1
|
Skiba NP, Lewis TR, Spencer WJ, Castillo CM, Shevchenko A, Arshavsky VY. Absolute Quantification of Photoreceptor Outer Segment Proteins. J Proteome Res 2023; 22:2703-2713. [PMID: 37493966 PMCID: PMC10513726 DOI: 10.1021/acs.jproteome.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of 20 key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio among all 20 proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.
Collapse
Affiliation(s)
- Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Tylor R. Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany 01307
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
2
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
3
|
Skiba NP, Lewis TR, Spencer WJ, Castillo CM, Shevchenko A, Arshavsky VY. Absolute quantification of photoreceptor outer segment proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524794. [PMID: 36711880 PMCID: PMC9882265 DOI: 10.1101/2023.01.19.524794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously measure the outer segment content of twenty key structural and functional proteins. We determined the molar ratio amongst all twenty proteins as well as the number of molecules of each protein residing within an outer segment. To assess the precision of this quantification, we took advantage of the fact that seven of these proteins exist within three constitutive complexes of well-established subunit stoichiometries. Remarkably, our measurements differed from these stoichiometries by less than 7%, highlighting the exceptional precision of our quantification. This allowed us to resolve the existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.
Collapse
|
4
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Abtout A, Fain G, Reingruber J. Analysis of waveform and amplitude of mouse rod and cone flash responses. J Physiol 2021; 599:3295-3312. [PMID: 33977528 DOI: 10.1113/jp281225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.
Collapse
Affiliation(s)
- Annia Abtout
- Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - Gordon Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
6
|
Lamb TD, Kraft TW. A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biol 2020; 10:190241. [PMID: 31910741 PMCID: PMC7014685 DOI: 10.1098/rsob.190241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s−1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution. Sci Rep 2019; 9:7245. [PMID: 31076603 PMCID: PMC6510727 DOI: 10.1038/s41598-019-43675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/27/2019] [Indexed: 11/08/2022] Open
Abstract
Activation of cGMP phosphodiesterase (PDE) by activated transducin α subunit (Tα*) is a necessary step to generate a light response in vertebrate photoreceptors. PDE in rods is a heterotetramer composed of two catalytic subunits, PDEα and PDEβ, and two inhibitory PDEγ subunits, each binding to PDEα or PDEβ. Activation of PDE is achieved by relief of the inhibitory constraint of PDEγ on the catalytic subunit. In this activation mechanism, it is widely believed that Tα* binds to PDEγ still bound to the catalytic subunit, and removes or displaces PDEγ from the catalytic subunit. However, recent structural analysis showed that the binding of Tα* to PDEγ still bound to PDEα or PDEβ seems to be difficult because the binding site of PDEγ to PDEα or PDEβ overlaps with the binding site to Tα*. In the present study, we propose a novel activation mechanism of PDE, the trapping mechanism, in which Tα* activates PDE by trapping PDEγ released reversibly and spontaneously from the catalytic subunit. This mechanism well explains PDE activation by Tα* in solution. Our further analysis with this mechanism suggests that more effective PDE activation in disk membranes is highly dependent on the membrane environment.
Collapse
|
8
|
Lamb TD, Heck M, Kraft TW. Implications of dimeric activation of PDE6 for rod phototransduction. Open Biol 2019; 8:rsob.180076. [PMID: 30068567 PMCID: PMC6119862 DOI: 10.1098/rsob.180076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023] Open
Abstract
We examine the implications of a recent report providing evidence that two transducins must bind to the rod phosphodiesterase to elicit significant hydrolytic activity. To predict the rod photoreceptor's electrical response, we use numerical simulation of the two-dimensional diffusional contact of interacting molecules at the surface of the disc membrane, and then we use the simulated PDE activity as the driving function for the downstream reaction cascade. The results account for a number of aspects of rod phototransduction that have previously been puzzling. For example, they explain the existence of a greater initial delay in rods than in cones. Furthermore, our analysis suggests that the 'continuous' noise recorded in rods in darkness is likely to arise from spontaneous activation of individual molecules of PDE at a rate of a few tens per second per rod, probably as a consequence of spontaneous activation of transducins at a rate of thousands per second per rod. Hence, the dimeric activation of PDE in rods provides immunity against spontaneous transducin activation, thereby reducing the continuous noise. Our analysis also provides a coherent quantitative explanation of the amplification underlying the single photon response. Overall, numerical analysis of the dimeric activation of PDE places rod phototransduction in a new light.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik der Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:933-943. [PMID: 30840038 DOI: 10.1167/iovs.18-25347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Torre
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
The phototransduction machinery in the rod outer segment has a strong efficacy gradient. Proc Natl Acad Sci U S A 2015; 112:E2715-24. [PMID: 25941368 DOI: 10.1073/pnas.1423162112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5-10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light.
