide a clinically applicable intervention for improving cognitive impairment.
Collapse
Affiliation(s)
- Changhong Ren
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuanyuan Liu
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Department of Endocrinology, The Affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, China
| | - Christopher Stone
- 4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ning Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Sijie Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiyan Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zichao Cheng
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Department of Rehabilitation Medicine, Affiliated 3201 Hospital of Xi'an Jiaotong University School of Medicine, Hanzhong, China
| | - Jiangnan Hu
- 6Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Weiguang Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kunlin Jin
- 7Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Xunming Ji
- 5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
33
|
Yin J, Wan J, Zhu J, Zhou G, Pan Y, Zhou H. Global trends and prospects about inflammasomes in stroke: a bibliometric analysis. Chin Med 2021; 16:53. [PMID: 34233704 PMCID: PMC8265129 DOI: 10.1186/s13020-021-00464-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sterile inflammation is a key pathological process in stroke. Inflammasome activation has been implicated in various inflammatory diseases, including ischemic stroke and hemorrhagic stroke. Hence, targeting inflammasomes is a promising approach for the treatment of stroke. Methods We applied bibliometric methods and techniques. The Web of Science Core Collection was searched for studies indexed from database inception to November 26, 2020. We generated various visual maps to display publications, authors, sources, countries, and keywords. Results Our literature search yielded 427 publications related to inflammasomes involved in stroke, most of which consisted of original research articles and reviews. In particular, we found that there was a substantial increase in the number of relevant publications in 2018. Furthermore, most of the publications with the highest citation rates were published in 2014. Relatively, the field about inflammasomes in stroke developed rapidly in 2014 and 2018. Many institutions contributed to these publications, including those from China, the United States, and worldwide. We found that NLR family pyrin domain containing 3 (NLRP3) was the most studied, followed by NLRP1, NLRP2, and NLRC4 among the inflammasomes associated with stroke. Analysis of keywords suggested that the most studied mechanisms involved dysregulation of extracellular pH, efflux of Ca2+ ions, dysfunction of K+/Na+ ATPases, mitochondrial dysfunction, and damage to mitochondrial DNA. Conclusions Given the potential diagnostic and therapeutic implications, the specific mechanisms of inflammasomes contributing to stroke warrant further investigation. We used bibliometric methods to objectively present the global trend of inflammasomes in stroke, and to provide important information for relevant researchers.
Collapse
Affiliation(s)
- Junjun Yin
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Jiayang Wan
- Peking University First Hospital, Beijing, 100034, China
| | - Jiaqi Zhu
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Yuming Pan
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
34
|
Hess DC, Khan MB, Kamat P, Vaibhav K, Dhandapani KM, Baban B, Waller JL, Hoda MN, Blauenfeldt RA, Andersen G. Conditioning medicine for ischemic and hemorrhagic stroke. CONDITIONING MEDICINE 2021; 4:124-129. [PMID: 34414362 PMCID: PMC8372992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Remote ischemic conditioning (RIC) is a promising safe, feasible, and inexpensive treatment for acute stroke, both ischemic and hemorrhagic. It is applied with a blood pressure cuff on the limbs and is ideal for the prehospital setting. RIC is a form of preconditioning with similarities to physical exercise. Its mechanisms of action are multiple and include improvement of collateral cerebral blood flow (CBF) and RIC acts as a "collateral therapeutic". The increased CBF is likely related to nitric oxide synthase 3 in the endothelium and more importantly in circulating blood cells like the red blood cell. The RESIST clinical trial is a 1500 subject multicenter, randomized, sham-controlled trial of RIC in the prehospital setting in Denmark and should address the questions of whether RIC is safe and effective in acute stroke and whether the effect is mediated by an effect on nitric oxide/nitrite metabolism.
