1
|
Sarlashkar P, Carr C, Heberton M. Imatinib associated discoid lupus erythematosus in a patient with chronic myeloid leukemia. JAAD Case Rep 2024; 53:60-62. [PMID: 39430628 PMCID: PMC11488413 DOI: 10.1016/j.jdcr.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Affiliation(s)
- Priya Sarlashkar
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christian Carr
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meghan Heberton
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Ureshino H, Takahashi N, Ikezoe T, Kameoka Y, Kimura S, Fukushima N, Ichinohe T, Takamori A, Kawaguchi A, Miura M, Kimura S. A lower initial dose of bosutinib for patients with chronic myeloid leukemia patients resistant and/or intolerant to prior therapy: a single-arm, multicenter, phase 2 trial (BOGI trial). Int J Hematol 2024; 120:492-500. [PMID: 39136895 PMCID: PMC11415413 DOI: 10.1007/s12185-024-03830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Although bosutinib is generally safe and effective, drug-related toxicities (DRTs) such as diarrhea or increased transaminase levels often lead to treatment discontinuation. To clarify whether a lower initial dose of bosutinib (i.e., starting at 200 mg) would reduce rates of discontinuation due to DRTs, we conducted a phase 2 study of BOsutinib Gradual Increase (BOGI trial, UMIN 000032282) as a second/third-line treatment for chronic myeloid leukemia (CML). Between February 4, 2019 and May 24, 2022, 35 patients were enrolled. The rate of bosutinib discontinuation at 12 months was 25.7% vs. 35.9% in a historical control study (Japanese phase 1/2 study) (p = 0.102). The rate of bosutinib discontinuation due to DRTs was significantly lower, at 11.4% vs. 28.2% (p = 0.015). The incidence of grade 3/4 transaminase elevation was 20% vs. 29% (p = 0.427), while the incidence of diarrhea was 3% vs. 25% (p = 0.009). The median dose intensity of bosutinib was higher (391.7 mg/day vs. 353.9 mg/day). Pharmacokinetic analysis of bosutinib showed that patients who achieved a major molecular response tended to have high trough concentrations. Thus, a low initial dose of bosutinib followed by dose escalation reduced discontinuation due to severe DRTs while maintaining high dose intensity and efficacy.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1‑1‑1, Hondo, Akita, Akita, 010‑8543, Japan.
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yoshihiro Kameoka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1‑1‑1, Hondo, Akita, Akita, 010‑8543, Japan
| | - Satoshi Kimura
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Noriyasu Fukushima
- Department of Internal Medicine, Karatsu Red Cross Hospital, Karatsu, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatomo Miura
- Department of Pharmacokinetics, Akita University Graduate School of Medicine, Akita, Japan
| | - Shinya Kimura
- Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Saj F, Vasudevan Nampoothiri R, Lad D, Jandial A, Sachdeva MUS, Bose P, Varma N, Khadwal A, Prakash G, Malhotra P. Prognostic Significance of Regulatory T-Cells and PD-1 + CD8 T-Cells in Chronic Myeloid Leukemia Patients Treated with Generic Imatinib. Indian J Hematol Blood Transfus 2024; 40:580-587. [PMID: 39469161 PMCID: PMC11512970 DOI: 10.1007/s12288-024-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/08/2024] [Indexed: 10/30/2024] Open
Abstract
The impact of T-regulatory cells (Tregs), PD-1 + CD8 T-cells, and their dynamics during treatment with imatinib mesylate remains poorly understood in patients with chronic myeloid leukemia (CML). We conducted a prospective study on newly diagnosed, treatment-naïve adult (> 18 years old) patients with CML in the chronic phase (CP) and age- and sex-matched controls. Peripheral blood samples were collected at diagnosis and after three months of imatinib therapy to assess Tregs and PD-1 + CD8 T-cell levels using flow cytometry. The study comprised 57 patients with a median age of 39 years, including 27 males (47%). At baseline, the mean percentage of Tregs was significantly higher in CML patients (3.6 ± 0.32%) compared to controls (1.58 ± 0.21%) (p < 0.0001) but decreased significantly after three months of imatinib treatment (1.73 ± 0.35%) (p < 0.0001). Baseline Treg% exhibited positive correlations with Sokal (r = 0.29), Hasford (r = 0.33), EUTOS (r = 0.28), and ELTS (r = 0.31) risk scores (p < 0.05), as well as with the BCR-ABL transcript levels at three months (p = 0.03). Furthermore, the mean baseline percentage of PD-1 + CD8 T-cells was significantly elevated in CML patients (7.66 ± 0.36%) compared to controls (2.65 ± 0.32%) (p < 0.0001) and also decreased after treatment (3.44 ± 0.37%) (p < 0.0001). The baseline percentage of PD-1 + T-cells demonstrated positive correlations with Sokal (r = 0.26), Hasford (r = 0.27), and ELTS (r = 0.41) risk scores (p < 0.05). Our findings reveal a significantly higher proportion of Tregs and PD-1 + CD8 T-cells in patients with CML-CP compared to healthy controls, notably diminished following imatinib treatment. These observations suggest the potential for immunotherapy as a promising approach to managing immune exhaustion in CML patients.
Collapse
Affiliation(s)
- Fen Saj
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Ram Vasudevan Nampoothiri
- Transplantation and Cellular Therapy Program, The Ottawa Hospital, University of Ottawa, Ottawa, ON Canada
| | - Deepesh Lad
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Aditya Jandial
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Parveen Bose
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Neelam Varma
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Gaurav Prakash
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Nehru Hospital, Room No 18, 4th Level, F Block, Chandigarh, India
| |
Collapse
|
4
|
Othman T, Koller P, Pourhassan H, Agrawal V, Ngo D, Tinajero J, Ali H, Cai JL, Mei M, Aribi A, Stein AS, Marcucci G, Forman SJ, Pullarkat V, Aldoss I. Tyrosine kinase inhibitor maintenance following chimeric antigen receptor T-cell therapy in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 2024; 205:711-715. [PMID: 38808512 DOI: 10.1111/bjh.19551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Affiliation(s)
- Tamer Othman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Paul Koller
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Dat Ngo
- Department of Pharmacy, City of Hope National Medical Center, Duarte, California, USA
| | - Jose Tinajero
- Department of Pharmacy, City of Hope National Medical Center, Duarte, California, USA
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Ji-Lian Cai
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Matthew Mei
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Ahmed Aribi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Anthony S Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| |
Collapse
|
5
|
De Sanctis JB, Garmendia JV, Duchová H, Valentini V, Puskasu A, Kubíčková A, Hajdúch M. Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event. Cancers (Basel) 2024; 16:2630. [PMID: 39123358 PMCID: PMC11311849 DOI: 10.3390/cancers16152630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Hana Duchová
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Viktor Valentini
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Alex Puskasu
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
6
|
Wu S, Wang Y, Xiao Z, Zhang J, He Z, Ye M. FOXP3 expression in esophageal squamous cell carcinoma : Implications for cetuximab sensitivity and therapeutic strategies. Wien Klin Wochenschr 2024; 136:331-339. [PMID: 37874348 DOI: 10.1007/s00508-023-02291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Investigating the impact of FOXP3 (transcription factor forkhead box P3) expression on the biological behavior of esophageal squamous cell carcinoma (ESCC) and its influence on the sensitivity of ESCC cells towards cetuximab-targeted (an EGFR monoclonal antibody inhibitor) therapy. METHODS A specifically designed recombinant FOXP3 shRNA plasmid was synthesized to target the human FOXP3 gene, and the plasmid was transfected into TE12 cells using a liposome method. Multiple assays were conducted to evaluate the effect of FOXP3 expression on ESCC cells and their response to cetuximab treatment. Proliferation activity and cetuximab sensitivity of ESCC cells were measured using the CCK‑8 assay. The invasion ability of cells was assessed using an in vitro invasion assay. Furthermore, the efficacy of cetuximab in treating ESCC was analyzed using a tumorigenesis assay in nude mice. RESULTS Silencing the FOXP3 gene in the TE12 cell line (shFOXP3 group) resulted in a significant reduction in FOXP3 mRNA and protein expression (p = 0.013). The shFOXP3 group exhibited slowed cell growth (p = 0.035), decreased invasion rate (p = 0.031), and increased sensitivity to cetuximab treatment (p = 0.039) compared to the control group (shNC group). In the in vivo tumorigenesis assay, the shFOXP3 group demonstrated a significant reduction in tumor volume and lung metastasis rate following cetuximab treatment (p = 0.028 and 0.007, respectively). CONCLUSION High FOXP3 expression promotes the proliferation and migration of ESCC cells, while negatively affecting their sensitivity to cetuximab-targeted therapy. Consequently, targeting FOXP3 shows potential therapeutic implications for enhancing the effectiveness of cetuximab treatment in ESCC patients.
