1
|
Clayton SW, Walk RE, Mpofu L, Easson GWD, Tang SY. Sex-specific divergences in the types and timing of infiltrating immune cells during the intervertebral disc acute injury response and their associations with degeneration. Osteoarthritis Cartilage 2024:S1063-4584(24)01426-2. [PMID: 39426787 DOI: 10.1016/j.joca.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHODS Caudal IVDs from 12-week-old C57BL6/J mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured from the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including B, T, natural killer T (NKT) cells, monocytes, neutrophils, macrophages, eosinophils, and dendritic cells. RESULTS The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.
Collapse
Affiliation(s)
| | - Remy E Walk
- Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Simon Y Tang
- Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Dey P, Rajalaxmi S, Saha P, Thakur PS, Hashmi MA, Lal H, Saini N, Singh N, Ramanathan A. Cold-shock proteome of myoblasts reveals role of RBM3 in promotion of mitochondrial metabolism and myoblast differentiation. Commun Biol 2024; 7:515. [PMID: 38688991 PMCID: PMC11061143 DOI: 10.1038/s42003-024-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptation to hypothermia is important for skeletal muscle cells under physiological stress and is used for therapeutic hypothermia (mild hypothermia at 32 °C). We show that hypothermic preconditioning at 32 °C for 72 hours improves the differentiation of skeletal muscle myoblasts using both C2C12 and primary myoblasts isolated from 3 month and 18-month-old mice. We analyzed the cold-shock proteome of myoblasts exposed to hypothermia (32 °C for 6 and 48 h) and identified significant changes in pathways related to RNA processing and central carbon, fatty acid, and redox metabolism. The analysis revealed that levels of the cold-shock protein RBM3, an RNA-binding protein, increases with both acute and chronic exposure to hypothermic stress, and is necessary for the enhanced differentiation and maintenance of mitochondrial metabolism. We also show that overexpression of RBM3 at 37 °C is sufficient to promote mitochondrial metabolism, cellular proliferation, and differentiation of C2C12 and primary myoblasts. Proteomic analysis of C2C12 myoblasts overexpressing RBM3 show significant enrichment of pathways involved in fatty acid metabolism, RNA metabolism and the electron transport chain. Overall, we show that the cold-shock protein RBM3 is a critical factor that can be used for controlling the metabolic network of myoblasts.
Collapse
Affiliation(s)
- Paulami Dey
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Srujanika Rajalaxmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Pushpita Saha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Purvi Singh Thakur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Maroof Athar Hashmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Heera Lal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nistha Saini
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Nirpendra Singh
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India.
| |
Collapse
|
4
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
5
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
6
|
Clayton SW, Walk RE, Mpofu L, Easson GW, Tang SY. Analysis of Infiltrating Immune Cells Following Intervertebral Disc Injury Reveals Recruitment of Gamma-Delta ( γδ) T cells in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582950. [PMID: 38464124 PMCID: PMC10925253 DOI: 10.1101/2024.03.01.582950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells. Cd3+Cd4-Cd8- T cells are the largest infiltrating lymphocyte population with injury, and we identified the presence of γδ T cells in this population in female mice specifically, and NKT cells in males. Injury-mediated IVD degeneration was prevalent in both sexes, but more severe in males. Sex-specific degeneration may be associated with the differential immune response since γδ T cells have potent anti-inflammatory roles and may mediate IVD repair.
Collapse
Affiliation(s)
| | - Remy E. Walk
- Washington University in St. Louis, St. Louis, MO
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO
| | | | | |
Collapse
|
7
|
Theret M, Chazaud B. Skeletal muscle niche, at the crossroad of cell/cell communications. Curr Top Dev Biol 2024; 158:203-220. [PMID: 38670706 DOI: 10.1016/bs.ctdb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics University of British Columbia, Vancouver, BC, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, Inserm U1315, CNRS UMR 5261, Lyon, France.
| |
Collapse
|
8
|
Guo J, Chowdhury RR, Mallajosyula V, Xie J, Dubey M, Liu Y, Li J, Wei YL, Palanski BA, Wang C, Qiu L, Ohanyan M, Kask O, Sola E, Kamalyan L, Lewis DB, Scriba TJ, Davis MM, Dodd D, Zeng X, Chien YH. γδ T cell antigen receptor polyspecificity enables T cell responses to a broad range of immune challenges. Proc Natl Acad Sci U S A 2024; 121:e2315592121. [PMID: 38227652 PMCID: PMC10823224 DOI: 10.1073/pnas.2315592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.
