1
|
Ji RJ, Cao GH, Zhao WQ, Wang MY, Gao P, Zhang YZ, Wang XB, Qiu HY, Chen DD, Tong XH, Duan M, Yin H, Zhang Y. Epitope prime editing shields hematopoietic cells from CD123 immunotherapy for acute myeloid leukemia. Cell Stem Cell 2024:S1934-5909(24)00317-5. [PMID: 39353428 DOI: 10.1016/j.stem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant cancer characterized by abnormal differentiation of hematopoietic stem and progenitor cells (HSPCs). While chimeric antigen receptor T (CAR-T) cell immunotherapies target AML cells, they often induce severe on-target/off-tumor toxicity by attacking normal cells expressing the same antigen. Here, we used base editors (BEs) and a prime editor (PE) to modify the epitope of CD123 on HSPCs, protecting healthy cells from CAR-T-induced cytotoxicity while maintaining their normal function. Although BE effectively edits epitopes, complex bystander products are a concern. To enhance precision, we optimized prime editing, increasing the editing efficiency from 5.9% to 78.9% in HSPCs. Epitope-modified cells were resistant to CAR-T lysis while retaining normal differentiation and function. Furthermore, BE- or PE-edited HSPCs infused into humanized mice endowed myeloid lineages with selective resistance to CAR-T immunotherapy, demonstrating a proof-of-concept strategy for treating relapsed AML.
Collapse
Affiliation(s)
- Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guo-Hua Cao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei-Qiang Zhao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mu-Yao Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Gao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi-Zhou Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xue-Bin Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Di-Di Chen
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiao-Han Tong
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Min Duan
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hao Yin
- Departments of Clinical Laboratory and Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Wang H, Georgakopoulou A, Nizamis E, Mok KW, Eluère R, Policastro RA, Valdmanis PN, Lieber A. Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2. Mol Ther Methods Clin Dev 2024; 32:101319. [PMID: 39282078 PMCID: PMC11399618 DOI: 10.1016/j.omtm.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3' UTR truncated HMGA2 gene and a GFP reporter gene. A SB100x transposase vector mediated random integration of the tHMGA2/GFP transgene cassette. HSCs in mice were mobilized by subcutaneous injections of G-CSF and AMD3100/Plerixafor and intravenously injected with the integrating tHMGA2/GFP vector. This resulted in a slow but progressive, competitive expansion of GFP+ PBMCs, reaching about 50% by week 44 with further expansion in secondary recipients. Expansion occurred at the level of HSCs as well as at the levels of myeloid, lymphoid, and erythroid progenitors within the bone marrow and spleen. Importantly, based on genome-wide integration site analyses, expansion was polyclonal, without any signs of clonal dominance. Whole-exome sequencing did not show significant differences in the genomic instability indices between tHGMGA2/GFP mice and untreated control mice. Auto-expansion by tHMGA2 was validated in humanized mice. This is the first demonstration that simple injections of mobilization drugs and HDAd vectors can trigger auto-expansion of in vivo transduced HSCs resulting in transgene-marking rates that, theoretically, are curative for hemoglobinopathies.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | | | | | - Paul N Valdmanis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
4
|
Wellhausen N, Baek J, Gill SI, June CH. Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance. Nat Rev Cancer 2024; 24:614-628. [PMID: 39048767 DOI: 10.1038/s41568-024-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Adoptive cell therapies engineered to express chimeric antigen receptors (CARs) or transgenic T cell receptors (TCRs) to recognize and eliminate cancer cells have emerged as a promising approach for achieving long-term remissions in patients with cancer. To be effective, the engineered cells must persist at therapeutically relevant levels while avoiding off-tumour toxicities, which has been challenging to realize outside of B cell and plasma cell malignancies. This Review discusses concepts to enhance the efficacy, safety and accessibility of cellular immunotherapies by endowing cells with selective resistance to small-molecule drugs or antibody-based therapies to facilitate combination therapies with substances that would otherwise interfere with the functionality of the effector cells. We further explore the utility of engineering healthy haematopoietic stem cells to confer resistance to antigen-directed immunotherapies and small-molecule targeted therapies to expand the therapeutic index of said targeted anticancer agents as well as to facilitate in vivo selection of gene-edited haematopoietic stem cells for non-malignant applications. Lastly, we discuss approaches to evade immune rejection, which may be required in the setting of allogeneic cell therapies. Increasing confidence in the tools and outcomes of genetically modified cell therapy now paves the way for rational combinations that will open new therapeutic horizons.