Collapse
Affiliation(s)
- Shenghong Wu
- Department of Medical Oncology, Fengxian District Central Hospital, 201499, Shanghai, China
| | - Yu Wang
- Department of Oncology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Zhijun Xiao
- Department of Pharmacy, Fengxian District Central Hospital, 201499, Shanghai, China
| | - Jinfeng Zhang
- Department of Medical Oncology, Fengxian District Central Hospital, 201499, Shanghai, China
| | - Zhonghui He
- Department of Medical Oncology, Fengxian District Central Hospital, 201499, Shanghai, China
| | - Ming Ye
- Department of Radiotherapy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, 200127, Shanghai, China.
| |
Collapse
|
7
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
8
|
Ureshino H, Kamachi K, Kimura S. Second Treatment-Free Remission Attempt in Patients with Chronic Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e138-e141. [PMID: 38195325 DOI: 10.1016/j.clml.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Long-term survival outcomes of patients with chronic myeloid leukemia in the chronic phase are now similar to those of the general population, following the introduction of ABL1 tyrosine kinase inhibitors (TKIs). Approximately 40% to 80% of patients with chronic myeloid leukemia successfully achieved treatment-free remission after the first attempt of TKI discontinuation (TFR1), after achieving a durable deep molecular response. However, the possibility of achieving treatment-free remission after a second attempt of TKI discontinuation (TFR2) remains unclear. Therefore, we reviewed current TFR2 studies to clarify the feasibility of achieving TFR2. We identified 5 TFR2 clinical trials and 2 real-world reports. TFR2 attempt may be feasible after retreatment with imatinib, nilotinib, or dasatinib. Patients who have achieved MR4.0 or deeper durable molecular remission are eligible to enter the TFR2 phase. Imatinib is well tolerated and can be administered for consolidative treatment before the TFR2 attempt, whereas drug-related adverse effects of nilotinib or dasatinib affect their tolerability and might lead to discontinuation. Late onset relapse (> 1 year or > 2 year) was often reported, thus careful monitoring is needed.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Kazuharu Kamachi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
9
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
García-Díaz N, Wei Q, Taskén K. Small molecule inhibitors targeting regulatory T cells for cancer treatment. Eur J Immunol 2024; 54:e2350448. [PMID: 37937687 DOI: 10.1002/eji.202350448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Regulatory T cells (Tregs) are important controllers of the immune system homeostasis by preventing disproportionate immune responses. In the context of cancer, Tregs contribute to tumor development by suppressing other immune cells in the tumor microenvironment (TME). Infiltration of Tregs in the TME has been associated with poor prognosis in cancer patients. Thus, understanding the mechanisms underlying Treg recruitment and suppressive functions is essential for developing cancer immunotherapies to boost antitumor immune responses. While antibody-based strategies targeting Tregs have shown promise, small molecule inhibitors offer distinct advantages, including oral bioavailability and the ability to penetrate the TME and target intracellular proteins. Here, we provide an overview of small molecule inhibitors that have demonstrated efficacy in modulating Tregs activity in cancer and highlight the need for phenotypic assays to characterize therapeutic compounds.
Collapse
Affiliation(s)
- Nuria García-Díaz
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
NISHIKAWA H. Establishment of immune suppression by cancer cells in the tumor microenvironment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:114-122. [PMID: 38346752 PMCID: PMC10978970 DOI: 10.2183/pjab.100.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 02/15/2024]
Abstract
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
Collapse
Affiliation(s)
- Hiroyoshi NISHIKAWA
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Andreescu M. Epigenetic Alterations That Are the Backbone of Immune Evasion in T-cell Malignancies. Cureus 2024; 16:e51662. [PMID: 38179322 PMCID: PMC10766007 DOI: 10.7759/cureus.51662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Epigenetic alterations are heritable and enduring modifications in gene expression that play a pivotal role in immune evasion. These include alterations to noncoding RNA, DNA methylation, and histone modifications. DNA methylation plays a crucial role in normal cell growth and development but alterations in methylation patterns such as hypermethylation or hypomethylation can enable tumor and viral cells to evade host immune responses. Histone modifications can also inhibit immune responses by promoting the expression of genes involved in suppressing normal immune function. In the case of T-cell lymphoma, adult T-cell lymphomas (ATL) also undergo immune evasion through the exceptional function of its accessory and regulatory genes. Epigenetic therapies are emerging as a promising adjunct to traditional immunotherapy and chemotherapy regimens. Clinical trials are currently investigating the use of epigenetic therapies in combination with immunotherapies and chemotherapies for more effective treatment of ATL and other cancers. This review highlights epigenetic alterations that are widely found in T-cell malignancies.
Collapse
|
13
|
Tang C, Fu S, Jin X, Li W, Xing F, Duan B, Cheng X, Chen X, Wang S, Zhu C, Li G, Chuai G, He Y, Wang P, Liu Q. Personalized tumor combination therapy optimization using the single-cell transcriptome. Genome Med 2023; 15:105. [PMID: 38041202 PMCID: PMC10691165 DOI: 10.1186/s13073-023-01256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment. METHODS Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable solution to stratify individual patient samples based on quantitative evaluation of their personalized immune microenvironment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, and finally prioritize them for personalized clinical use based on bipartition graph optimization. RESULTS We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples. CONCLUSIONS Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept study to predict potential drug combinations for further experimental validation and clinical usage using the single-cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web server of comboSC for both clinical and research users is available at www.combosc.top . The source code is also available on GitHub at https://github.com/bm2-lab/comboSC .
Collapse
Affiliation(s)
- Chen Tang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuan Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wannian Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bin Duan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaojie Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaohan Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuguang Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenyu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gaoyang Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohui Chuai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China.
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
14
|
Negura I, Pavel-Tanasa M, Danciu M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat Rev 2023; 120:102629. [PMID: 37769435 DOI: 10.1016/j.ctrv.2023.102629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Gastric cancer (GC) is a highly aggressive malignancy that remains a significant contributor to cancer-related mortality worldwide, despite a decline in incidence in recent years. Early-stage GC poses a diagnostic challenge due to its asymptomatic nature, leading to poor prognoses for most patients. Conventional treatment approaches, including chemotherapy and surgery, have shown limited efficacy in improving outcomes for GC patients. The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy, yielding durable responses across various malignancies. However, the clinical benefits of ICIs in GC have been modest, underscoring the need for a comprehensive understanding of immune cell functions within the GC tumor microenvironment (TME). Regulatory T cells (Tregs), a subset of T lymphocytes, play a pivotal role in GC development and progression and serve as prognostic biomarkers for GC patients. This review aims to elucidate the multifaceted roles of Tregs in the pathogenesis, progression, and prognosis of gastric cancer, and establish their actual and future potential as therapeutic targets. By providing insights into the intricate interplay between Tregs and the TME, this review strives to stimulate further investigation and facilitate the development of targeted Treg-based therapeutic strategies for GC.
Collapse
Affiliation(s)
- Ion Negura
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
| | - Mihai Danciu
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
15
|
Alfar R, Napoleon JV, Shahriar I, Finnell R, Walchle C, Johnson A, Low PS. Selective reprogramming of regulatory T cells in solid tumors can strongly enhance or inhibit tumor growth. Front Immunol 2023; 14:1274199. [PMID: 37928524 PMCID: PMC10623129 DOI: 10.3389/fimmu.2023.1274199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Folate receptor delta (FRδ) has been used as a biomarker for regulatory T cells (Tregs), because its expression is limited to Tregs and ovum. Although FRδ is unable to bind folate, we have used molecular docking software to identify a folate congener that binds FRδ with high affinity and have exploited this FRδ-specific ligand to target attached drugs (imaging agents, immune activators, and immune suppressors) specifically to Tregs in murine tumor xenografts. Analysis of treated tumors demonstrates that targeting of a Toll-like receptor 7 agonist inhibits Treg expression of FOXP3, PD-1, CTLA4, and HELIOS, resulting in 40-80% reduction in tumor growth and repolarization of other tumor-infiltrating immune cells to more inflammatory phenotypes. Targeting of the immunosuppressive drug dexamethasone, in contrast, promotes enhanced tumor growth and shifts the tumor-infiltrating immune cells to more anti-inflammatory phenotypes. Since Tregs comprise <1% of cells in the tumor masses examined, and since the targeted drugs are not internalized by cancer cells, these data demonstrate that Tregs exert a disproportionately large effect on tumor growth. Because the targeted drug did not bind to Tregs or other immune cells in healthy tissues, the data demonstrate that the immunosuppressive properties of Tregs in tumors can be manipulated without causing systemic toxicities associated with global reprogramming of the immune system.