Collapse
|
11
|
Koshitani Y, Tachibanaki S, Kawamura S. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones. J Biol Chem 2013; 289:2651-7. [PMID: 24344136 DOI: 10.1074/jbc.m113.495325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cones are less light-sensitive than rods. We showed previously in carp that more light (>100-fold) is required in cones than in rods to activate 50% of cGMP phosphodiesterase (PDE). The lower effectiveness of PDE activation in carp cones is due partly to the fact that the activation rate of transducin (Tr) by light-activated visual pigment (R*) is 5-fold lower in carp cones than in rods. In this study, we tried to explain the remaining difference. First, we examined the efficiency of activation of PDE by activated Tr (Tr*). By activating PDE with known concentrations of the active (guanosine 5'-Ο-(γ-thio)triphosphate (GTPγS)-bound) form of Tr*, we found that Tr* activated PDE at a similar efficiency in rods and cones. Next, we examined the contribution of R* and Tr* lifetimes. In a comparison of PDE activation in the presence (with GTP) and absence (with GTPγS) of Tr* inactivation, PDE activation required more light (and was therefore less effective) when Tr* was inactivated in both rod and cone membranes. This is probably because inactivation of Tr* shortened its lifetime, thereby reducing the number of activated PDE molecules. The effect of Tr* inactivation was larger in cones, probably because the lifetime of Tr* is shorter in cones than in rods. The shorter lifetimes of Tr* and R* in cones seem to explain the remaining difference in the effectiveness of PDE activation between rods and cones.
Collapse
Affiliation(s)
- Yuki Koshitani
- From the Department of Biological Sciences, Graduate School of Science, and
| | | | | |
Collapse
|
12
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
14
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
Shen L, Caruso G, Bisegna P, Andreucci D, Gurevich V, Hamm H, DiBenedetto E. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. IET Syst Biol 2010; 4:12-32. [PMID: 20001089 PMCID: PMC3833298 DOI: 10.1049/iet-syb.2008.0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The deep understanding of the biochemical and biophysical basis of visual transduction, makes it ideal for systems-level analysis. A sensitivity analysis is presented for a self-consistent set of parameters involved in mouse phototransduction. The organising framework is a spatio-temporal mathematical model, which includes the geometry of the rod outer segment (ROS), the layered array of the discs, the incisures, the biochemistry of the activation/deactivation cascade and the biophysics of the diffusion of the second messengers in the cytoplasm and the closing of the cyclic guanosine monophosphate (cGMP) gated cationic channels. These modules include essentially all the relevant geometrical, biochemical and biophysical parameters. The parameters are selected from within experimental ranges, to obey basic first principles such as conservation of mass and energy fluxes. By means of the model they are compared to a large set of experimental data, providing a strikingly close match. Following isomerisation of a single rhodopsin R * (single photon response), the sensitivity analysis was carried out on the photo-response, measured both in terms of number of effector molecules produced, and photocurrent suppression, at peak time and the activation and recovery phases of the cascade. The current suppression is found to be very sensitive to variations of the catalytic activities, Hill's coefficients and hydrolysis rates and the geometry of the ROS, including size and shape of the incisures. The activated effector phosphodiesterase (PDE *) is very sensitive to variations of catalytic activity of G-protein activation and the average lifetimes of activated rhodopsin R * and PDE *; however, they are insensitive to geometry and variations of the transduction parameters. Thus the system is separated into two functional modules, activation/deactivation and transduction, each confined in different geometrical domains, communicating through the hydrolysis of cGMP by PDE *, and each sensitive to variations of parameters only in its own module.