Collapse
Affiliation(s)
- Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanne Baek
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Kansal R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes (Basel) 2024; 15:863. [PMID: 39062641 PMCID: PMC11276294 DOI: 10.3390/genes15070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has begun to transform the treatment landscape of genetic diseases. The history of the discovery of CRISPR/CRISPR-associated (Cas) proteins/single-guide RNA (sgRNA)-based gene editing since the first report of repetitive sequences of unknown significance in 1987 is fascinating, highly instructive, and inspiring for future advances in medicine. The recent approval of CRISPR-Cas9-based gene therapy to treat patients with severe sickle cell anemia and transfusion-dependent β-thalassemia has renewed hope for treating other hematologic diseases, including patients with a germline predisposition to hematologic malignancies, who would benefit greatly from the development of CRISPR-inspired gene therapies. The purpose of this paper is three-fold: first, a chronological description of the history of CRISPR-Cas9-sgRNA-based gene editing; second, a brief description of the current state of clinical research in hematologic diseases, including selected applications in treating hematologic diseases with CRISPR-based gene therapy, preceded by a brief description of the current tools being used in clinical genome editing; and third, a presentation of the current progress in gene therapies in inherited hematologic diseases and bone marrow failure syndromes, to hopefully stimulate efforts towards developing these therapies for patients with inherited bone marrow failure syndromes and other inherited conditions with a germline predisposition to hematologic malignancies.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Alviano AM, Biondi M, Grassenis E, Biondi A, Serafini M, Tettamanti S. Fully equipped CARs to address tumor heterogeneity, enhance safety, and improve the functionality of cellular immunotherapies. Front Immunol 2024; 15:1407992. [PMID: 38887285 PMCID: PMC11180895 DOI: 10.3389/fimmu.2024.1407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Although adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells has achieved unprecedented response rates in patients with certain hematological malignancies, this therapeutic modality is still far from fulfilling its remarkable potential, especially in the context of solid cancers. Antigen escape variants, off-tumor destruction of healthy tissues expressing tumor-associated antigens (TAAs), poor CAR-T cell persistence, and the occurrence of functional exhaustion represent some of the most prominent hurdles that limit CAR-T cell ability to induce long-lasting remissions with a tolerable adverse effect profile. In this review, we summarize the main approaches that have been developed to face such bottlenecks, including the adapter CAR (AdCAR) system, Boolean-logic gating, epitope editing, the modulation of cell-intrinsic signaling pathways, and the incorporation of safety switches to precisely control CAR-T cell activation. We also discuss the most pressing issues pertaining to the selection of co-stimulatory domains, with a focus on strategies aimed at promoting CAR-T cell persistence and optimal antitumor functionality.
Collapse
Affiliation(s)
- Antonio Maria Alviano
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Erica Grassenis
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Serafini
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Tettamanti
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
7
|
Garaudé S, Marone R, Lepore R, Devaux A, Beerlage A, Seyres D, Dell' Aglio A, Juskevicius D, Zuin J, Burgold T, Wang S, Katta V, Manquen G, Li Y, Larrue C, Camus A, Durzynska I, Wellinger LC, Kirby I, Van Berkel PH, Kunz C, Tamburini J, Bertoni F, Widmer CC, Tsai SQ, Simonetta F, Urlinger S, Jeker LT. Selective haematological cancer eradication with preserved haematopoiesis. Nature 2024; 630:728-735. [PMID: 38778101 PMCID: PMC11186773 DOI: 10.1038/s41586-024-07456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.
Collapse
Affiliation(s)
- Simon Garaudé
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Rosalba Lepore
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Cimeio Therapeutics, Basel, Switzerland
| | - Anna Devaux
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Astrid Beerlage
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Department of Hematology, Basel University Hospital, Basel, Switzerland
| | - Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Alessandro Dell' Aglio
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Darius Juskevicius
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Jessica Zuin
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Thomas Burgold
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Sisi Wang
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Garret Manquen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clément Larrue
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | | | | | | | | | | | | | - Jérôme Tamburini
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Corinne C Widmer
- Department of Hematology, Basel University Hospital, Basel, Switzerland
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland.
- Innovation Focus Cell Therapy, Basel University Hospital, Basel, Switzerland.
| |
Collapse
|
8
|
Chang CR, Vykunta VS, Goodman DB, Muldoon JJ, Nyberg WA, Liu C, Allain V, Rothrock A, Wang CH, Marson A, Shy BR, Eyquem J. Ultra-high efficiency T cell reprogramming at multiple loci with SEED-Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.576175. [PMID: 38370809 PMCID: PMC10871224 DOI: 10.1101/2024.02.06.576175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
Collapse
Affiliation(s)
- Christopher R Chang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vivasvan S Vykunta
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Allison Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Volta L, Manz MG. Twisted: Escape of epitope-edited healthy cells from immune attack. J Exp Med 2023; 220:e20231635. [PMID: 37819374 PMCID: PMC10565509 DOI: 10.1084/jem.20231635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Hematopoietic stem and progenitor cell-derived neoplasia is challenging to target by cell surface-directed immunotherapy due to lack of tumor cell-specific antigen identification. Marone et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20231235) provide a solution by target-epitope resistance editing in healthy hematopoietic stem cells.
Collapse
Affiliation(s)
- Laura Volta
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Burkhardt UE, Fritsch EF. Serving up whatever you wish: CRISPR-base editing generates novel cancer-restricted antigens for immunotherapy. Genes Immun 2023; 24:292-294. [PMID: 38082155 DOI: 10.1038/s41435-023-00227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Affiliation(s)
- Ute E Burkhardt
- Accelerating Cancer Immunotherapy Research, Concord, MA, USA.
| | - Edward F Fritsch
- Accelerating Cancer Immunotherapy Research, Concord, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Haubner S, Mansilla-Soto J, Nataraj S, Kogel F, Chang Q, de Stanchina E, Lopez M, Ng MR, Fraser K, Subklewe M, Park JH, Wang X, Rivière I, Sadelain M. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023; 41:1871-1891.e6. [PMID: 37802054 PMCID: PMC11006543 DOI: 10.1016/j.ccell.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.
Collapse
Affiliation(s)
- Sascha Haubner
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Nataraj
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Lopez
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mei Rosa Ng
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Kathryn Fraser
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jae H Park
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|