Collapse
Affiliation(s)
- Rami Alfar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Richard Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Cole Walchle
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Austin Johnson
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Chen LY, Gong WJ, Li MH, Zhou HX, Xu MZ, Qian CS, Kang LQ, Xu N, Yu Z, Qiao M, Zhang TT, Zhang L, Tian ZL, Sun AN, Yu L, Wu DP, Xue SL. Anti-CD19 CAR T-cell consolidation therapy combined with CD19+ feeding T cells and TKI for Ph+ acute lymphoblastic leukemia. Blood Adv 2023; 7:4913-4925. [PMID: 36897251 PMCID: PMC10463198 DOI: 10.1182/bloodadvances.2022009072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
We conducted a single-arm, open-label, single-center phase 1 study to assess the safety and efficacy of multicycle-sequential anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in combination with autologous CD19+ feeding T cells (FTCs) and tyrosine kinase inhibitor (TKI) as consolidation therapy in patients under the age of 65 years with de novo Ph-positive CD19+ B-cell acute lymphoblastic leukemia. Participants were given induction chemotherapy as well as systemic chemotherapy with TKI. Afterward, they received a single cycle of CD19 CAR T-cell infusion and another 3 cycles of CD19 CAR T-cell and CD19+ FTC infusions, followed by TKI as consolidation therapy. CD19+ FTCs were given at 3 different doses. The phase 1 results of the first 15 patients, including 2 withdrawals, are presented. The most common adverse events were cytopenia (13/13) and hypogammaglobinemia (12/13). There was no incidence of cytokine release syndrome above grade 2 or immune effector cell-associated neurotoxicity syndrome or grade 4 nonhematological toxicities. All 13 patients achieved complete remission, including 12 patients with a complete molecular response (CMR) at the data cutoff. The relapse-free survival was 84%, and the overall survival was 83% with a median follow-up of 27 months. The total number of CD19-expressing cells decreased with an increasing CMR rate. CD19 CAR T cells survived for up to 40 months, whereas CD19+ FTCs vanished in 8 patients 3 months after the last infusion. These findings could form the basis for the development of an allo-HSCT-free consolidation paradigm. This trial was registered at www.clinicaltrials.gov as #NCT03984968.
Collapse
Affiliation(s)
- Li-Yun Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Wen-Jie Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ming-Hao Li
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Ltd, Shanghai, China
| | - Hai-Xia Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ming-Zhu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chong-Sheng Qian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Li-Qing Kang
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Ltd, Shanghai, China
| | - Nan Xu
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Ltd, Shanghai, China
| | - Zhou Yu
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Ltd, Shanghai, China
| | - Man Qiao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tong-Tong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng-Long Tian
- Gobroad Research Center, Gobroad Medical Group, Bejing, China
| | - Ai-Ning Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-Medicine Technology Co, Ltd, Shanghai, China
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Yu T, Li W, Yu T. Management of chronic myelogenous leukemia with COVID-19 and hepatitis B. Front Oncol 2023; 13:1217023. [PMID: 37601670 PMCID: PMC10438954 DOI: 10.3389/fonc.2023.1217023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
The application of immunosuppressive agents and targeted drugs has opened a novel approach for the treatment of hematological tumors, and the application of tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia is one of the landmark breakthroughs that has considerably improved the prognosis of CML patients. However, with the extensive use of TKI, the co-infection of CML patients has become increasingly apparent, especially regarding infectious diseases such as hepatitis B and COVID-19. The underlying mechanism may be related to the inhibition of the immune function by TKI. Poor management, including disease progression due to the infectious disease or TKI dose reduction or discontinuation, may lead to adverse clinical outcomes and can even be life-threatening. Therefore, this review principally provides an overview of the pathogenesis and standardized management principles of CML patients with comorbid COVID-19 or hepatitis B in order to improve clinicians' awareness of the risks so as to more effectively diagnose and treat CML and improve the survival rate and quality of life of patients. In the past two decades, owing to the advent of imatinib, chronic myeloid leukemia (CML) has transformed into a chronic controllable disease, and even treatment-free remission can be anticipated. Earlier studies have indicated that tyrosine kinase inhibitor (TKI) exerts a peculiar inhibitory effect on the body's immune function. Therefore, with the widespread application of TKI, more and more attention has been paid to the comorbidity of infectious diseases in CML patients, especially in patients with progressive disease or non-remission. Despite some studies revealing that the proportion and severity of SARS-CoV-2 infection in CML patients receiving TKI treatment are lower than in patients with other hematological malignancies, CML patients with stable disease are still recommended to be vaccinated against SARS-CoV-2, while TKI may or may not be discontinued. Meanwhile, the management of CML patients during the epidemic of coronavirus disease 2019 (COVID-19) still necessitates further discussion. This article also provides an overview of TKI-related hepatitis B reactivation. If not managed, patients may face adverse consequences such as hepatitis B reactivation-related hepatitis, liver failure, and progression of CML after forced withdrawal of medication. Therefore, this review aimed to comprehensively describe the management of CML patients with comorbid COVID-19, the pathogenesis of hepatitis B reactivation, the indicated population for prophylactic antiviral therapy, the time of antiviral drug discontinuation, and drug selection.
Collapse
Affiliation(s)
- Tian Yu
- Department of Hematology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yu
- Department of Hematology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
Geng CA, Chen FY, Zheng JB, Liao P, Li TZ, Zhang XM, Chen X, Chen JJ. Rubiginosin B selectively inhibits Treg cell differentiation and enhances anti-tumor immune responses by targeting calcineurin-NFAT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154898. [PMID: 37247590 DOI: 10.1016/j.phymed.2023.154898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The accumulation of CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment (TME) dampens anti-tumor immune responses and promotes tumor progression. Therefore, the elimination of Tregs has become a strategy to enhance the efficacy of tumor immunotherapy, although it is still a daunting challenge. Rhododendron brachypodum (R. brachypodum) is a perennial shrub mainly distributed in Southwestern China, whereas the chemical constituents in this plant remain elusive. PURPOSE To identify small-molecule inhibitors of Tregs from R. brachypodum. METHODS Meroterpenoids in R. brachypodum were isolated by column chromatography under the guidance of LCMS analyses. The structures of isolates were identified by spectroscopic data and quantum calculations. The activities of compounds were first evaluated on CD4+ T cell differentiation by flow cytometry in Th1, Th2, Th17, and Treg polarizing conditions, and then on CT26 and MC38 murine colorectal carcinoma cells-allografted mice models. The mechanism of action was first investigated by determining Foxp3 degradation in Jurkat T cells transfected with pLVX-TetOne-Puro-Foxp3-tGFP, and then through analyses of Foxp3 expression on several pre-transcriptional signaling molecules. RESULTS Two new prenylated phenolic acids (1 and 2) and a chromane meroterpenoid, rubiginosin B (RGB, 3) were obtained from R. brachypodum. The structure of S-anthopogochromene C (1) was rectified according to the electronic circular dichroism (ECD) experiment, and rhodobrachypodic acid (2) was proposed as the precursor of RGB by photochemical transformation. In this investigation, we first found that RGB (3) selectively suppressed the de novo differentiation of TGFβ-induced CD4+Foxp3+ regulatory T cells (iTregs), overcome the immunosuppressive TME, and consequently inhibited the growth of tumor in mouse models. The mechanistic study revealed that RGB could target calcineurin, inhibited the nuclear factor of activated T cells (NFAT) dephosphorylation, and down-regulated Foxp3 expression. The hypothetical binding modes of RGB with calcineurin were predicted by molecular docking, and the interactions were mainly hydrophobic effects and hydrogen bonds. CONCLUSION These results suggest that RGB enhances anti-tumor immune responses by inhibiting Treg cell differentiation through calcineurin-NFAT signaling pathway, and therefore RGB or its analogs may be used as adjuvant agents meriting further investigation.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng-Yang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China; School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jing-Bin Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China
| | - Ping Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China; Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Nishiwaki S, Sugiura I, Sato T, Kobayashi M, Osaki M, Sawa M, Adachi Y, Okabe M, Saito S, Morishita T, Kohno A, Nishiyama T, Iida H, Kurahashi S, Kuwatsuka Y, Sugiyama D, Ito S, Nishikawa H, Kiyoi H. Autologous peripheral blood stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia is safe but poses challenges for long-term maintenance of molecular remission: Results of the Auto-Ph17 study. EJHAEM 2023; 4:358-369. [PMID: 37206256 PMCID: PMC10188459 DOI: 10.1002/jha2.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Autologous hematopoietic stem cell transplantation (SCT) is not a standard treatment option for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL); however, its position has been reassessed since the introduction of tyrosine kinase inhibitors (TKIs). We prospectively analyzed the efficacy and safety of autologous peripheral blood SCT (auto-PBSCT) for Ph+ALL patients aged between 55 and 70 years who had achieved complete molecular remission. Melphalan, cyclophosphamide, etoposide, and dexamethasone were used for conditioning. A total of 12 courses of maintenance therapy, including dasatinib, were performed. The required number of CD34+ cells was harvested in all five patients. No patient died within 100 days after auto-PBSCT, and no unexpected serious adverse events were observed. Although 1-year event-free survival was 100%, hematological relapse was observed in three patients at a median of 801 days (range, 389-1088 days) after auto-PBSCT. Molecular progressive disease was observed in the other two patients, although they maintained their first hematological remission at the last visit. Auto-PBSCT can be safely performed for Ph+ALL with TKIs. A limitation of auto-PBSCT was suggested, despite the increase in the intensity of a single treatment. The development of long-term therapeutic strategies by including new molecular targeted drugs is warranted to maintain long-term molecular remission.