Collapse
Affiliation(s)
- David C Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA
| | | | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta, GA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta, GA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta, GA
| | | | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta, GA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta, GA
| | | | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Rolf Ankerlund Blauenfeldt
- Department of Neurology, Aarhus University Hospital and Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Grethe Andersen
- Department of Neurology, Aarhus University Hospital and Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Krag AE, Blauenfeldt RA. Fibrinolysis and Remote Ischemic Conditioning: Mechanisms and Treatment Perspectives in Stroke. Semin Thromb Hemost 2021; 47:610-620. [PMID: 33878783 DOI: 10.1055/s-0041-1725095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stroke is a leading cause of death and disability. Intravenous thrombolysis and mechanical thrombectomy have greatly improved outcomes in acute ischemic stroke (AIS). However, only a minority of patients receive reperfusion therapies, highlighting the need for novel neuroprotective therapies. Remote ischemic conditioning (RIC), consisting of brief, intermittent extremity occlusion and reperfusion induced with an inflatable cuff, is a potential neuroprotective therapy in acute stroke. The objective of this narrative review is to describe the effect of RIC on endogenous fibrinolysis and, from this perspective, investigate the potential of RIC in the prevention and treatment of stroke. A systematic literature search was performed in PubMed, and human studies in English were included. Seven studies had investigated the effect of RIC on fibrinolysis in humans. Long-term daily administration of RIC increased endogenous fibrinolysis, whereas a single RIC treatment did not acutely influence endogenous fibrinolysis. Fifteen studies had investigated the effect of RIC as a neuroprotective therapy in the prevention and treatment of stroke. Long-term RIC administration proved effective in reducing new cerebral vascular lesions in patients with established cerebrovascular disease. In patients with acute stroke, RIC was safe and feasible, though its clinical efficacy as a neuroprotectant is yet unproven. In conclusion, a single RIC treatment does not affect fibrinolysis in the acute phase, whereas long-term RIC administration may increase endogenous fibrinolysis. Increased endogenous fibrinolysis is unlikely to be the mediator of the acute neuroprotective effect of RIC in stroke patients, whereas it may partly explain the reduced stroke recurrence associated with long-term RIC treatment.
Collapse
Affiliation(s)
- Andreas Engel Krag
- Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Rolf Ankerlund Blauenfeldt
- Department of Neurology, Danish Stroke Center, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Zhao W, Jiang F, Li S, Liu G, Wu C, Wang Y, Ren C, Zhang J, Gu F, Zhang Q, Gao X, Gao Z, Song H, Ma Q, Ding Y, Ji X. Safety and efficacy of remote ischemic conditioning for the treatment of intracerebral hemorrhage: A proof-of-concept randomized controlled trial. Int J Stroke 2021; 17:425-433. [PMID: 33739197 DOI: 10.1177/17474930211006580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Remote ischemic conditioning can promote hematoma resolution, attenuate brain edema, and improve neurological recovery in animal models of intracerebral hemorrhage. AIMS This study aimed to evaluate the safety and preliminary efficacy of remote ischemic conditioning in patients with intracerebral hemorrhage. METHODS In this multicenter, randomized, controlled trial, 40 subjects with supratentorial intracerebral hemorrhage presenting within 24-48 h of onset were randomly assigned to receive medical therapy plus remote ischemic conditioning for consecutive seven days or medical therapy alone. The primary safety outcome was neurological deterioration within seven days of enrollment, and the primary efficacy outcome was the changes of hematoma volume on CT images. Other outcomes included hematoma resolution rate at 7 days ([hematoma volume at 7 days - hematoma volume at baseline]/hematoma volume at baseline), perihematomal edema (PHE), and functional outcome at 90 days. RESULTS The mean age was 59.3 ± 11.7 years and hematoma volume was 13.9 ± 4.5 mL. No subjects experienced neurological deterioration within seven days of enrollment, and no subject died or experienced remote ischemic conditioning-associated adverse events during the study period. At baseline, the hematoma volumes were 14.19 ± 5.07 mL in the control group and 13.55 ± 3.99 mL in the remote ischemic conditioning group, and they were 8.54 ± 3.99 mL and 6.95 ± 2.71 mL at seven days after enrollment, respectively, which is not a significant difference (p > 0.05 each). The hematoma resolution