1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
3
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Li Z, Li Z, Luo Y, Chen W, Fang Y, Xiong Y, Zhang Q, Yuan D, Yan B, Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:23. [PMID: 39470950 PMCID: PMC11522250 DOI: 10.1186/s13619-024-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Prostate cancer is a malignant tumor of the male urological system with the highest incidence rate in the world, which seriously threatens the life and health of middle-aged and elderly men. The progression of prostate cancer involves the interaction between tumor cells and tumor microenvironment. Understanding the mechanisms of prostate cancer pathogenesis and disease progression is important to guide diagnosis and therapy. The emergence of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (ST-seq) technologies has brought breakthroughs in the study of prostate cancer. It makes up for the defects of traditional techniques such as fluorescence-activated cell sorting that are difficult to elucidate cell-specific gene expression. This review summarized the heterogeneity and functional changes of prostate cancer and tumor microenvironment revealed by scRNA-seq and ST-seq, aims to provide a reference for the optimal diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Zhengnan Li
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Yuanyuan Luo
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Weiming Chen
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yinyi Fang
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yuliang Xiong
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
| | - Qinyi Zhang
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Bo Yan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Jianguo Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China.
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China.
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China.
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Ou A, Hu W, Jiang P, Lu J, Zheng Y, Ke C, Mou Y, Sai K, Li D. Alterations in intratumoral and peripheral immune status in recurrent gliomas and their prognostic implications for patients underwent reoperation. Int Immunopharmacol 2024; 140:112797. [PMID: 39083926 DOI: 10.1016/j.intimp.2024.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Reoperation is a treatment option for recurrent gliomas, yet factors impacting survival following reoperation remain poorly defined. Tumor immunity is profoundly associated with disease progression. Here, we analyze the immune status characteristics and their prognostic implications in recurrent gliomas. METHODS Intratumoral and peripheral immune characteristics between primary and recurrent gliomas were compared by conducting immunohistological staining and hematological examination with our in-house samples, and analyzing bulk and single-cell sequencing data from publicly available sources. Survival analysis was conducted to identify immunological markers with prognostic significances. RESULTS We observed a significant reduction in peripheral lymphocyte count, while an elevation in neutrophil-to-lymphocyte ratio (NLR) and red cell distribution width-to-platelet ratio (RPR) in patients with recurrent gliomas than in newly-diagnosed patients. Higher NLR and RPR indicated worse survival following reoperation in recurrent patients. Transcriptomic and immunohistological analysis showed an increased infiltration of tumor-associated macrophages (TAMs) and CD8+ T cell in recurrent gliomas compared to primary gliomas in both IDH-wildtype and mutant subtypes. Moreover, the abundance of TAMs emerged as an independent indicator for an inferior prognosis in recurrent gliomas. Single-cell profiling revealed a significant heterogeneity in the phenotypes of TAMs between primary and recurrent gliomas. Notably, TAMs enriched in recurrent gliomas exhibited elevated expression of interferon-γ-induced genes, multiple immunosuppressive molecules (TGFB1, CD276), and increased activity in glycose and lipid metabolism, indicating metabolic reprogramming. CONCLUSION Recurrent gliomas demonstrate augmented immune cell infiltration, but they fail to overcome TAMs-induced immunosuppression. Immunosuppressive indices, including TAM abundance, peripheral NLR and RPR, have prognostic implications for recurrent gliomas.
Collapse
Affiliation(s)
- Ailian Ou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jie Lu
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Yonggao Mou
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Ke Sai
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| | - Depei Li
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
6
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Zhu L, Cai Q, Li G, Zou X. Bromodomain containing 4 inhibition combats gastric precancerous lesions via modulating macrophage polarization. Tissue Cell 2024; 91:102580. [PMID: 39396437 DOI: 10.1016/j.tice.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Gastric precancerous lesions (GPL), characterized by intestinal metaplasia and dysplasia, marks a pivotal juncture in the transformation from gastritis to gastric cancer. Research on GPL could offer fresh perspectives on preventing cancer occurrence. METHODS This study employed 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) to establish GPL rat models and knocked BRD4 down in vivo to assess its impact on the lesions and macrophage morphology. Following that, the impacts of BRD4 knockdown on the malignant phenotypes of human gastric epithelial GES-1 cells were determined. Moreover, conditioned medium from macrophage was gathered and used for GES-1 cell culture. The involvement of macrophage polarization in the BRD4 regulatory mechanism in GES-1 cells was assessed. RESULTS This study elucidated that MNNG induced an increase level of BRD4 in the rat models. BRD4 knockdown reduced lesions based on pathological sections and immunohistochemistry to detect proliferative antigens. Western blotting and immunofluorescence showed that BRD4 knockdown suppressed epithelial-mesenchymal transition and macrophage M2 polarization. In in vitro experiments, BRD4 knockdown inhibited the malignant phenotype of GES-1 cells and the differentiation of THP-1 cells into M2 macrophages, respectively. The conditioned medium from M2 macrophages with BRD4 knockdown was co-incubated with GES-1 cells, which attenuated the malignant phenotypes compared with the medium from M2 macrophages. CONCLUSION Through in vivo and in vitro experiments, BRD4 upregulation was found to already occur during GPL, affecting macrophage polarization and epithelial cell cancerization. This finding provides an experimental basis for strategies targeting BRD4 inhibition at this critical stage.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingxin Cai