Collapse
Affiliation(s)
- Satoshi Nishiwaki
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Isamu Sugiura
- Division of Hematology and OncologyToyohashi Municipal HospitalToyohashiJapan
| | - Takahiko Sato
- Department of ImmunologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Miki Kobayashi
- Department of Hematology and OncologyJapanese Red Cross Aichi Medical Center Nagoya Daini HospitalNagoyaJapan
| | - Masahide Osaki
- Department of HematologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Masashi Sawa
- Department of Hematology and OncologyAnjo Kosei HospitalAnjoJapan
| | - Yoshitaka Adachi
- Department of Hematology and OncologyJA Aichi Konan Kosei HospitalKonanJapan
| | - Motohito Okabe
- Department of HematologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Shigeki Saito
- Department of Hematology and OncologyJapanese Red Cross Aichi Medical Center Nagoya Daini HospitalNagoyaJapan
| | - Takanobu Morishita
- Department of HematologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Akio Kohno
- Department of Hematology and OncologyJA Aichi Konan Kosei HospitalKonanJapan
| | | | - Hiroatsu Iida
- Department of HematologyNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shingo Kurahashi
- Division of Hematology and OncologyToyohashi Municipal HospitalToyohashiJapan
| | - Yachiyo Kuwatsuka
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Daisuke Sugiyama
- Department of ImmunologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Sachiko Ito
- Department of ImmunologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroyoshi Nishikawa
- Department of ImmunologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
20
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
21
|
Sabir SF, Matti BF, Alwatar WMA. Assessment of regulatory T cells (Tregs) and Foxp3 methylation level in chronic myeloid leukemia patients on tyrosine kinase inhibitor therapy. Immunogenetics 2023; 75:145-153. [PMID: 36567345 DOI: 10.1007/s00251-022-01291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
The key cell population permits cancer cells to avoid immune-surveillance is regulatory T cells (Tregs). This study evaluates the level of Tregs in chronic myeloid leukemia (CML) patients and the effect of Tyrosine kinase inhibitor (TKI) on Treg levels, as a pathway to understand the immune response and behavior among advance stage and optimal response CML patients using imatinib therapy. Blood samples were collected from 30 CML patients (optimal response to TKI), 30 CML patients (failure response to TKI), and 30 age- and gender-matched controls. Analysis involved measuring percentages of Tregs (CD4 + CD25 + FOXP3 +) by flow cytometer and demethylation levels of FOXP3 Treg-specific demethylated region (TSDR) by PCR. The data revealed that Tregs and the FOXP3-TSDR demethylation percentages significantly increased in failure response group in comparison to the optimal response and control groups, while no significant difference between optimal response and control groups. Tregs and FOXP3 TSDR demethylation percentages showed high sensitivity and specificity, suggesting powerful discriminatory biomarkers between failure and optimal groups. An assessment of the Tregs and demethylation percentage among different BCR-ABL levels of CML patients on TKI revealed no significant differences in parameter percentage in the optimal response to TKI patients with different molecular responses (log 3 reduction or other deeper log 4.5 and 5 reduction levels). Our findings demonstrate an effective role of functional Tregs among different CML stages. Also, the study suggests that the major molecular response to therapy at level 0.1% of BCR-ABL transcript could be enough to induce immune system restoration in patients.
Collapse
Affiliation(s)
| | - Bassam Francis Matti
- Baghdad Teaching Hospital, Clinical Hematology Department, Medical City, Baghdad, Iraq
- Bone Marrow Transplant Center, Medical City, Baghdad, Iraq
| | | |
Collapse
|
22
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Sugiyama D, Hinohara K, Nishikawa H. Significance of regulatory T cells in cancer immunology and immunotherapy. Exp Dermatol 2023; 32:256-263. [PMID: 36458459 DOI: 10.1111/exd.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Immunosuppression in the tumour microenvironment (TME) attenuates antitumor immunity, consequently hindering protective immunosurveillance and preventing effective antitumor immunity induced by cancer immunotherapy. Multiple mechanisms including immune checkpoint molecules, such as CTLA-4, PD-1, and LAG-3, and immunosuppressive cells are involved in the immunosuppression in the TME. Regulatory T (Treg) cells, a population of immunosuppressive cells, play an important role in inhibiting antitumor immunity. Therefore, Treg cells in the TME correlate with an unfavourable prognosis in various cancer types. Thus, Treg cell is considered to become a promising target for cancer immunotherapy. Elucidating Treg cell functions in cancer patients is therefore crucial for developing optimal Treg cell-targeted immunotherapy. Here, we describe Treg cell functions and phenotypes in the TME from the perspective of Treg cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chuo-ku, Japan
| |
Collapse
|
24
|
Barnwal A, Das S, Bhattacharyya J. Repurposing Ponatinib as a PD-L1 Inhibitor Revealed by Drug Repurposing Screening and Validation by In Vitro and In Vivo Experiments. ACS Pharmacol Transl Sci 2023; 6:281-289. [PMID: 36798474 PMCID: PMC9926522 DOI: 10.1021/acsptsci.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 01/13/2023]
Abstract
Cancer treatment by inhibiting the PD-1/PD-L1 pathway using monoclonal antibodies has made great advances as it showed long-lasting antitumor responses in a wide range of cancers. However, antibodies exhibit several disadvantages, which include low permeability, immune-related adverse effects, complex synthetic procedures, and high treatment costs. Hence, small-molecule inhibitors can be used as alternatives; however, no small molecule with in vivo activity has been reported. In addition, there are many challenges in developing a new drug, including the timeline and escalating cost. Therefore, repurposing an approved drug offers advantages over the development of an entirely new drug. Herein, we identify an FDA-approved small-molecule drug, Ponatinib, as a PD-L1 inhibitor via virtual drug screening of the ZINC database. Ponatinib showed stable binding with PD-L1, with the highest binding energy among all of the screened FDA-approved drugs. The binding of Ponatinib with PD-L1 was supported by a fluorescence quenching assay and immunofluorescence study. Further, we compared the in vivo antitumor efficacy of Ponatinib with a commercially available anti-PD-L1 antibody in the murine melanoma model. Ponatinib was found to be more efficient in delaying tumor growth than the anti-PD-L1 antibody. Furthermore, Ponatinib also reduced the expression of PD-L1 in tumors and increased the T-cell population. Interestingly, splenocytes isolated from Ponatinib-treated mice showed enhanced cytotoxic T-cell (CTL) activity against B16-F10 cells. However, Ponatinib itself did not have any direct toxic effect on cancer cells in vitro. These findings suggest that Ponatinib can be used as a potent small-molecule inhibitor of PD-L1 to overcome the disadvantages associated with antibodies.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre
for Biomedical Engineering, Indian Institute
of Technology, Delhi110016, India
- Department
of Biomedical Engineering, All India Institute
of Medical Science, Delhi110029, India
| | - Sanjeev Das
- National
Institute of Immunology, Delhi110067, India
| | - Jayanta Bhattacharyya
- Centre
for Biomedical Engineering, Indian Institute
of Technology, Delhi110016, India
- Department
of Biomedical Engineering, All India Institute
of Medical Science, Delhi110029, India
| |
Collapse
|
25
|
Tanaka A, Maeda S, Nomura T, Llamas-Covarrubias MA, Tanaka S, Jin L, Lim EL, Morikawa H, Kitagawa Y, Akizuki S, Ito Y, Fujimori C, Hirota K, Murase T, Hashimoto M, Higo J, Zamoyska R, Ueda R, Standley DM, Sakaguchi N, Sakaguchi S. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J Exp Med 2023; 220:213728. [PMID: 36454183 PMCID: PMC9718937 DOI: 10.1084/jem.20220386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Thymic selection and peripheral activation of conventional T (Tconv) and regulatory T (Treg) cells depend on TCR signaling, whose anomalies are causative of autoimmunity. Here, we expressed in normal mice mutated ZAP-70 molecules with different affinities for the CD3 chains, or wild type ZAP-70 at graded expression levels under tetracycline-inducible control. Both manipulations reduced TCR signaling intensity to various extents and thereby rendered those normally deleted self-reactive thymocytes to become positively selected and form a highly autoimmune TCR repertoire. The signal reduction more profoundly affected Treg development and function because their TCR signaling was further attenuated by Foxp3 that physiologically repressed the expression of TCR-proximal signaling molecules, including ZAP-70, upon TCR stimulation. Consequently, the TCR signaling intensity reduced to a critical range generated pathogenic autoimmune Tconv cells and concurrently impaired Treg development/function, leading to spontaneous occurrence of autoimmune/inflammatory diseases, such as autoimmune arthritis and inflammatory bowel disease. These results provide a general model of how altered TCR signaling evokes autoimmune disease.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinji Maeda
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Nomura
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mara Anais Llamas-Covarrubias
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Institute of Research in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lin Jin
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hiromasa Morikawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yohko Kitagawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shuji Akizuki
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Fujimori
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tosei Murase
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Motomu Hashimoto
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Daron M Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Noriko Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
26
|
Häselbarth L, Karow A, Mentz K, Böttcher M, Roche-Lancaster O, Krumbholz M, Jitschin R, Mougiakakos D, Metzler M. Effects of the STAMP-inhibitor asciminib on T cell activation and metabolic fitness compared to tyrosine kinase inhibition by imatinib, dasatinib, and nilotinib. Cancer Immunol Immunother 2023; 72:1661-1672. [PMID: 36602564 DOI: 10.1007/s00262-022-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
T cell function is central to immune reconstitution and control of residual chronic myeloid leukemia (CML) cells after treatment initiation and is associated with achieving deep molecular response as a prerequisite for treatment-free remission, the ultimate therapeutic goal in CML. ATP-pocket-binding tyrosine kinase inhibitors (TKIs) like imatinib, dasatinib, and nilotinib are widely used for treating CML, but they have shown to inhibit T cell function as an "off-target" effect. Therefore, we tested asciminib, the first-in-class BCR::ABL1 fusion protein inhibitor specifically targeting the ABL myristoyl pocket (STAMP) and compared its effects on T cell function with imatinib, dasatinib, and nilotinib. Whereas all four TKIs inhibited the expression of the co-stimulatory protein CD28, the amino acid transporter CD98, proliferation, and secretion of pro-inflammatory cytokines IFNγ, IL-6, and IL-17A upon T cell stimulation, asciminib had less impact on PD-1, activation markers, and IL-2 secretion. T cells treated with asciminib and the other TKIs maintained their ability to mobilize their respiratory capacity and glycolytic reserve, which is an important surrogate for metabolic fitness and flexibility. Overall, we found milder inhibitory effects of asciminib on T cell activation, which might be beneficial for the immunological control of residual CML cells.