rate in the remote ischemic conditioning group (49.25 ± 9.17%) was significantly higher than in the control group (41.92 ± 9.14%; MD, 7.3%; 95% CI, 1.51-13.16%; p = 0.015). The absolute PHE volume was 17.27 ± 8.34 mL in the control group and 12.92 ± 7.30 mL in the remote ischemic conditioning group at seven days after enrollment, which is not a significant between-group difference (p = 0.087), but the relative PHE in the remote ischemic conditioning group (1.77 ± 0.39) was significantly lower than in the control group (2.02 ± 0.27; MD, 0.25; 95% CI, 0.39-0.47; p = 0.023). At 90-day follow-up, 13 subjects (65%) in the remote ischemic conditioning group and 12 subjects (60%) in the control group achieved favorable functional outcomes (modified Rankin Scale score ≤ 3), which is not a significant between-group difference (p = 0.744). CONCLUSIONS Repeated daily remote ischemic conditioning for consecutive seven days was safe and well tolerated in patients with intracerebral hemorrhage, and it may be able to improve hematoma resolution rate and reduce relative PHE. However, the effects of remote ischemic conditioning on the absolute hematoma and PHE volume and functional outcomes in this patient population need further investigations.Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03930940.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Jiang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuang Wang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Gu
- Department of Neurology, Ningjin County Hospital, Xingtai, China
| | - Quanzhong Zhang
- Department of Neurosurgery, 523110Heze Municipal Hospital, Heze, China
| | - Xinjing Gao
- Department of Neurosurgery, The Sixth Hospital of Hengshui, Hengshui, China
| | - Zongen Gao
- Department of Neurology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Haiqing Song
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, 12267Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
37
|
Wang Q, Wills M, Han Z, Geng X, Ding Y. Mini Review (Part I): An Experimental Concept on Exercise and Ischemic Conditioning in Stroke Rehabilitation. Brain Circ 2021; 6:242-247. [PMID: 33506146 PMCID: PMC7821806 DOI: 10.4103/bc.bc_63_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke remains a leading cause of adult death and disability. Poststroke rehabilitation is vital for reducing the long-term sequelae of brain ischemia. Recently, physical exercise training has been well established as an effective rehabilitation tool, but its efficacy depends on exercise parameters and the patient's capacities, which are often altered following a major cerebrovascular event. Thus, ischemic conditioning as a rehabilitation intervention was considered an “exercise equivalent,” but the investigation is still in its relative infancy. In this mini-review, we discuss the potential for physical exercise or ischemic conditioning and its relation to angiogenesis, neurogenesis, and plasticity in stroke rehabilitation. This allows the readers to understand the context of the research and the application of ischemic conditioning in poststroke rehabilitation.
Collapse
Affiliation(s)
- Qingzhu Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhenzhen Han
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
38
|
Baban B, Braun M, Khodadadi H, Ward A, Alverson K, Malik A, Nguyen K, Nazarian S, Hess DC, Forseen S, Post AF, Vale FL, Vender JR, Hoda MN, Akbari O, Vaibhav K, Dhandapani KM. AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight 2021; 6:126766. [PMID: 33427206 PMCID: PMC7821592 DOI: 10.1172/jci.insight.126766] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
The CNS is regarded as an immunoprivileged organ, evading routine immune surveillance; however, the coordinated development of immune responses profoundly influences outcomes after brain injury. Innate lymphoid cells (ILCs) are cytokine-producing cells that are critical for the initiation, modulation, and resolution of inflammation, but the functional relevance and mechanistic regulation of ILCs are unexplored after acute brain injury. We demonstrate increased proliferation of all ILC subtypes within the meninges for up to 1 year after experimental traumatic brain injury (TBI) while ILCs were present within resected dura and elevated within cerebrospinal fluid (CSF) of moderate-to-severe TBI patients. In line with energetic derangements after TBI, inhibition of the metabolic regulator, AMPK, increased meningeal ILC expansion, whereas AMPK activation suppressed proinflammatory ILC1/ILC3 and increased the frequency of IL-10-expressing ILC2 after TBI. Moreover, intracisternal administration of IL-33 activated AMPK, expanded ILC2, and suppressed ILC1 and ILC3 within the meninges of WT and Rag1-/- mice, but not Rag1-/- IL2rg-/- mice. Taken together, we identify AMPK as a brake on the expansion of proinflammatory, CNS-resident ILCs after brain injury. These findings establish a mechanistic framework whereby immunometabolic modulation of ILCs may direct the specificity, timing, and magnitude of cerebral immunity.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Surgery.,Department of Neurology
| | | | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Neurology
| | | | | | - Aneeq Malik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Skon Nazarian
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Scott Forseen
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | | | | | - Md Nasrul Hoda
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kumar Vaibhav
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Neurosurgery, and
| | | |
Collapse
|
39
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
40
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
41
|
IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci U S A 2020; 117:32679-32690. [PMID: 33293423 DOI: 10.1073/pnas.2018497117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke affecting millions of people worldwide. Parenchymal hematoma triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia and macrophages carry out hematoma clearance, thereby facilitating functional recovery after ICH. Here, we elucidate a pivotal role for the interleukin (IL)-4)/signal transducer and activator of transcription 6 (STAT6) axis in promoting long-term recovery in both blood- and collagenase-injection mouse models of ICH, through modulation of microglia/macrophage functions. In both ICH models, STAT6 was activated in microglia/macrophages (i.e., enhanced expression of phospho-STAT6 in Iba1+ cells). Intranasal delivery of IL-4 nanoparticles after ICH hastened STAT6 activation and facilitated hematoma resolution. IL-4 treatment improved long-term functional recovery in young and aged male and young female mice. In contrast, STAT6 knockout (KO) mice exhibited worse outcomes than WT mice in both ICH models and were less responsive to IL-4 treatment. The construction of bone marrow chimera mice demonstrated that STAT6 KO in either the CNS or periphery exacerbated ICH outcomes. STAT6 KO impaired the capacity of phagocytes to engulf red blood cells in the ICH brain and in primary cultures. Transcriptional analyses identified lower level of IL-1 receptor-like 1 (ST2) expression in microglia/macrophages of STAT6 KO mice after ICH. ST2 KO diminished the beneficial effects of IL-4 after ICH. Collectively, these data confirm the importance of IL-4/STAT6/ST2 signaling in hematoma resolution and functional recovery after ICH. Intranasal IL-4 treatment warrants further investigation as a clinically feasible therapy for ICH.
Collapse
|
42
|
Remote Ischemic Post-Conditioning Therapy is Protective in Mouse Model of Traumatic Optic Neuropathy. Neuromolecular Med 2020; 23:371-382. [PMID: 33185833 DOI: 10.1007/s12017-020-08631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Traumatic optic neuropathy (TON) is characterized by visual dysfunction after indirect or direct injury to the optic nerve following blunt head trauma. TON is associated with increased oxidative stress and inflammation resulting in retinal ganglion cell (RGC) death. Remote ischemic post-conditioning (RIC) has been shown to enhance endogenous protective mechanisms in diverse disease models including stroke, vascular cognitive impairment (VCI), retinal injury and optic nerve injury. However, the protective mechanisms underlying the improvement of retinal function and RGC survival after RIC treatment remain unclear. Here, we hypothesized that RIC therapy may be protective following TON by preventing RGC death, oxidative insult and inflammation in the mouse retina. To carry out the study, mice were divided in three different groups (Control, TON and TON + RIC). We harvested retinal tissue 5 days after TON induction for western blotting and histochemical analysis. We observed increased TON-induced retinal cell death compared with controls by cleaved caspase-3 immunohistochemistry. Furthermore, the TON cohort demonstrated increased TUNEL positive cells which were significantly attenuated by RIC. Immunofluorescence data showed that oxidative stress markers dihydroethidium (DHE), NOX-2 and nitrotyrosine expression were elevated in the TON group relative to controls and RIC therapy significantly reduced the expression level of these markers. Next, we found that the proinflammatory cytokine TNF-α was increased and anti-inflammatory IL-10 was decreased in plasma of TON animals, and RIC therapy reversed this expression level. Interestingly, western blotting of retinal tissue showed that RGC marker Brn3a and tight junction proteins (ZO-1 and Occludin), and AMPKα1 expression were downregulated in the TON group compared to controls. However, RIC significantly increased the expression levels of these proteins. Together these data suggest that RIC therapy activates endogenous protective mechanisms which may attenuate TON-induced oxidative stress and inflammation, and improves BRB integrity.