- Department of Pharmacy, The First Specialized Hospital of Harbin, Harbin, Heilongjiang 150001, China
| | - Gang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
8
|
Wang Y, Chen W, Qiao S, Zou H, Yu XJ, Yang Y, Li Z, Wang J, Chen MS, Xu J, Zheng L. Lipid droplet accumulation mediates macrophage survival and Treg recruitment via the CCL20/CCR6 axis in human hepatocellular carcinoma. Cell Mol Immunol 2024; 21:1120-1130. [PMID: 38942796 PMCID: PMC11443046 DOI: 10.1038/s41423-024-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Metabolic changes play a crucial role in determining the status and function of macrophages, but how lipid reprogramming in macrophages contributes to tumor progression is not yet fully understood. Here, we investigated the phenotype, contribution, and regulatory mechanisms of lipid droplet (LD)-laden macrophages (LLMs) in hepatocellular carcinoma (HCC). Enriched LLMs were found in tumor tissues and were associated with disease progression in HCC patients. The LLMs displayed immunosuppressive phenotypes (with extensive expression of TREM2, PD-L1, CD206, and CD163) and attenuated the antitumor activities of CD8+ T cells. Mechanistically, tumor-induced reshuffling of cellular lipids and TNFα-mediated uptake of tumoral fatty acids contribute to the generation of triglycerides and LDs in macrophages. LDs prolong LLM survival and promote CCL20 secretion, which further recruits CCR6+ Tregs to HCC tissue. Inhibiting LLM formation by targeting DGAT1 and DGAT2, which catalyze the synthesis of triglycerides, significantly reduced Treg recruitment, and delayed tumor growth in a mouse hepatic tumor model. Our results reveal the suppressive phenotypes and mechanisms of LLM enrichment in HCC and suggest the therapeutic potential of targeting LLMs for HCC patients.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shuang Qiao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hao Zou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanyan Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Min-Shan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
9
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Yang X, Deng B, Zhao W, Guo Y, Wan Y, Wu Z, Su S, Gu J, Hu X, Feng W, Hu C, Li J, Xu Y, Huang X, Lin Y. FABP5 + lipid-loaded macrophages process tumor-derived unsaturated fatty acid signal to suppress T-cell antitumor immunity. J Hepatol 2024:S0168-8278(24)02569-8. [PMID: 39357545 DOI: 10.1016/j.jhep.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIMS Tumour-associated macrophages (TAMs) contribute to hepatocellular carcinoma (HCC) progression. However, while the pro-tumour and immunosuppressive roles of lipid-loaded macrophages are well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects in TAMs remain unclear. METHODS Single-cell RNA sequencing was performed on mouse and human HCC tumour samples to elucidate the landscape of HCC TAMs. Macrophages were stimulated with various long-chain unsaturated fatty acids (UFAs) to assess immunosuppressive molecules expression in vitro. Additionally, in vivo and in vitro studies were conducted using mice with macrophage-specific deficiencies in fatty acid-binding protein 5 (FABP5) or peroxisome proliferator-activated receptor (PPAR). RESULTS Single-cell RNA sequencing identified a subpopulation of FABP5+ lipid-loaded TAMs characterized by enhanced immune checkpoint blocker ligands and immunosuppressive molecules in an oncogene-mutant HCC mouse model and human HCC tumours. Mechanistically, long-chain UFAs released by tumour cells activate PPARvia FABP5, resulting in TAM immunosuppressive properties. FABP5 deficiency in macrophages decreases immunosuppressive molecules expression, enhances T-cell-dependent antitumor immunity, diminishes HCC growth, and improves immunotherapy efficacy. CONCLUSIONS This study demonstrates that UFAs promote tumourigenesis by enhancing the immunosuppressive tumour microenvironment via FABP5-PPAR signaling and provides a proof-of-concept for targeting this pathway to improve tumour immunotherapy.
Collapse
Affiliation(s)
- Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Immunology of Basic Medical Sciences, Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yangyang Guo
- Department of Immunology of Basic Medical Sciences, Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaqi Wan
- Department of Immunology of Basic Medical Sciences, Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihao Wu
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Sheng Su
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyan Gu
- Department of Neurosurgery, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoqian Hu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenxue Feng
- Department of Immunology of Basic Medical Sciences, Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chencheng Hu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanyong Xu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaowu Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, 200032, China.
| | - Yuli Lin
- Department of Immunology of Basic Medical Sciences, Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Wang X, Zhang S, Xue D, Neculai D, Zhang J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00244-3. [PMID: 39304355 DOI: 10.1016/j.tem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors. Here, we highlight the metabolic reprogramming of macrophages as a potential approach for cancer immunotherapy. We explore the major pathways involved in the metabolic reprogramming of TAMs and offer new and valuable insights on the current technologies utilized for TAM reprogramming, including genome editing, antibodies, small molecules, nanoparticles and other in situ editing strategies.
Collapse
Affiliation(s)
- Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Hematology, Hangzhou, 310058, China; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
12
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Lanman NA, Meco E, Fitchev P, Kolliegbo AK, Broman MM, Filipovich Y, Kothandaraman H, Cresswell GM, Talaty P, Antoniak M, Brumer S, Glaser AP, Higgins AM, Helfand BT, Franco OE, Crawford SE, Ratliff TL, Hayward SW, Vickman RE. Infiltrating lipid-rich macrophage subpopulations identified as a regulator of increasing prostate size in human benign prostatic hyperplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597992. [PMID: 38915654 PMCID: PMC11195107 DOI: 10.1101/2024.06.07.597992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes. BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, significantly accumulate with increased prostate volume. TREM2+ and MARCO+ macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2+ macrophages have significantly higher neutral lipid than TREM2- macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. These data define two new BPH immune subpopulations, TREM2+ and MARCO+ macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.