Collapse
Affiliation(s)
- Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Megha Dubey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Yu-ling Wei
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | | | - Conghua Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
| | - Mané Ohanyan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Oliver Kask
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Elsa Sola
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - Lilit Kamalyan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
| | - David B. Lewis
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town7700, South Africa
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Xun Zeng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yueh-hsiu Chien
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
9
|
Xi D, Liu P, Feng Y, Teng Y, Liang Y, Zhou J, Deng H, Zeng G, Zong S. Fecal microbiota transplantation regulates the microbiota-gut-spinal cord axis to promote recovery after spinal cord injury. Int Immunopharmacol 2024; 126:111212. [PMID: 37979452 DOI: 10.1016/j.intimp.2023.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Spinal cord injury (SCI) is devastating for patients, and currently lacks effective treatments. Dysbiosis commonly occurs after SCI and has significant immunomodulatory effects, but its impact on recovery remains unclear. The current study investigated the effects and mechanisms of fecal microbiota transplantation (FMT) in SCI. FMT was administered in a rat model of SCI and spinal pathology, inflammatory cytokines, and gut microbiome composition were assessed. Flow cytometry identified a source of interleukin (IL)-17 in spinal cord tissues, and carboxyfluorescein succimidyl ester labeling tracked γδ T cell migration. In vitro coculture was used to analyze the regulatory mechanisms of γδ T cells. Seahorse analysis was used to profile dendritic cell (DC) metabolism. Here we show that FMT improved spinal pathology and dampened post-injury inflammation. It also corrected post-SCI dysbiosis, increasing levels of the beneficial bacterium Akkermansia. The therapeutic effects of FMT were mediated by IL-17 produced by γδ T cells. FMT regulated γδ T cells via DC-T regulatory cell interaction, and induced metabolic reprogramming in DCs. These findings suggest that FMT represents a promising therapeutic approach for SCI, with potential to target IL-17+ γδ T cells. Elucidating the interconnected pathways between microbiota, immunity, and the spinal cord may facilitate novel treatment strategies.
Collapse
Affiliation(s)
- Deshuang Xi
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Pan Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, He-nan, China
| | - Yanbing Feng
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yilin Teng
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yu Liang
- Department of Spine Surgery, The Second People's Hospital of Nanning, Nanning 530021, Guangxi, China
| | - Junhong Zhou
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Deng
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Shaohui Zong
- Department of Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
10
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Yaghi OK, Hanna BS, Langston PK, Michelson DA, Jayewickreme T, Marin-Rodero M, Benoist C, Mathis D. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat Immunol 2023; 24:2053-2067. [PMID: 37932455 PMCID: PMC10792729 DOI: 10.1038/s41590-023-01669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1β, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.
Collapse
Affiliation(s)
- Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Teshika Jayewickreme
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Miguel Marin-Rodero
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Langston PK, Sun Y, Ryback BA, Mueller AL, Spiegelman BM, Benoist C, Mathis D. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci Immunol 2023; 8:eadi5377. [PMID: 37922340 PMCID: PMC10860652 DOI: 10.1126/sciimmunol.adi5377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
Exercise enhances physical performance and reduces the risk of many disorders such as cardiovascular disease, type 2 diabetes, dementia, and cancer. Exercise characteristically incites an inflammatory response, notably in skeletal muscles. Although some effector mechanisms have been identified, regulatory elements activated in response to exercise remain obscure. Here, we have addressed the roles of Foxp3+CD4+ regulatory T cells (Tregs) in the healthful activities of exercise via immunologic, transcriptomic, histologic, metabolic, and biochemical analyses of acute and chronic exercise models in mice. Exercise rapidly induced expansion of the muscle Treg compartment, thereby guarding against overexuberant production of interferon-γ and consequent metabolic disruptions, particularly mitochondrial aberrancies. The performance-enhancing effects of exercise training were dampened in the absence of Tregs. Thus, exercise is a natural Treg booster with therapeutic potential in disease and aging contexts.