Collapse
Affiliation(s)
- Lukas Häselbarth
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany. .,Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Nuremberg, Germany. .,Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany.
| | - Axel Karow
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Nuremberg, Germany.,Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany
| | - Kristin Mentz
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine, Hematology and Oncology, University Hospital Magdeburg, Magdeburg, Germany
| | - Oisin Roche-Lancaster
- Center of Medical Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Manuela Krumbholz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Nuremberg, Germany
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany.,Department of Internal Medicine, Hematology and Oncology, University Hospital Magdeburg, Magdeburg, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Nuremberg, Germany.,Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany
| |
Collapse
|
27
|
Riether C. Regulation of hematopoietic and leukemia stem cells by regulatory T cells. Front Immunol 2022; 13:1049301. [PMID: 36405718 PMCID: PMC9666425 DOI: 10.3389/fimmu.2022.1049301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Adult bone marrow (BM) hematopoietic stem cells (HSCs) are maintained in a quiescent state and sustain the continuous production of all types of blood cells. HSCs reside in a specialized microenvironment the so-called HSC niche, which equally promotes HSC self-renewal and differentiation to ensure the integrity of the HSC pool throughout life and to replenish hematopoietic cells after acute injury, infection or anemia. The processes of HSC self-renewal and differentiation are tightly controlled and are in great part regulated through cellular interactions with classical (e.g. mesenchymal stromal cells) and non-classical niche cells (e.g. immune cells). In myeloid leukemia, some of these regulatory mechanisms that evolved to maintain HSCs, to protect them from exhaustion and immune destruction and to minimize the risk of malignant transformation are hijacked/disrupted by leukemia stem cells (LSCs), the malignant counterpart of HSCs, to promote disease progression as well as resistance to therapy and immune control. CD4+ regulatory T cells (Tregs) are substantially enriched in the BM compared to other secondary lymphoid organs and are crucially involved in the establishment of an immune privileged niche to maintain HSC quiescence and to protect HSC integrity. In leukemia, Tregs frequencies in the BM even increase. Studies in mice and humans identified the accumulation of Tregs as a major immune-regulatory mechanism. As cure of leukemia implies the elimination of LSCs, the understanding of these immune-regulatory processes may be of particular importance for the development of future treatments of leukemia as targeting major immune escape mechanisms which revolutionized the treatment of solid tumors such as the blockade of the inhibitory checkpoint receptor programmed cell death protein 1 (PD-1) seems less efficacious in the treatment of leukemia. This review will summarize recent findings on the mechanisms by which Tregs regulate stem cells and adaptive immune cells in the BM during homeostasis and in leukemia.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland,*Correspondence: Carsten Riether,
| |
Collapse
|
28
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
29
|
Kagawa K, Sato S, Koyama K, Imakura T, Murakami K, Yamashita Y, Naito N, Ogawa H, Kawano H, Nishioka Y. The lymphocyte-specific protein tyrosine kinase-specific inhibitor A-770041 attenuates lung fibrosis via the suppression of TGF-β production in regulatory T-cells. PLoS One 2022; 17:e0275987. [PMID: 36301948 PMCID: PMC9612470 DOI: 10.1371/journal.pone.0275987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background Lymphocyte-specific protein tyrosine kinase (Lck) is a member of the Src family of tyrosine kinases. The significance of Lck inhibition in lung fibrosis has not yet been fully elucidated, even though lung fibrosis is commonly preceded by inflammation caused by infiltration of T-cells expressing Lck. In this study, we examined the effect of Lck inhibition in an experimental mouse model of lung fibrosis. We also evaluated the effect of Lck inhibition on the expression of TGF-β1, an inhibitory cytokine regulating the immune function, in regulatory T-cells (Tregs). Methods Lung fibrosis was induced in mice by intratracheal administration of bleomycin. A-770041, a Lck-specific inhibitor, was administrated daily by gavage. Tregs were isolated from the lung using a CD4+CD25+ Regulatory T-cell Isolation Kit. The expression of Tgfb on Tregs was examined by flow cytometry and quantitative polymerase chain reaction. The concentration of TGF-β in bronchoalveolar lavage fluid (BALF) and cell culture supernatant from Tregs was quantified by an enzyme-linked immunosorbent assay. Results A-770041 inhibited the phosphorylation of Lck in murine lymphocytes to the same degree as nintedanib. A-770041 attenuated lung fibrosis in bleomycin-treated mice and reduced the concentration of TGF-β in BALF. A flow-cytometry analysis showed that A-770041 reduced the number of Tregs producing TGF-β1 in the lung. In isolated Tregs, Lck inhibition by A-770041 decreased the Tgfb mRNA level as well as the concentration of TGF-β in the supernatant. Conclusions These results suggest that Lck inhibition attenuated lung fibrosis by suppressing TGF-β production in Tregs and support the role of Tregs in the pathogenesis of lung fibrosis.
Collapse
Affiliation(s)
- Kozo Kagawa
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Imakura
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kojin Murakami
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuya Yamashita
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Nobuhito Naito
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Kawano
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
30
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
31
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
32
|
Santiago-Sánchez GS, Hodge JW, Fabian KP. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation. Front Immunol 2022; 13:993624. [PMID: 36159809 PMCID: PMC9492957 DOI: 10.3389/fimmu.2022.993624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach for several cancer types. However, only a subset of patients exhibits a durable response due in part to immunosuppressive mechanisms that allow tumor cells to evade destruction by immune cells. One of the hallmarks of immune suppression is the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment (TME). Additionally, the proper activation and function of lymphocytes that successfully infiltrate the tumor are hampered by the lack of co-stimulatory molecules and the increase in inhibitory factors. These contribute to the imbalance of effector functions by natural killer (NK) and T cells and the immunosuppressive functions by myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional anti-tumor immune response. Therefore, therapeutic regimens that elicit immune responses and reverse immune dysfunction are required to counter immune suppression in the TME and allow for the re-establishment of proper immune surveillance. Immuno-oncology (IO) agents, such as immune checkpoint blockade and TGF-β trapping molecules, have been developed to decrease or block suppressive factors to enable the activity of effector cells in the TME. Therapeutic agents that target immunosuppressive cells, either by direct lysis or altering their functions, have also been demonstrated to decrease the barrier to effective immune response. Other therapies, such as tumor antigen-specific vaccines and immunocytokines, have been shown to activate and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting in improved T effector to Treg ratio. The preclinical data on these diverse IO agents have led to the development of ongoing phase I and II clinical trials. This review aims to provide an overview of select therapeutic strategies that tip the balance from immunosuppression to immune activity in the TME.