Collapse
|
15
|
Xu Z, Xu X, Hu J, Tan J, Wan Y, Cui F. Characteristics, clinical significance, and cancer immune interactions of lipid metabolism in prostate cancer. Transl Cancer Res 2024; 13:3575-3588. [PMID: 39145061 PMCID: PMC11319944 DOI: 10.21037/tcr-23-2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
Background The relationship between lipid metabolism, immune response, and immunotherapy in prostate cancer (PCa) is closely intertwined, and targeted intervention in lipid metabolism may facilitate the success of anticancer immunotherapy. This research attempted to explore effective immunotherapy for PCa. Methods We obtained RNA sequencing (RNA-seq) data for PCa patients from the UCSC Xena platform. Data analysis of differentially expressed genes (DEGs) was performed using package limma in R. Then, DEGs were subjected to enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Human Protein Atlas (HPA) database was conducted to validate the protein expression of the up-regulated lipid metabolism related genes (LMRGs) between PCa tissues and normal prostate tissues. And then we identified critical transcription factors (TFs), LMRGs and miRNA by constructing a regulatory network of TF-gene-miRNA. Furthermore, we determined the high and low groups based on the score of lipid metabolism enrichment. The hallmark gene sets were derived from gene expression profiles using the gene set variation analysis (GSVA) R package. Finally, we conducted immune infiltration analysis and drug sensitivity analysis. Results Immune response and lipid metabolism have undergone significant changes in PCa and paracancerous tissues compared to normal tissues. A total of 21 LMRGs were differentially up-regulated in PCa. The TF-gene-miRNA network showed that PLA2G7, TWIST1, and TRIB3 may be the key genes that elevated lipid metabolism in PCa. The high group had more infiltration of B cell memory, macrophage M0, macrophage M1, and myeloid dendritic cell resting, and the low group had more infiltration of B cell plasma, monocyte, myeloid dendritic cell activated, and mast cell resting. The majority of checkpoint genes exhibited high expression levels in the low group. Lipid metabolism was remarkedly correlated with drug sensitivity. Conclusions The analysis of lipid metabolism and related genes has revealed a complex regulatory mechanism that has a significant influence on immune response, immunotherapy, and medication guidance for patients with PCa. Keywords Prostate cancer (PCa); lipid metabolism; cancer immune; RNA sequencing (RNA-seq).
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Xu Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Jian Tan
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Yuanye Wan
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, The First People’s Hospital of Zhenjiang, Zhenjiang, China
| | - Feilun Cui
- Department of Urology, Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| |
Collapse
|
16
|
Sun HJ, Zheng ZF, Zhang LJ, Fang L, Fu H, Chen SY, Feng RX, Liu XY, Tang QN, Liu XW. Increased infiltration of M2-polarized tumour-associated macrophages is highly associated with advanced disease stage and high expression of PD-L1 in buccal mucosa carcinoma. Discov Oncol 2024; 15:314. [PMID: 39073672 PMCID: PMC11286931 DOI: 10.1007/s12672-024-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE To assess the infiltration characteristics of tumour-associated macrophages (TAMs) in buccal mucosa carcinoma (BMC) and the correlation of these features with clinicopathological factors. MATERIALS AND METHODS Immunohistochemistry was used to detect the expression of TAM-related markers (CD68, CD163, CD206), CD8+ T cell markers, PD-L1, and epidermal growth factor receptor (EGFR) in 46 patients with mucosal cancer after radical surgery. In addition, the correlation between TAM infiltration and clinical characteristics, PD-L1 expression, and EGFR expression was analysed. RESULTS A high infiltration level of M2-polarized (CD206+) TAMs and M2-polarized (CD163+) TAMs was more common in stage T3-T4, N+, III-IV patients than in other patient groups (P < 0.05). The infiltration degree of M2-polarized (CD68+) TAMs was positively correlated with the PD-L1 TPS (P = 0.0331). The infiltration level of M2-polarized (CD206+) TAMs was higher in the EGFR high expression group than in the EGFR low expression group (P = 0.040). CONCLUSION High infiltration of M2-polarized TAMs is highly associated with advanced disease stage and higher expression of PD-L1 and EGFR in BMCs, suggesting that M2-polarized TAMs infiltration can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Hao-Jia Sun
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhui-Feng Zheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Breast Medical Oncology, Fujian Cancer Hospital and the Fujian Medical University Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Li-Jun Zhang
- Department of Oncology, Huaihua First People's Hospital, Huaihua, 418000, Hunan, China
| | - Le Fang
- Department of Oncology, Loudi Central Hospital, Loudi, 417099, Hunan, China
| | - Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Yang Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong-Xiu Feng
- Department of Radiation Oncology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Xiao-Yang Liu
- Department of Oncology, Changde First People's Hospital, Changde, 415003, Hunan, China
| | - Qing-Nan Tang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xue-Wen Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Yorek M, Jiang X, Liu S, Hao J, Yu J, Avellino A, Liu Z, Curry M, Keen H, Shao J, Kanagasabapathy A, Kong M, Xiong Y, Sauter ER, Sugg SL, Li B. FABP4-mediated lipid accumulation and lipolysis in tumor associated macrophages promote breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601733. [PMID: 39005322 PMCID: PMC11244950 DOI: 10.1101/2024.07.02.601733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cells, which promotes cancer cell migration in vitro and metastasis in vivo . Notably, a deficiency of FABP4 in macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer. Graphic Abstract Highlights Unlike saturated fatty acids, unsaturated fatty acids preferentially promote lipid droplet formation in macrophages.Unsaturated fatty acids activate the FABP4/CEBPα axis for neutral lipid biosynthesis in macrophagesDeficiency of FABP4 compromised unsaturated fatty acid-mediated lipid accumulation and utilization in macrophagesFABP4-mediated lipid metabolism in macrophages contributes to breast cancer metastasis.