Collapse
Affiliation(s)
- P. Kent Langston
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
| | - Amber L. Mueller
- Department of Genetics, Harvard Medical School; Boston, 02115, USA
| | - Bruce M. Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, 02115, USA
- Department of Cell Biology, Harvard Medical School; Boston, 02115, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
13
|
Jordan CKI, Brown RL, Larkinson MLY, Sequeira RP, Edwards AM, Clarke TB. Symbiotic Firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity. Cell Host Microbe 2023; 31:1433-1449.e9. [PMID: 37582375 DOI: 10.1016/j.chom.2023.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
The intestinal microbiota regulates immunity across organ systems. Which symbionts control systemic immunity, the mechanisms they use, and how they avoid widespread inflammatory damage are unclear. We uncover host tolerance and resistance mechanisms that allow Firmicutes from the human microbiota to control systemic immunity without inducing immunopathology. Intestinal processing releases Firmicute glycoconjugates that disseminate, resulting in release of cytokine IL-34 that stimulates macrophages and enhances defenses against pneumonia, sepsis, and meningitis. Despite systemic penetration of Firmicutes, immune homeostasis is maintained through feedback control whereby IL-34-mediated mTORC1 activation in macrophages clears polymeric glycoconjugates from peripheral tissues. Smaller glycoconjugates evading this clearance mechanism are tolerated through sequestration by albumin, which acts as an inflammatory buffer constraining their immunological impact. Without these resistance and tolerance mechanisms, Firmicutes drive catastrophic organ damage and cachexia via IL-1β. This reveals how Firmicutes are safely assimilated into systemic immunity to protect against infection without threatening host viability.
Collapse
Affiliation(s)
- Christine K I Jordan
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Rebecca L Brown
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Max L Y Larkinson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Richard P Sequeira
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
14
|
Qin L, Li Q, Wang L, Huang Y. Mass cytometry reveals the corneal immune cell changes at single cell level in diabetic mice. Front Endocrinol (Lausanne) 2023; 14:1253188. [PMID: 37732130 PMCID: PMC10507693 DOI: 10.3389/fendo.2023.1253188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Diabetic ocular complications include sight-threatening consequences and decreased corneal sensitivity, characterized by decreased tear production, corneal sensitivity and delayed corneal epithelial wound healing. The pathogenesis of diabetic corneal disorders remains largely unknown. Growing evidence implies the participation of immune cells in the development of diabetic corneal diseases. Nonetheless, the immunological changes that result in diabetic corneal problems are largely unknown. Methods Mass cytometry by time of flight (CyTOF) was used to investigate immune cell cluster alterations associated with diabetic corneal disorders. CyTOF test was performed on corneal cells at a single level from 21-week-old diabetic (db/db) and non-diabetic (db/m) mice. A panel of 41 immune-related markers monitored different immune cell types in diabetic corneas. To investigate the proportion of each immune cell subpopulation, an unsupervised clustering method was employed, and T-distributed stochastic neighbor embedding was used to visualize the distinctions between different immune cell subsets. Results Through CyTOF test, we identified 10 immune cell subsets in the corneal tissues. In a novel way, we discovered significant immune alterations in diabetic corneas, including pronounced alterations in T cells and myeloid cell subgroups in diabetic corneas linked to potential biomarkers, including CD103, CCR2, SiglecF, Ly6G, and CD172a. Comprehensive immunological profiling indicated remarkable changes in the immune microenvironment in diabetic corneas, characterized by a notable decrease in CD103+CD8+ tissue-resident memory T (TRM) cells and Tregs, as well as a dramatic increase of γδT cells and subsets of CD11b+Ly6G+ myeloid-derived suppressor cells (MDSCs). Conclusion CyTOF analysis revealed significant alterations in the immune microenvironment during the development of diabetic corneal complications. This study mapped the immune microenvironment landscape of type 2 diabetic corneas, providing a fundamental understanding of immune-driven diabetic corneal disorders.