Collapse
|
33
|
Qin T, Ma YY, Dong CE, Wu WL, Feng YY, Yang S, Su JB, Si XX, Wang XJ, Shi DH. Design, synthesis, cytotoxicity evaluation and molecular docking studies of 1,4-naphthoquinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Weißenborn C, von Lenthe S, Hinz N, Langwisch S, Busse M, Schumacher A, Zenclussen AC, Fest S. Depletion of Foxp3+ regulatory T cells but not the absence of
CD19
+
IL
‐10+ regulatory B cells hinders tumor growth in a para‐orthotopic neuroblastoma mouse model. Int J Cancer 2022; 151:2031-2042. [DOI: 10.1002/ijc.34262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Weißenborn
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Sophie von Lenthe
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Nicole Hinz
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Stefanie Langwisch
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Anne Schumacher
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Ana C. Zenclussen
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Stefan Fest
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg Dessau Germany
| |
Collapse
|
35
|
Asif M, Amir M, Hussain A, Achakzai NM, Natesan Pushparaj P, Rasool M. Role of tyrosine kinase inhibitor in chronic myeloid leukemia patients with SARS-CoV-2 infection: A narrative Review. Medicine (Baltimore) 2022; 101:e29660. [PMID: 35777011 PMCID: PMC9239670 DOI: 10.1097/md.0000000000029660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) caused by a novel coronavirus-2 (CoV-2), also known as COVID-19, has spread rapidly worldwide since it is recognized as a public health emergency and has now been declared a pandemic on March 11, 2020, by the World Health Organization. The genome of SARS-CoV-2 comprises a single-stranded positive-sense RNA approximately 27 to 30 kb in size. The virus is transmitted through droplets from humans to humans. Infection with the SARS virus varies from asymptomatic to lethal, such as fever, cough, sore throat, and headache, but in severe cases, pneumonia and acute respiratory distress syndrome. Recently, no specific and effective treatment has been recommended for patients infected with the SARS virus. However, several options can be investigated to control SARS-CoV-2 infection, including monoclonal antibodies, interferons, therapeutic vaccines, and molecular-based targeted drugs. In the current review, we focus on tyrosine kinase inhibitor management and their protective role in SARS-CoV-2 patients with chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
- Office of Research Innovation and Commercialization, BUITEMS, Quetta, Pakistan
| | - Muhammad Amir
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Niaz M. Achakzai
- Department of Molecular Biology, City Medical Complex, Kabul, Afghanistan
- Department of Molecular Biology, DNA section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan
- *Correspondence: Niaz M. Achakzai, Senior forensic DNA specialist, Department of Molecular Biology, DNA section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan (e-mail: ),
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Hypoxia-driven metabolic heterogeneity and immune evasive behaviour of gastrointestinal cancers: Elements of a recipe for disaster. Cytokine 2022; 156:155917. [PMID: 35660715 DOI: 10.1016/j.cyto.2022.155917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal (GI) cancers refer to a group of malignancies associated with the GI tract (GIT). Like other solid tumors, hypoxic regions consistently feature inside the GI tumor microenvironment (TME) and contribute towards metabolic reprogramming of tumor-resident cells by modulating hypoxia-induced factors. We highlight here how the metabolic crosstalk between cancer cells and immune cells generate immunosuppressive environment inside hypoxic tumors. Given the fluctuating nature of tumor hypoxia, the metabolic fluxes between immune cells and cancer cells change dynamically. These changes alter cellular phenotypes and functions, resulting in the acceleration of cancer progression. These evolved properties of hypoxic tumors make metabolism-targeting monotherapy approaches or immunotherapy-measures unsuccessful. The current review highlights the advantages of combined immunometabolic treatment strategies to target hypoxic GI cancers and also identifies research areas to develop better combinational therapeutics for future.
Collapse
|
37
|
Tumor-Associated Regulatory T Cells in Non-Small-Cell Lung Cancer: Current Advances and Future Perspectives. J Immunol Res 2022; 2022:4355386. [PMID: 35497874 PMCID: PMC9054468 DOI: 10.1155/2022/4355386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.
Collapse
|
38
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
39
|
Zhang H, Liu Y, Hu D, Liu S. Identification of Novel Molecular Therapeutic Targets and Their Potential Prognostic Biomarkers Based on Cytolytic Activity in Skin Cutaneous Melanoma. Front Oncol 2022; 12:844666. [PMID: 35345444 PMCID: PMC8957259 DOI: 10.3389/fonc.2022.844666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) attracts attention worldwide for its extremely high malignancy. A novel term cytolytic activity (CYT) has been introduced as a potential immunotherapy biomarker associated with counter-regulatory immune responses and enhanced prognosis in tumors. In this study, we extracted all datasets of SKCM patients, namely, RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database, conducted differential expression analysis to yield 864 differentially expressed genes (DEGs) characteristic of CYT and used non-negative matrix factorization (NMF) method to classify molecular subtypes of SKCM patients. Among all genes, 14 hub genes closely related to prognosis for SKCM were finally screen out. Based on these genes, we constructed a 14-gene prognostic risk model and its robustness and strong predictive performance were further validated. Subsequently, the underlying mechanisms in tumor pathogenesis and prognosis have been defined from a number of perspectives, namely, tumor mutation burden (TMB), copy number variation (CNV), tumor microenvironment (TME), infiltrating immune cells, gene set enrichment analysis (GSEA) and immune checkpoint inhibitors (ICIs). Furthermore, combined with GTEx database and HPA database, the expression of genes in the model was verified at the transcriptional level and protein level, and the relative importance of genes in the model was described by random forest algorithm. In addition, the model was used to predict the difference in sensitivity of SKCM patients to chemotherapy and immunotherapy. Finally, a nomogram was constructed to better aid clinical diagnosis.
Collapse
Affiliation(s)
- Haoxue Zhang
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengxiu Liu
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Wang C, Chen Z, Yang X, Zhang W, Zhou J, Zhang H, Ding X, Ye J, Wu H, Wu Y, Zheng Y, Song X. Identification of Biomarkers Related to Regulatory T Cell Infiltration in Oral Squamous Cell Carcinoma Based on Integrated Bioinformatics Analysis. Int J Gen Med 2022; 15:2361-2376. [PMID: 35264874 PMCID: PMC8900811 DOI: 10.2147/ijgm.s349379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancies worldwide. More recently, the administration of immune checkpoint inhibitors has opened up more possibilities for cancer treatment. Methods We utilized a weighted gene co-expression network and the single sample gene set enrichment analysis (ssGSEA) algorithm in the TCGA database and identified a module highly correlated with regulatory T cell (Treg) abundance in OSCC. Subsequently, we verified the results by tissue microarrays and utilized immunohistochemical staining (IHC) to test the relationship between the expression level and clinicopathological staging. CCK-8, transwell, and wound healing assays were utilized to detect the functions of OSCC cells. Results LCK, IL10RA, and TNFRSF1B were selected as biomarkers related to regulatory T cell infiltration. IHC staining showed significantly increased expression of LCK, IL10RA or TNFRSF1B in OSCC patients, and the expression levels were associated with tumor stage, lymph node metastasis, pathological stage, clinical status and the overall survival. In vitro experiments showed that LCK, IL10RA or TNFRSF1B knockdown efficiently impaired the proliferative, migrative, and invasive capacity in OSCC cell lines. Conclusion We performed a series of bioinformatics analyses in OSCC and identified three oncogenic indicators: LCK, IL10RA, TNFRSF1B. These findings uncovered the potential prognostic values of hub genes, thus laying foundations for in-depth research in OSCC.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhihong Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Stomatology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai, People’s Republic of China
- Yang Zheng, Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, No.639, Zhizaoju Road, 200011, Shanghai, People’s Republic of China, Tel +86-21-23271699, Email
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Xiaomeng Song, Jiangsu Key Laboratory of Oral Diseases and Stomatological Institute of Nanjing medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu, 210029, People’s Republic of China, Tel +86-25-69593100, Email
| |
Collapse
|
41
|
Hirata A, Sawai E, Henmi M, Shibasaki C, Mizoguchi Y, Narumi K, Aoki K. Imatinib Mesylate Exerted Antitumor Effect by Promoting Infiltration of Effector T Cells in Tumor. Biol Pharm Bull 2022; 45:34-41. [PMID: 34980779 DOI: 10.1248/bpb.b21-00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Imatinib mesylate is a potent tyrosine kinase inhibitor that may induce immunological effects, such as inhibition of immune suppressive cells; but, how it modulates the immune system remains to be completely elucidated. In this study, we showed that cell proliferation of CT26 colon cancer and Lewis lung carcinoma (3LL) lung cancer cells was not inhibited by imatinib in vitro, although its administration significantly suppressed the growth of CT26, but not 3LL, subcutaneous tumors, and prolonged survival in CT26 tumor-bearing mice. Further, we examined the expression of immune cell-related molecules in the tumors to elucidate the differences in imatinib-mediated antitumor effects between CT26 and 3LL tumors. The nCounter assay showed that the expression of CD8 and CD8+ T cell-recruiting chemokine genes was significantly elevated in imatinib-treated CT26 tumors than that in control tumors; however, the gene expression remained unchanged in imatinib-treated or control 3LL tumors. Furthermore, frequency of interferon-γ+ (IFN-γ+) CD8+ T cells was increased in imatinib-treated CT26 tumors than control tumors, indicating induction of antitumor immunity by imatinib. The analysis indicates that imatinib promotes infiltration of effector T cells in tumors by upregulating expression of cytokines that recruit CD8+ T cells in the tumor microenvironment, which may lead to a strong antitumor effect.