Collapse
|
18
|
Li J, Huang Z, Wang P, Li R, Gao L, Lai KP. Therapeutic targets of formononetin for treating prostate cancer at the single-cell level. Aging (Albany NY) 2024; 16:10380-10401. [PMID: 38874510 PMCID: PMC11236323 DOI: 10.18632/aging.205935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network pharmacology delineated the roles of formononetin's targets such CD74 and THBS1 in immune cells' function of prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use of formononetin for treating prostate cancer through targeting different cell types in a single-cell level.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | | | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| |
Collapse
|
19
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
20
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
21
|
Xu R, Vujić N, Bianco V, Reinisch I, Kratky D, Krstic J, Prokesch A. Lipid-associated macrophages between aggravation and alleviation of metabolic diseases. Trends Endocrinol Metab 2024:S1043-2760(24)00092-4. [PMID: 38705759 DOI: 10.1016/j.tem.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Isabel Reinisch
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
22
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
23
|
Lim CX, Redl A, Kleissl L, Pandey RV, Mayerhofer C, El Jammal T, Mazic M, Gonzales K, Sukhbaatar N, Krausgruber T, Bock C, Hengstschläger M, Calender A, Pacheco Y, Stary G, Weichhart T. Aberrant Lipid Metabolism in Macrophages Is Associated with Granuloma Formation in Sarcoidosis. Am J Respir Crit Care Med 2024; 209:1152-1164. [PMID: 38353578 DOI: 10.1164/rccm.202307-1273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.
Collapse
Affiliation(s)
- Clarice X Lim
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Anna Redl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Thomas El Jammal
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Mario Mazic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Karine Gonzales
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | | | - Thomas Krausgruber
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Alain Calender
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
- Department of Genetics, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Bron, France
| | - Yves Pacheco
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Georg Stary
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| |
Collapse
|
24
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
25
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q, Yang L. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res 2024; 11:21. [PMID: 38605399 PMCID: PMC11007901 DOI: 10.1186/s40779-024-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, WC1E 6BT, UK.
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
27
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
28
|
Vishwa R, BharathwajChetty B, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Hegde M, Kunnumakkara AB. Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far? Cancer Metastasis Rev 2024; 43:293-319. [PMID: 38438800 DOI: 10.1007/s10555-024-10170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
29
|
Zong S, Gao J. Identifying the tumor immune microenvironment-associated prognostic genes for prostate cancer. Discov Oncol 2024; 15:42. [PMID: 38376699 PMCID: PMC10879074 DOI: 10.1007/s12672-023-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
PURPOSE This study aimed to explore novel tumor immune microenvironment (TIME)-associated biomarkers in prostate adenocarcinoma (PRAD). METHODS PRAD RNA-sequencing data were obtained from UCSC Xena database as the training dataset. The ESTIMATE package was used to evaluate stromal, immune, and tumor purity scores. Differentially expressed genes (DEGs) related to TIME were screened using the immune and stromal scores. Gene functions were analyzed using DAVID. The LASSO method was performed to screen prognostic TIME-related genes. Kaplan-Meier curves were used to evaluate the prognosis of samples. The correlation between the screened genes and immune cell infiltration was explored using Tumor IMmune Estimation Resource. The GSE70768 dataset from the Gene Expression Omnibus was used to validate the expression of the screened genes. RESULTS The ESTIMATE results revealed that high immune, stromal, and ESTIMATE scores and low tumor purity had better prognoses. Function analysis indicated that DEGs are involved in the cytokine-cytokine receptor interaction signaling pathway. In TIME-related DEGs, METTL7B, HOXB8, and TREM1 were closely related to the prognosis. Samples with low expression levels of METTL7B, HOXB8, and TREM1 had better survival times. Similarly, both the validation dataset and qRT-PCR suggested that METTL7B, HOXB8, and TREM1 were significantly decreased. The three genes showed a positive correlation with immune infiltration. CONCLUSIONS This study identified three TIME-related genes, namely, METTL7B, HOXB8, and TREM1, which correlated with the prognosis of patients with PRAD. Targeting the TIME-related genes might have important clinical implications when making decisions for immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shi Zong
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China
| | - Ji Gao
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China.