Collapse
Affiliation(s)
- Limin Qin
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, The First Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, The First Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
- Department of Ophthalmology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
15
|
Adamopoulos IE, Kuchroo V. IL-17A and IL-17F in tissue homeostasis, inflammation and regeneration. Nat Rev Rheumatol 2023; 19:535-536. [PMID: 37488297 PMCID: PMC10709714 DOI: 10.1038/s41584-023-01004-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Hanna BS, Wang G, Galván-Peña S, Mann AO, Ramirez RN, Muñoz-Rojas AR, Smith K, Wan M, Benoist C, Mathis D. The gut microbiota promotes distal tissue regeneration via RORγ + regulatory T cell emissaries. Immunity 2023; 56:829-846.e8. [PMID: 36822206 PMCID: PMC10101925 DOI: 10.1016/j.immuni.2023.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Specific microbial signals induce the differentiation of a distinct pool of RORγ+ regulatory T (Treg) cells crucial for intestinal homeostasis. We discovered highly analogous populations of microbiota-dependent Treg cells that promoted tissue regeneration at extra-gut sites, notably acutely injured skeletal muscle and fatty liver. Inflammatory meditators elicited by tissue damage combined with MHC-class-II-dependent T cell activation to drive the accumulation of gut-derived RORγ+ Treg cells in injured muscle, wherein they regulated the dynamics and tenor of early inflammation and helped balance the proliferation vs. differentiation of local stem cells. Reining in IL-17A-producing T cells was a major mechanism underlying the rheostatic functions of RORγ+ Treg cells in compromised tissues. Our findings highlight the importance of gut-trained Treg cell emissaries in controlling the response to sterile injury of non-mucosal tissues.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Silvia Galván-Peña
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander O Mann
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrés R Muñoz-Rojas
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen Smith
- Internal Medicine Research Unit, Worldwide Research, Development & Medical, Pfizer Inc., Cambridge, MA, USA
| | - Min Wan
- Internal Medicine Research Unit, Worldwide Research, Development & Medical, Pfizer Inc., Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Hanna BS, Yaghi OK, Langston PK, Mathis D. The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clin Exp Immunol 2023; 211:138-148. [PMID: 35972909 PMCID: PMC10019136 DOI: 10.1093/cei/uxac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed "tissue-Tregs," also perform a variety of functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss the existing literature on Tregs' role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation in such contexts, including exercise as a natural Treg modulator.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| |
Collapse
|
18
|
Muro R, Narita T, Nitta T, Takayanagi H. Spleen tyrosine kinase mediates the γδTCR signaling required for γδT cell commitment and γδT17 differentiation. Front Immunol 2023; 13:1045881. [PMID: 36713401 PMCID: PMC9878111 DOI: 10.3389/fimmu.2022.1045881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The γδT cells that produce IL-17 (γδT17 cells) play a key role in various pathophysiologic processes in host defense and homeostasis. The development of γδT cells in the thymus requires γδT cell receptor (γδTCR) signaling mediated by the spleen tyrosine kinase (Syk) family proteins, Syk and Zap70. Here, we show a critical role of Syk in the early phase of γδT cell development using mice deficient for Syk specifically in lymphoid lineage cells (Syk-conditional knockout (cKO) mice). The development of γδT cells in the Syk-cKO mice was arrested at the precursor stage where the expression of Rag genes and αβT-lineage-associated genes were retained, indicating that Syk is required for γδT-cell lineage commitment. Loss of Syk in γδT cells weakened TCR signal-induced phosphorylation of Erk and Akt, which is mandatory for the thymic development of γδT17 cells. Syk-cKO mice exhibited a loss of γδT17 cells in the thymus as well as throughout the body, and thereby are protected from γδT17-dependent psoriasis-like skin inflammation. Collectively, our results indicate that Syk is a key player in the lineage commitment of γδT cells and the priming of γδT17 cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapeutics, Research Institute of Pharmaceutical Sciences and Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Takeshi Nitta,
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
20
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
21
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|