Collapse
Affiliation(s)
- Aya Hirata
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center.,Division of Respiratory Medicine, Kyorin University School of Medicine
| | - Eri Sawai
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| | - Marina Henmi
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| | - Chihiro Shibasaki
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| | - Yukihiro Mizoguchi
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| | - Kenta Narumi
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center
| |
Collapse
|
42
|
Uraki R, Imai M, Ito M, Shime H, Odanaka M, Okuda M, Kawaoka Y, Yamazaki S. Foxp3+ CD4+ regulatory T cells control dendritic cells in inducing antigen-specific immunity to emerging SARS-CoV-2 antigens. PLoS Pathog 2021; 17:e1010085. [PMID: 34882757 PMCID: PMC8659413 DOI: 10.1371/journal.ppat.1010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Regulatory T (Treg) cells, which constitute about 5-10% of CD4+T cells expressing Foxp3 transcription factor and CD25(IL-2 receptor α chain), are key regulators in controlling immunological self-tolerance and various immune responses. However, how Treg cells control antigen-specific immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. In this study, we examined the effect of transient breakdown of the immunological tolerance induced by Treg-cell depletion on adaptive immune responses against administered SARS-CoV-2 antigen, spike protein 1 (S1). Notably, without the use of adjuvants, transient Treg-cell depletion in mice induced anti-S1 antibodies that neutralized authentic SARS-CoV-2, follicular helper T cell formation and S1-binding germinal center B cell responses, but prevented the onset of developing autoimmune diseases. To further clarify the mechanisms, we investigated maturation of dendritic cells (DCs), which is essential to initiate antigen-specific immunity. We found that the transient Treg-cell depletion resulted in maturation of both migratory and resident DCs in draining lymph nodes that captured S1-antigen. Moreover, we observed S1-specific CD4+ T cells and CD8+ T cells with interferon-γ production. Thus, captured S1 was successfully presented by DCs, including cross-presentation to CD8+ T cells. These data indicate that transient Treg-cell depletion in the absence of adjuvants induces maturation of antigen-presenting DCs and succeeds in generating antigen-specific humoral and cellular immunity against emerging SARS-CoV-2 antigens. Finally, we showed that SARS-CoV-2 antigen-specific immune responses induced by transient Treg-cell depletion in the absence of adjuvants were compatible with those induced with an effective adjuvant, polyriboinosinic:polyribocytidyl acid (poly IC) and that the combination of transient Treg-cell depletion with poly IC induced potent responses. These findings highlight the capacity for manipulating Treg cells to induce protective adaptive immunity to SARS-CoV-2 with activating antigen-presenting DCs, which may improve the efficacy of ongoing vaccine therapies and help enhance responses to emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ryuta Uraki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroaki Shime
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mizuyu Odanaka
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Moe Okuda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, Japan
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
43
|
Fujioka Y, Sugiyama D, Matsumura I, Minami Y, Miura M, Atsuta Y, Ohtake S, Kiyoi H, Miyazaki Y, Nishikawa H, Takahashi N. Regulatory T Cell as a Biomarker of Treatment-Free Remission in Patients with Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:5904. [PMID: 34885012 PMCID: PMC8657169 DOI: 10.3390/cancers13235904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Treatment-free remission (TFR) has become a therapeutic goal in chronic myeloid leukemia (CML), and approximately half of the patients with chronic phase-CML (CML-CP) with deep molecular remission (DMR) by tyrosine-kinase inhibitors (TKIs) have achieved TFR. However, the mechanism of continuous TFR is still unclear, as there are "fluctuate" patients who have BCR-ABL-positive leukemia cells but do not observe obvious relapse. We focused on the immune response and conducted an immune analysis using clinical samples from the imatinib discontinuation study, JALSG-STIM213. The results showed that, in the group that maintained TFR for 3 years, changes in regulatory T (Treg) cells were observed early after stopping imatinib treatment. The effector Treg (eTreg) cells increased transiently at 1 month after stopping imatinib and then returned to baseline at 3 months after stopping imatinib treatment. There was no difference in the Treg phenotype, and CD8+ T cells in the TFR group were relatively activated. High concentrations of imatinib before stopping were negatively correlated with eTreg cells after stopping imatinib. These data suggest immunological involvement in the maintenance of the TFR, and that Treg cells after stopping imatinib might be a biomarker for TFR. Furthermore, high imatinib exposure may have a negative immunological impact on the continuous TFR.
Collapse
Affiliation(s)
- Yuki Fujioka
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan;
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Itaru Matsumura
- Department of Hematology and Oncology, Kinki University Hospital, Osaka 589-8511, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-0882, Japan;
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita 010-8543, Japan;
| | - Yoshiko Atsuta
- The Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya 461-0047, Japan;
| | | | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University, Nagoya 464-8601, Japan;
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University, Nagasaki 852-8521, Japan;
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan;
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
44
|
Ziogas DC, Mandellos D, Theocharopoulos C, Lialios PP, Bouros S, Ascierto PA, Gogas H. Neuromuscular Complications of Targeted Anticancer Agents: Can Tyrosine Kinase Inhibitors Induce Myasthenia Gravis? Getting Answers From a Case Report up to a Systematic Review. Front Oncol 2021; 11:727010. [PMID: 34722270 PMCID: PMC8554100 DOI: 10.3389/fonc.2021.727010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
More than 40 tyrosine kinase inhibitors (TKIs) have received hematological or oncological indications over the past 20 years, following the approval of imatinib, and many others are currently being tested in clinical and preclinical level. Beyond their common toxicities, no certain agent from this large class of molecularly targeted therapies was strongly associated with “off-target” impairment of neuromuscular transmission, and although myasthenia gravis (MG) is a well-characterized autoimmune disorder, only few sporadic events proven by serologically detected causative autoantibodies and/or by positive electrophysiological tests are reported in the literature. Herein, we present the first case of anti-MUSK (+) MG in a woman with metastatic BRAF-mutant melanoma after long-term treatment with dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor). Triggered by this report, a systematic literature review was conducted, summarizing all other cancer cases that developed MG, after exposure to any type of targeted agent and regardless of the underlying malignancy. All available data on the clinical diagnosis, the potential of administered TKIs to induce a seropositive myasthenic syndrome, the immune and non-immune-mediated pathogenesis of postsynaptic damage, and the challenging management of this neuromuscular toxicity were collected and discussed. In the presented case, MG was confirmed by both autoantibodies and nerve-conduction tests, while its reactivation after TKIs rechallenge supports a more than coincidental association. The following review identified 12 cancer cases with TKI-related MG in six case reports and one case series. In most of them, the myasthenia diagnosis was challenging, since the clinical symptomatology of fatigable weakness was not corroborating with consistent laboratory and electrophysiological findings. In fact, anti-AchR titers were positive in five and anti-MuSK only in the abovementioned individual. The symptomatology corresponded to TKI discontinuation and standard treatment with pyridostigmine and prednisolone; intravenous immunoglobulin was added only in three, and two required mechanical ventilation. In an era where TKIs will be prescribed more frequently for various malignancies, even in combinations with immune-checkpoint inhibitors, this report synthesizes their risk for neuromuscular complications and increases the clinicians’ awareness in order to extend the on-treatment and overall survival of TKI-treated cancer patients.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | | | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Spyros Bouros
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| |
Collapse
|
45
|
Matsushita M. Novel Treatment Strategies Utilizing Immune Reactions against Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13215435. [PMID: 34771599 PMCID: PMC8582551 DOI: 10.3390/cancers13215435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Although tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myelogenous leukemia (CML), leukemic stem cells (LSCs) are known to be resistant to TKIs. As a result, the application of immunotherapies against LSCs may cure CML. Abstract Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
46
|
Fan F, Liu P, Bao R, Chen J, Zhou M, Mo Z, Ma Y, Liu H, Zhou Y, Cai X, Qian C, Liu X. A Dual PI3K/HDAC Inhibitor Induces Immunogenic Ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res 2021; 81:6233-6245. [PMID: 34711611 DOI: 10.1158/0008-5472.can-21-1547] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
The capacity of targeted anticancer agents to exert immunomodulatory effects provides a strong rationale to develop novel agents suitable for combinatorial regimens with immunotherapy to improve clinical outcomes. In this study, we developed a dual-targeting PI3K and HDAC inhibitor BEBT-908 that potently inhibits tumor cell growth and potentiates anti-PD1 therapy in mice by inducing immunogenic ferroptosis in cancer cells. Treatment with BEBT-908 promoted ferroptotic cell death of cancer cells by hyperacetylating p53 and facilitating the expression of ferroptotic signaling. Furthermore, BEBT-908 promoted a pro-inflammatory tumor microenvironment that activated host anti-tumor immune responses and potentiated immune checkpoint blockade therapy. Mechanistically, BEBT-908-induced ferroptosis led to upregulation of major histocompatibility complex class I (MHC I) and activation of endogenous interferon gamma (IFNγ) signaling in cancer cells via the STAT1 signaling pathway. The dual PI3K/HDAC inhibitor BEBT-908 is a promising targeted therapeutic agent against multiple cancer types that promotes immunogenic ferroptosis and enhances the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Fushun Fan
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Pei Liu
- School of medcine, Sun Yat-sen University
| | | | - Jian Chen
- School of Medicine, Sun Yat-sen University
| | - Minhua Zhou
- Pharmacology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Zhenxian Mo
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Yaru Ma
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Haiqi Liu
- 1Guangzhou BeBetter Medicine Technology Co., LTD
| | - Yiping Zhou
- Guangzhou BeBetter Medicine Technology Co., LTD
| | - Xiong Cai
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University
| | - Changgeng Qian
- Pharmacology, Guangzhou BeBetter Medicine Technology Co., LTD
| | | |
Collapse
|
47
|
Hadjiaggelidou C, Katodritou E. Regulatory T-Cells and Multiple Myeloma: Implications in Tumor Immune Biology and Treatment. J Clin Med 2021; 10:4588. [PMID: 34640606 PMCID: PMC8509132 DOI: 10.3390/jcm10194588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and, despite significant advances in treatment, remains an incurable disease. Regulatory T-cells (Tregs) represent a critical subset of CD4 T-cells, characterized by CD4 + CD25+ Forkhead box P3+ (FoxP3+) phenotype, able to control peripheral tolerance and responses to foreign and tumor antigens. Tregs are elevated in various types of cancer, including hematological malignancies; in MM, data regarding Tregs function and numbers and their correlation with survival parameters are controversial. Advances in cancer biology have shown that the tumor microenvironment plays an important role in tumor progression. In MM, the highly immunosuppressive nature of the bone marrow microenvironment has been significantly elucidated in the past decade and it is now well acknowledged that targeting only the tumor clone may not be able to cure MM. Tregs within the tumor microenvironment might play a significant role in the suppression of antitumor immune responses against cancer cells and are considered to predict poor outcome in cancer patients; nonetheless the exact prognostic significance of this cell subpopulation in malignancies is still a matter of debate. In this review, we discuss the role of Tregs as an essential cell population of the MM immune microenvironment.