| |
Collapse
|
30
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
31
|
Kang Z, Zhao YX, Qiu RSQ, Chen DN, Zheng QS, Xue XY, Xu N, Wei Y. Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning. Cancer Immunol Immunother 2024; 73:41. [PMID: 38349474 PMCID: PMC10864475 DOI: 10.1007/s00262-024-03633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) encompasses a variety of cells that influence immune responses and tumor growth, with tumor-associated macrophages (TAM) being a crucial component of the TME. TAM can guide prostate cancer in different directions in response to various external stimuli. METHODS First, we downloaded prostate cancer single-cell sequencing data and second-generation sequencing data from multiple public databases. From these data, we identified characteristic genes associated with TAM clusters. We then employed machine learning techniques to select the most accurate TAM gene set and developed a TAM-related risk label for prostate cancer. We analyzed the tumor-relatedness of the TAM-related risk label and different risk groups within the population. Finally, we validated the accuracy of the prognostic label using single-cell sequencing data, qPCR, and WB assays, among other methods. RESULTS In this study, the TAM_2 cell cluster has been identified as promoting the progression of prostate cancer, possibly representing M2 macrophages. The 9 TAM feature genes selected through ten machine learning methods and demonstrated their effectiveness in predicting the progression of prostate cancer patients. Additionally, we have linked these TAM feature genes to clinical pathological characteristics, allowing us to construct a nomogram. This nomogram provides clinical practitioners with a quantitative tool for assessing the prognosis of prostate cancer patients. CONCLUSION This study has analyzed the potential relationship between TAM and PCa and established a TAM-related prognostic model. It holds promise as a valuable tool for the management and treatment of PCa patients.
Collapse
Affiliation(s)
- Zhen Kang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yu-Xuan Zhao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ren Shun Qian Qiu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
32
|
Ding L, Qian J, Yu X, Wu Q, Mao J, Liu X, Wang Y, Guo D, Su R, Xie H, Yin S, Zhou L, Zheng S. Blocking MARCO + tumor-associated macrophages improves anti-PD-L1 therapy of hepatocellular carcinoma by promoting the activation of STING-IFN type I pathway. Cancer Lett 2024; 582:216568. [PMID: 38065400 DOI: 10.1016/j.canlet.2023.216568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The PD-L1/PD-1 axis is a classic immunotherapy target. However, anti-PD-L1/PD-1 therapy alone can not achieve satisfactory results in solid tumors, especially liver cancer. Among the several factors involved in tumor anti-PD-L1/PD-1 treatment resistance, tumor-associated macrophages (TAMs) have attracted attention because of their immunosuppressive ability. TAMs with a macrophage receptor with a collagenous structure (MARCO) are a macrophage subset group with strong immunosuppressive abilities. Clinical specimens and animal experiments revealed a negative correlation between MARCO + TAMs and patient prognosis with liver cancer. Transcriptional data and in vitro and in vivo experiments revealed that MARCO + TAM immunosuppressive ability was related to secretion. MARCO suppressed IFN-β secretion from TAMs, reducing antigen presentation molecule expression, infiltration, and CD8+T cell dysfunction, thus producing an immunosuppressive microenvironment in liver cancer. MARCO can promote dying tumor cell clearance by macrophages, reducing tumor-derived cGAMP and ATP accumulation in the tumor microenvironment and inhibiting sting-IFN-β pathway activation mediated by P2X7R in MARCO+TAMs. Animal experiments revealed that the MARCO and PD-L1 monoclonal antibody combination could significantly inhibit liver cancer growth. Conclusively, targeting MARCO+TAMs can significantly improve anti-PD-L1 resistance in liver cancer, making it a potential novel immune target for liver cancer therapy.
Collapse
Affiliation(s)
- Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Xizhi Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Jing Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Danjing Guo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Rong Su
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Shengyong Yin
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| | - ShuSen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
33
|
Li Y, Zhang G, Xu C, Shen L, Xu G, Ji K, Lin Z. miR-99b/let-7e/miR-125a cluster suppresses pancreatic cancer through regulation of NR6A1. Am J Cancer Res 2024; 14:114-129. [PMID: 38323281 PMCID: PMC10839324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
This experiment investigates how the miR-99b/let-7e/miR-125a cluster regulates the mechanism of NR6A1 involved in the invasive and metastatic effects of pancreatic cancer (PCa). Bioinformatics prediction and dual luciferase reporter gene assay were applied to verify the targeted relationship between miR-99b/let-7e/miR-125a and NR6A1. ASPC1 cells underwent transfection with lentiviruses to overexpress miR-99b/let-7e/miR-125a (individual or together) to explore functions of miR-99b/let-7e/miR-125a cluster governing NR6A1 in PCa. The detection of tumorigenesis was verified by tumor formation assay in nude mice in vivo, and mouse models of liver metastasis of PCa observed cell metastasis of PCa. MiR-99b/let-7e/miR-125a cluster was screened for differential expression in PCa. NR6A1 was confirmed as a target gene of the miR-99b/let-7e/miR-125a cluster. Findings demonstrated that overexpression of the miR-99b/let-7e/miR-125a cluster inhibited cell invasion, metastasis, proliferation, and tumorigenesis in PCa. Conversely, overexpressed NR6A1, a crucial gene in the miR-99b/let-7e/miR-125a cluster, promoted cell invasion, migration, and proliferation in PCa. Moreover, the overexpression of the miR-99b/let-7e/miR-125a cluster inhibited liver metastases and tumor formation. Thus, the study concludes that the miR-99b/let-7e/miR-125a cluster impedes the invasion and metastasis of PCa cells via targeting the NR6A1 gene.