Collapse
|
43
|
Marques M, Cordeiro M, Marinho M, Vian C, Vaz G, Alves B, Jardim R, Hort M, Dora C, Horn A. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 2020; 1746:147007. [DOI: 10.1016/j.brainres.2020.147007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
|
44
|
Jarrahi A, Ahluwalia M, Khodadadi H, da Silva Lopes Salles E, Kolhe R, Hess DC, Vale F, Kumar M, Baban B, Vaibhav K, Dhandapani KM. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 2020; 17:286. [PMID: 32998763 PMCID: PMC7525232 DOI: 10.1186/s12974-020-01957-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Evila da Silva Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Fernando Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Manish Kumar
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia.
| |
Collapse
|
45
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
46
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Liu Y, Dai Y, Xu H, Zhou Q, Li F, Yu B, Zhang Y, Kou J. YQFM Alleviates Side Effects Caused by Dasatinib through the ROCK/MLC Pathway in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4646029. [PMID: 32908560 PMCID: PMC7475753 DOI: 10.1155/2020/4646029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
Dasatinib, as a second-generation broad-spectrum tyrosine kinase inhibitor, presents an antitumor effect by inhibiting tyrosine kinases. However, dasatinib causes serious side effects, such as gastrointestinal bleeding and liver toxicity, possibly through the activation of ROCK kinase and MLC phosphorylation. At present, there is no effective prevention and treatment method. Previous research studies have shown that YQFM (YiQiFuMai powder injection) protects the blood-brain barrier by inhibiting the ROCK/MLC signaling pathway; whether YQFM can alleviate the side effects of dasatinib is unknown. In this study, dasatinib was injected (i.p. 70 mg/kg) and YQFM (i.p. 0.336 g/kg, 0.672 g/kg, 1.342 g/kg) was given in advance for 3 days to mice, to explore the effect of YQFM on side effects induced by Dasatinib. The results confirmed that YQFM significantly decreased Evans blue leakage in the small intestine and increased intestinal blood flow, increased the expression of ZO-1, Occludin, and VE-cadherin, and reduced the contents of D-lactic acid, s-VE-cadherin, Alanine aminotransferase (ALT), and Aspartate aminotransferase (AST) in serum. Finally, YQFM inhibited the expression of ROCK-1 and phosphorylation of MLC induced by Dasatinib. These findings suggested that YQFM could improve the side effects caused by Dasatinib linked with the ROCK/MLC signaling pathway, as shown in the graphical abstract.
Collapse
Affiliation(s)
- Yuankai Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yujie Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Han Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Qianliu Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
48
|
Ma J, Ma Y, Shuaib A, Winship IR. Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep 2020; 10:12392. [PMID: 32709950 PMCID: PMC7381676 DOI: 10.1038/s41598-020-69122-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Circulation through cerebral collaterals can maintain tissue viability until reperfusion is achieved. However, collateral circulation is time limited, and failure of collaterals is accelerated in the aged. Remote ischemic perconditioning (RIPerC), which involves inducing a series of repetitive, transient peripheral cycles of ischemia and reperfusion at a site remote to the brain during cerebral ischemia, may be neuroprotective and can prevent collateral failure in young adult rats. Here, we demonstrate the efficacy of RIPerC to improve blood flow through collaterals in aged (16-18 months of age) Sprague Dawley rats during a distal middle cerebral artery occlusion. Laser speckle contrast imaging and two-photon laser scanning microscopy were used to directly measure flow through collateral connections to ischemic tissue. Consistent with studies in young adult rats, RIPerC enhanced collateral flow by preventing the stroke-induced narrowing of pial arterioles during ischemia. This improved flow was associated with reduced early ischemic damage in RIPerC treated aged rats relative to controls. Thus, RIPerC is an easily administered, non-invasive neuroprotective strategy that can improve penumbral blood flow via collaterals. Enhanced collateral flow supports further investigation as an adjuvant therapy to recanalization therapy and a protective treatment to maintain tissue viability prior to reperfusion.