Collapse
|
48
|
Isoyama S, Mori S, Sugiyama D, Kojima Y, Tada Y, Shitara K, Hinohara K, Dan S, Nishikawa H. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal. J Immunother Cancer 2021; 9:jitc-2020-002279. [PMID: 34446575 PMCID: PMC8395371 DOI: 10.1136/jitc-2020-002279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background Immune checkpoint blockade (ICB) induces durable clinical responses in patients with various types of cancer. However, its limited clinical efficacy requires the development of better approaches. In addition to immune checkpoint molecules, tumor-infiltrating immunosuppressive cells including regulatory T cells (Tregs) play crucial roles in the immune suppressive tumor microenvironment. While phosphatidylinositol 3-kinase (PI3K) inhibition as a Treg-targeted treatment has been implicated in animal models, its effects on human Tregs and on the potential impairment of effector T cells are required to be clarified for successful cancer immunotherapy. Methods The impact of a selective-PI3K inhibitor ZSTK474 with or without anti-programmed cell death 1 (PD-1) monoclonal antibody on Tregs and CD8+ T cells were examined with in vivo animal models and in vitro experiments with antigen specific and non-specific fashions using peripheral blood from healthy individuals and cancer patients. Phenotypes and functions of Tregs and effector T cells were examined with comprehensive gene and protein expression assays. Results Improved antitumor effects by the PI3K inhibitor in combination with ICB, particularly PD-1 blockade, were observed in mice and humans. Although administration of the PI3K inhibitor at higher doses impaired activation of CD8+ T cells as well as Tregs, the optimization (doses and timing) of this combination treatment selectively decreased intratumoral Tregs, resulting in increased tumor antigen-specific CD8+ T cells in the treated mice. Moreover, on the administration of the PI3K inhibitor with the optimal dose for selectively deleting Tregs, PI3K signaling was inhibited not only in Tregs but also in activated CD8+ T cells, leading to the enhanced generation of tumor antigen-specific memory CD8+ T cells which contributed to durable antitumor immunity. These opposing outcomes between Tregs and CD8+ T cells were attributed to the high degree of dependence on T cell signaling in the former but not in the latter. Conclusions PI3K inhibitor in the combination with ICB with the optimized protocol fine-tuned T cell activation signaling for antitumor immunity via decreasing Tregs and optimizing memory CD8+ T cell responses, illustrating a promising combination therapy.
Collapse
Affiliation(s)
- Sho Isoyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan.,Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,R&D Center, Zenyaku Kogyo Co Ltd, Tokyo, Japan
| | - Shigeyuki Mori
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan.,R&D Center, Zenyaku Kogyo Co Ltd, Tokyo, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kojima
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuko Tada
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J Immunother Cancer 2021; 9:jitc-2021-002591. [PMID: 34330764 PMCID: PMC8327843 DOI: 10.1136/jitc-2021-002591] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 11/04/2022] Open
Abstract
With the broad application of cancer immunotherapies such as immune checkpoint inhibitors in multiple cancer types, the immunological landscape in the tumor microenvironment (TME) has become enormously important for determining the optimal cancer treatment. Tumors can be immunologically divided into two categories: inflamed and non-inflamed based on the extent of immune cell infiltration and their activation status. In general, immunotherapies are preferable for the inflamed tumors than for non-inflamed tumors. Regulatory T cells (Tregs), an immunosuppressive subset of CD4+ T cells, play an essential role in maintaining self-tolerance and immunological homeostasis. In tumor immunity, Tregs compromise immune surveillance against cancer in healthy individuals and impair the antitumor immune response in tumor-bearing hosts. Tregs, therefore, accelerate immune evasion by tumor cells, leading to tumor development and progression in various types of cancer. Therefore, Tregs are considered to be a crucial therapeutic target for cancer immunotherapy. Abundant Tregs are observed in the TME in many types of cancer, both in inflamed and non-inflamed tumors. Diverse mechanisms of Treg accumulation, activation, and survival in the TME have been uncovered for different tumor types, indicating the importance of understanding the mechanism of Treg infiltration in each patient when selecting the optimal Treg-targeted therapy. Here, we review recent advances in the understanding of mechanisms leading to Treg abundance in the TME to optimize Treg-targeted therapy. Furthermore, in addition to the conventional strategies targeting cell surface molecules predominantly expressed by Tregs, reagents targeting molecules and signaling pathways specifically employed by Tregs for infiltration, activation, and survival in each tumor type are illustrated as novel Treg-targeted therapies. The effectiveness of immune precision therapy depends on conditions in the TME of each cancer patient.
Collapse
Affiliation(s)
- Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
50
|
Swatler J, Turos-Korgul L, Kozlowska E, Piwocka K. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers (Basel) 2021; 13:cancers13061203. [PMID: 33801964 PMCID: PMC7998753 DOI: 10.3390/cancers13061203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Effector immune system cells have the ability to kill tumor cells. However, as a cancer (such as leukemia) develops, it inhibits and evades the effector immune response. Such a state of immunosuppression can be driven by several factors – receptors, soluble cytokines, as well as by suppressive immune cells. In this review, we describe factors and cells that constitute immunosuppressive microenvironment of myeloid leukemias. We characterize factors of direct leukemic origin, such as inhibitory receptors, enzymes and extracellular vesicles. Furthermore, we describe suppressive immune cells, such as myeloid derived suppressor cells and regulatory T cells. Finally, we sum up changes in these drivers of immune evasion in myeloid leukemias during therapy. Abstract Both chronic myeloid leukemia and acute myeloid leukemia evade the immune response during their development and disease progression. As myeloid leukemia cells modify their bone marrow microenvironment, they lead to dysfunction of cytotoxic cells, such as CD8+ T cells or NK cells, simultaneously promoting development of immunosuppressive regulatory T cells and suppressive myeloid cells. This facilitates disease progression, spreading of leukemic blasts outside the bone marrow niche and therapy resistance. The following review focuses on main immunosuppressive features of myeloid leukemias. Firstly, factors derived directly from leukemic cells – inhibitory receptors, soluble factors and extracellular vesicles, are described. Further, we outline function, properties and origin of main immunosuppressive cells - regulatory T cells, myeloid derived suppressor cells and macrophages. Finally, we analyze interplay between recovery of effector immunity and therapeutic modalities, such as tyrosine kinase inhibitors and chemotherapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
- Correspondence:
| |
Collapse
|