Collapse
Affiliation(s)
- Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Guolin Zhang
- Department of Gastrointestinal Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Chuchu Xu
- Department of Gastrointestinal Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| | - Zhiqiang Lin
- Department of Vascular Hernia Surgery, Shaoxing People’s HospitalShaoxing 312000, Zhejiang, P. R. China
| |
Collapse
|
34
|
Zhang Z, Zhang A, Shi Y, Zhao Z, Zhao Z. An association between ATP7B expression and human cancer prognosis and immunotherapy: a pan-cancer perspective. BMC Med Genomics 2023; 16:307. [PMID: 38037104 PMCID: PMC10687837 DOI: 10.1186/s12920-023-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND ATP7B is a copper-transporting protein that contributes to the chemo-resistance of human cancer cells. It remains unclear what the molecular mechanisms behind ATP7B are in cancer, as well as its role in human pan-cancer studies. METHODS Our study evaluated the differential expression of ATP7B in cancer and paracancerous tissues based on RNA sequencing data from the GTEx and TCGA. Kaplan-Meier and Cox proportional hazards regressions were used to estimate prognostic factors associated with ATP7B.The correlations between the expression of ATP7B and immune cell infiltration, tumor mutation burden, microsatellite instability and immune checkpoint molecules were analyzed. Co-expression networks and mutations in ATP7B were analyzed using the web tools. An analysis of ATP7B expression difference on drug sensitivity on tumor cells was performed using the CTRP, GDSC and CMap database. RESULTS ATP7B expression differed significantly between cancerous and paracancerous tissues. The abnormal expression of ATP7B was linked to prognosis in LGG and KIRC. Infiltration of immune cells, tumor mutation burden, microsatellite instability and immunomodulators had all been linked to certain types of cancer. Cancer cells exhibited a correlation between ATP7B expression and drug sensitivity. CONCLUSION ATP7B might be an immunotherapeutic and prognostic biomarker based on its involvement in cancer occurrence and development.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Zijun Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, No. 50, a pine in Xiangshan, Haidian District, Beijing, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China.
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Chang'an District, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
35
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Jiao D, Sun R, Ren X, Wang Y, Tian P, Wang Y, Yuan D, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. Lipid accumulation-mediated histone hypoacetylation drives persistent NK cell dysfunction in anti-tumor immunity. Cell Rep 2023; 42:113211. [PMID: 37792534 DOI: 10.1016/j.celrep.2023.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Hyperlipidemia impairs anti-tumor immune responses and is closely associated with increased human cancer incidence and mortality. However, the underlying mechanisms are not well understood. In the present study, we show that natural killer (NK) cells isolated from high-fat-diet mice or treated with oleic acid (OA) in vitro exhibit sustainable functional defects even after removal from hyperlipidemic milieu. This is accompanied by reduced chromatin accessibility in the promoter region of NK cell effector molecules. Mechanistically, OA exposure blunts P300-mediated c-Myc acetylation and shortens its protein half-life in NK cells, which in turn reduces P300 accumulation and H3K27 acetylation and leads to persistent NK cell dysfunction. NK cells engineered with hyperacetylated c-Myc mutants surmount the suppressive effect of hyperlipidemia and display superior anti-tumor activity. Our findings reveal the persistent dysfunction of NK cells in dyslipidemia milieu and extend engineered NK cells as a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Deyan Jiao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Renhui Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Panpan Tian
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
37
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
38
|
Li Z, Wang Y, Xing R, Zeng H, Yu XJ, Zhang YJ, Xu J, Zheng L. Cholesterol Efflux Drives the Generation of Immunosuppressive Macrophages to Promote the Progression of Human Hepatocellular Carcinoma. Cancer Immunol Res 2023; 11:1400-1413. [PMID: 37467346 DOI: 10.1158/2326-6066.cir-22-0907] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Cholesterol is often enriched in tumor microenvironment (TME); however, its impact on disease progression varies in different tissues and cells. Monocytes/macrophages (Mφ) are major components and regulators of the TME and play pivotal roles in tumor progression and therapeutic responses. We aimed to investigate the profile, effects, and regulatory mechanisms of Mφ cholesterol metabolism in the context of human hepatocellular carcinoma (HCC). Here, we found that patients with high serum levels of cholesterol had shorter survival times and lower response rates to anti-PD-1 treatment. However, the cholesterol content in tumor-infiltrating monocytes/Mφ was significantly lower than that in their counterparts in paired nontumor tissues. The expression of the cholesterol efflux transporter, ABCA1, was upregulated in tumor monocytes/Mφ, and ABCA1 upregulation positively associated with decreased cellular cholesterol content and increased serum cholesterol levels. Mechanistically, autocrine cytokines from tumor-treated monocytes increased LXRα and ABCA1 expression, which led to the generation of immature and immunosuppressive Mφ. Although exogenous cholesterol alone had little direct effect on Mφ, it did act synergistically with tumor-derived factors to promote ABCA1 expression in Mφ with more immunosuppressive features. Moreover, high numbers of ABCA1+ Mφ in HCC tumors associated with reduced CD8+ T-cell infiltration and predicted poor clinical outcome for patients. Our results revealed that dysregulated cholesterol homeostasis, due to the collaborative effects of tumors and exogenous cholesterol, drives the generation of immunosuppressive Mφ. The selective modulation of cholesterol metabolism in Mφ may represent a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Xing
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huilan Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
39
|
Yu W, Wang C, Shang Z, Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol 2023; 13:1224913. [PMID: 37746302 PMCID: PMC10514910 DOI: 10.3389/fonc.2023.1224913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technology that provides insights at the individual cell level. In contrast to traditional bulk RNA-seq, which captures gene expression at an average level and may overlook important details, scRNA-seq examines each individual cell as a fundamental unit and is particularly well-suited for identifying rare cell populations. Analogous to a microscope that distinguishes various cell types within a tissue sample, scRNA-seq unravels the heterogeneity and diversity within a single cell species, offering great potential as a leading sequencing method in the future. In the context of prostate cancer (PCa), a disease characterized by significant heterogeneity and multiple stages of progression, scRNA-seq emerges as a powerful tool for uncovering its intricate secrets.