Collapse
Affiliation(s)
- Junqiang Ma
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yonglie Ma
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Ashfaq Shuaib
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
49
|
Zhao W, Wu C, Stone C, Ding Y, Ji X. Treatment of intracerebral hemorrhage: Current approaches and future directions. J Neurol Sci 2020; 416:117020. [PMID: 32711191 DOI: 10.1016/j.jns.2020.117020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) stands out among strokes, both for the severely morbid outcomes it routinely produces, and for the striking deficiency of defenses possessed against the same. The brain damage caused by ICH proceeds through multiple pathophysiological mechanisms, broadly differentiated into those considered primary, arising from the hematoma itself, and the secondary consequences of hematoma presence and expansion thereof. A number of interventions against ICH and its sequelae have been investigated (e.g., hemostatic therapies, blood pressure control, hematoma evacuation, and a variety of neuroprotective strategies), but conclusive demonstrations of clinical benefit have remained largely elusive. In this review, we begin with a description of these interventions and the trials in which they have been implemented, coupled with an attempt to account for their failure. Possible causes discussed include iatrogenic injury during hematoma evacuation, secondary injury initiated by hematoma persistence after evacuation, and inadequate therapeutic power arising from an excessively narrow focus on a single component of the complex pathophysiology of ICH injury. To conclude, we propose several strategies, such as enhancing endogenous hematoma resolution, hematoma evacuation-based neuroprotection, and multi-targeted therapy, that hold promise as prospects for the extension of anti-ICH therapy into the domain of clinical significance.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
50
|
Seneviratne A, Han Y, Wong E, Walter ERH, Jiang L, Cave L, Long NJ, Carling D, Mason JC, Haskard DO, Boyle JJ. Hematoma Resolution In Vivo Is Directed by Activating Transcription Factor 1. Circ Res 2020; 127:928-944. [PMID: 32611235 PMCID: PMC7478221 DOI: 10.1161/circresaha.119.315528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE The efficient resolution of tissue hemorrhage is an important homeostatic function. In human macrophages in vitro, heme activates an AMPK (AMP-activated protein kinase)/ATF1 (activating transcription factor-1) pathway that directs Mhem macrophages through coregulation of HO-1 (heme oxygenase-1; HMOX1) and lipid homeostasis genes. OBJECTIVE We asked whether this pathway had an in vivo role in mice. METHODS AND RESULTS Perifemoral hematomas were used as a model of hematoma resolution. In mouse bone marrow-derived macrophages, heme induced HO-1, lipid regulatory genes including LXR (lipid X receptor), the growth factor IGF1 (insulin-like growth factor-1), and the splenic red pulp macrophage gene Spic. This response was lost in bone marrow-derived macrophages from mice deficient in AMPK (Prkab1-/-) or ATF1 (Atf1-/-). In vivo, femoral hematomas resolved completely between days 8 and 9 in littermate control mice (n=12), but were still present at day 9 in mice deficient in either AMPK (Prkab1-/-) or ATF1 (Atf1-/-; n=6 each). Residual hematomas were accompanied by increased macrophage infiltration, inflammatory activation and oxidative stress. We also found that fluorescent lipids and a fluorescent iron-analog were trafficked to lipid-laden and iron-laden macrophages respectively. Moreover erythrocyte iron and lipid abnormally colocalized in the same macrophages in Atf1-/- mice. Therefore, iron-lipid separation was Atf1-dependent. CONCLUSIONS Taken together, these data demonstrate that both AMPK and ATF1 are required for normal hematoma resolution. Graphic Abstract: An online graphic abstract is available for this article.
Collapse
Affiliation(s)
- Anusha Seneviratne
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus
| | - Yumeng Han
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus.,Molecular Sciences Research Hub, Imperial College London White City Campus (Y.H., E.W., E.R.H.W., L.J., N.J.L.)
| | - Eunice Wong
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus.,Molecular Sciences Research Hub, Imperial College London White City Campus (Y.H., E.W., E.R.H.W., L.J., N.J.L.)
| | - Edward R H Walter
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus.,Molecular Sciences Research Hub, Imperial College London White City Campus (Y.H., E.W., E.R.H.W., L.J., N.J.L.)
| | - Lijun Jiang
- Molecular Sciences Research Hub, Imperial College London White City Campus (Y.H., E.W., E.R.H.W., L.J., N.J.L.)
| | - Luke Cave
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus
| | - Nicholas J Long
- Molecular Sciences Research Hub, Imperial College London White City Campus (Y.H., E.W., E.R.H.W., L.J., N.J.L.)
| | - David Carling
- MRC London Institute of Medical Sciences (D.C.), Imperial College London Hammersmith Campus
| | - Justin C Mason
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus
| | - Dorian O Haskard
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus
| | - Joseph J Boyle
- From the National Heart and Lung Institute (A.S., Y.H., E.W., E.R.H.W., L.C., J.C.M., D.O.H., J.J.B.), Imperial College London Hammersmith Campus
| |
Collapse
|