Collapse
Affiliation(s)
| | | | - Zhiqun Shang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Tian
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Yao M, Mao X, Zhang Z, Xi Y, Gan H, Cui F, Shao S. Tumor-derived CircRNA_102191 promotes gastric cancer and facilitates M2 macrophage polarization. Cell Cycle 2023; 22:2003-2017. [PMID: 37872772 PMCID: PMC10761078 DOI: 10.1080/15384101.2023.2271341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract and the fourth leading cause of death from cancer-related diseases. In recent years, many studies have found that circular RNAs play an important role in cancer. Tumor-associated macrophages (TAMs) are also critical for tumor progression. OBJECTIVE This study examined the role of circRNA_102191 in gastric cancer progression. METHODS The relative mRNA levels were determined by qRT-PCR. Western blotting and ELISA were used to detect the protein levels. In vitro proliferation was assessed using CCK8 and clonogenic assays. The migration and invasion of cell lines were assessed by transwell-based assays. The interactions between molecules were detected using a luciferase reporter assay. M0 macrophages were induced with PMA. M1 macrophages were induced with LPS and IFN-γ, and M2 macrophages were induced with IL-4. RESULTS The expression of circRNA_102191 was enhanced significantly in gastric cancer cell lines and clinical tumor tissues. CircRNA_102191 promotes gastric cancer cell progression by regulating miR-493-3p and its downstream target gene XPR1. CircRNA_102191 can enhance the EMT process of gastric cancer cells by promoting the M2 polarization of macrophages. CONCLUSION CircRNA_102191 promotes the biological function of gastric cancer cells by regulating the miR-493-3p/XPR1 axis and M2 macrophage polarization.
Collapse
Affiliation(s)
- Min Yao
- Department of Urology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Urology, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Xuhua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, Jiangsu, China
| | - Zherui Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haining Gan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feilun Cui
- Department of Urology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Urology, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
42
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
43
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
44
|
Timperi E, Romano E. Stromal circuits involving tumor-associated macrophages and cancer-associated fibroblasts. Front Immunol 2023; 14:1194642. [PMID: 37342322 PMCID: PMC10277481 DOI: 10.3389/fimmu.2023.1194642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
The tumor associated macrophages (TAM) represent one of most abundant subpopulations across several solid cancers and their number/frequency is associated with a poor clinical outcome. It has been clearly demonstrated that stromal cells, such as the cancer associated fibroblasts (CAFs), may orchestrate TAM recruitment, survival and reprogramming. Today, single cell-RNA sequencing (sc-RNA seq) technologies allowed a more granular knowledge about TAMs and CAFs phenotypical and functional programs. In this mini-review we discuss the recent discoveries in the sc-RNA seq field focusing on TAM and CAF identity and their crosstalk in the tumor microenvironment (TME) of solid cancers.
Collapse
Affiliation(s)
- Eleonora Timperi
- Department of Immunology, INSERM U932, Université Paris Sciences et Lettres (PSL) Research University, Institut Curie, Paris, France
| | - Emanuela Romano
- Department of Immunology, INSERM U932, Université Paris Sciences et Lettres (PSL) Research University, Institut Curie, Paris, France
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| |
Collapse
|
45
|
Portale F, Di Mitri D. NK Cells in Cancer: Mechanisms of Dysfunction and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24119521. [PMID: 37298470 DOI: 10.3390/ijms24119521] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Natural killer cells (NK) are innate lymphocytes endowed with the ability to recognize and kill cancer cells. Consequently, adoptive transfer of autologous or allogeneic NK cells represents a novel opportunity in cancer treatment that is currently under clinical investigation. However, cancer renders NK cells dysfunctional, thus restraining the efficacy of cell therapies. Importantly, extensive effort has been employed to investigate the mechanisms that restrain NK cell anti-tumor function, and the results have offered forthcoming solutions to improve the efficiency of NK cell-based therapies. The present review will introduce the origin and features of NK cells, summarize the mechanisms of action and causes of dysfunction of NK cells in cancer, and frame NK cells in the tumoral microenvironment and in the context of immunotherapies. Finally, we will discuss therapeutic potential and current limitations of NK cell adoptive transfer in tumors.
Collapse
Affiliation(s)
- Federica Portale
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Diletta Di Mitri
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| |
Collapse
|
46
|
Feriz AM, Khosrojerdi A, Lotfollahi M, Shamsaki N, GhasemiGol M, HosseiniGol E, Fereidouni M, Rohban MH, Sebzari AR, Saghafi S, Leone P, Silvestris N, Safarpour H, Racanelli V. Single-cell RNA sequencing uncovers heterogeneous transcriptional signatures in tumor-infiltrated dendritic cells in prostate cancer. Heliyon 2023; 9:e15694. [PMID: 37144199 PMCID: PMC10151421 DOI: 10.1016/j.heliyon.2023.e15694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the two solid malignancies in which a higher T cell infiltration in the tumor microenvironment (TME) corresponds with a worse prognosis for the tumor. The inability of T cells to eliminate tumor cells despite an increase in their number reinforces the possibility of impaired antigen presentation. In this study, we investigated the TME at single-cell resolution to understand the molecular function and communication of dendritic cells (DCs) (as professional antigen-presenting cells). According to our data, tumor cells stimulate the migration of immature DCs to the tumor site by inducing inflammatory chemokines. Many signaling pathways such as TNF-α/NF-κB, IL2/STAT5, and E2F up-regulated after DCs enter the tumor location. In addition, some molecules such as GPR34 and SLCO2B1 decreased on the surface of DCs. The analysis of molecular and signaling alterations in DCs revealed some suppression mechanisms of tumors, such as removing mature DCs, reducing the DC's survival, inducing anergy or exhaustion in the effector T cells, and enhancing the differentiation of T cells to Th2 and Tregs. In addition, we investigated the cellular and molecular communication between DCs and macrophages in the tumor site and found three molecular pairs including CCR5/CCL5, CD52/SIGLEC10, and HLA-DPB1/TNFSF13B. These molecular pairs are involved in the migration of immature DCs to the TME and disrupt the antigen-presenting function of DCs. Furthermore, we presented new therapeutic targets by the construction of a gene co-expression network. These data increase our knowledge of the heterogeneity and the role of DCs in PCa TME.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Cellular and Molecular Research Center, BUMS, Birjand, Iran
| | | | - Mohammad Lotfollahi
- Computational Health Center, Helmholtz Munich, Germany
- Wellcome Sanger Institute, Cambridge, UK
| | - Neusha Shamsaki
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohammad GhasemiGol
- College of Engineering & Mines, University of North Dakota, North Dakota, USA
| | - Edris HosseiniGol
- Department of Computer Engineering, University of Birjand, Birjand, Iran
| | | | | | - Ahmad Reza Sebzari
- Radiation Oncology, Clinical Research Development Unit (CRDU), ValiAsr Hospital, BUMS, Birjand, Iran
| | - Samira Saghafi
- Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Hossein Safarpour
- Cellular and Molecular Research Center, BUMS, Birjand, Iran
- Corresponding author.
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy
- Corresponding author.
| |
Collapse
|
47
|
Park MD, Reyes-Torres I, LeBerichel J, Hamon P, LaMarche NM, Hegde S, Belabed M, Troncoso L, Grout JA, Magen A, Humblin E, Nair A, Molgora M, Hou J, Newman JH, Farkas AM, Leader AM, Dawson T, D'Souza D, Hamel S, Sanchez-Paulete AR, Maier B, Bhardwaj N, Martin JC, Kamphorst AO, Kenigsberg E, Casanova-Acebes M, Horowitz A, Brown BD, De Andrade LF, Colonna M, Marron TU, Merad M. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol 2023; 24:792-801. [PMID: 37081148 PMCID: PMC11088947 DOI: 10.1038/s41590-023-01475-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.
Collapse
Affiliation(s)
- Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica LeBerichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Grout
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Assaf Magen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Achuth Nair
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna H Newman
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M Farkas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Travis Dawson
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alfonso Rodriguez Sanchez-Paulete
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C Martin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CHU Nantes, Laboratoire d'Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), Nantes, France
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Casanova-Acebes
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | - Amir Horowitz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucas Ferrari De Andrade
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
An D, Zhai D, Wan C, Yang K. The role of lipid metabolism in cancer radioresistance. Clin Transl Oncol 2023:10.1007/s12094-023-03134-4. [PMID: 37079212 DOI: 10.1007/s12094-023-03134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023]
Abstract
Radiotherapy is one of the main therapies for cancer. The process leading to radioresistance is still not fully understood. Cancer radiosensitivity is related to the DNA reparation of cancer cells and the tumor microenvironment (TME), which supports cancer cell survival. Factors that affect DNA reparation and the TME can directly or indirectly affect the radiosensitivity of cancer. Recent studies have shown that lipid metabolism in cancer cells, which is involved in the stability of cell membrane structure, energy supply and signal transduction of cancer cells, can also affect the phenotype and function of immune cells and stromal cells in the TME. In this review, we discussed the effects of lipid metabolism on the radiobiological characteristics of cancer cells and the TME. We also summarized recent advances in targeted lipid metabolism as a radiosensitizer and discussed how these scientific findings could be translated into clinical practice to improve the radiosensitivity of cancer.
Collapse
Affiliation(s)
- Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
49
|
Di Mitri D, Conforti F, Mantovani A. Macrophages and bone metastasis. J Exp Med 2023; 220:e20222188. [PMID: 36828392 PMCID: PMC9997208 DOI: 10.1084/jem.20222188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
In the prostate bone metastasis microenvironment, macrophages activate a cascade that involves Activin A, the extracellular matrix, and SRC kinase and drives resistance to anti-androgen therapy. These findings (Li et al., 2023. J. Exp. Med.https://doi.org/10.1084/jem.20221007) have broad implications, including metastasis diversity in different tissue milieus and the interplay between hormones and immunity.
Collapse
Affiliation(s)
- Diletta Di Mitri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Tumor microenvironment unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy
- William Harvey Research Institute, Queen Mary University, London, UK
| |
Collapse
|
50
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|