Collapse
Affiliation(s)
- L. Shen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G. Caruso
- Construction Technologies Institute, National Research Council, Rome, Italy
| | - P. Bisegna
- Department of Civil Engineering, University of Rome Tor Vergata, Italy
| | - D. Andreucci
- Department of Mathematical Methods and Models, University of Rome La Sapienza, Italy
| | - V.V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H.E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E. DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
22
|
Reingruber J, Holcman D. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors. J Chem Phys 2009; 129:145102. [PMID: 19045167 DOI: 10.1063/1.2991174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The early steps of light response occur in the outer segment of rod and cone photoreceptor. They involve the hydrolysis of cGMP, a soluble cyclic nucleotide, that gates ionic channels located in the outer segment membrane. We shall study here the rate by which cGMP is hydrolyzed by activated phosphodiesterase (PDE). This process has been characterized experimentally by two different rate constants beta(d) and beta(sub): beta(d) accounts for the effect of all spontaneously active PDE in the outer segment, and beta(sub) characterizes cGMP hydrolysis induced by a single light-activated PDE. So far, no attempt has been made to derive the experimental values of beta(d) and beta(sub) from a theoretical model, which is the goal of this work. Using a model of diffusion in the confined rod geometry, we derive analytical expressions for beta(d) and beta(sub) by calculating the flux of cGMP molecules to an activated PDE site. We obtain the dependency of these rate constants as a function of the outer segment geometry, the PDE activation and deactivation rates and the aqueous cGMP diffusion constant. Our formulas show good agreement with experimental measurements. Finally, we use our derivation to model the time course of the cGMP concentration in a transversally well-stirred outer segment.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Department of Computational Biology, Ecole Normale Superieure, 46 Rue d'Ulm 75005 Paris, France.
| | | |
Collapse
|
23
|
Wang Q, Zhang X, Zhang L, He F, Zhang G, Jamrich M, Wensel TG. Activation-dependent hindrance of photoreceptor G protein diffusion by lipid microdomains. J Biol Chem 2008; 283:30015-24. [PMID: 18713731 DOI: 10.1074/jbc.m803953200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dynamics of G protein-mediated signal transduction depend on the two-dimensional diffusion of membrane-bound G proteins and receptors, which has been suggested to be rate-limiting for vertebrate phototransduction, a highly amplified G protein-coupled signaling pathway. Using fluorescence recovery after photobleaching (FRAP), we measured the diffusion of the G protein transducin alpha-subunit (Galpha(t)) and the G protein-coupled receptor rhodopsin on disk membranes of living rod photoreceptors from transgenic Xenopus laevis. Treatment with either methyl-beta-cyclodextrin or filipin III to disrupt cholesterol-containing lipid microdomains dramatically accelerated diffusion of Galpha(t) in its GTP-bound state and of the rhodopsin-Galphabetagamma(t) complex but not of rhodopsin or inactive GDP-bound Galphabetagamma. These results imply an activity-dependent sequestration of G proteins into cholesterol-dependent lipid microdomains, which limits diffusion and exclude the majority of free rhodopsin and the free G protein heterotrimer. Our data offer a novel demonstration of lipid microdomains in the internal membranes of living sensory neurons.
Collapse
Affiliation(s)
- Qiong Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Wensel TG, Yuan C. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins. Photochem Photobiol 2007; 82:1452-60. [PMID: 16553462 DOI: 10.1562/2006-01-05-ra-767] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The retinal photoreceptors of the nocturnal Tokay gecko (Gekko gekko) consist exclusively of rods by the criteria of morphology and key features of their light responses. Unlike cones, they display robust photoresponses and have relatively slow recovery times. Nonetheless, the major and minor visual pigments identified in gecko rods are of the cone type by sequence and spectroscopic behavior. In the ongoing search for the molecular bases for the physiological differences between cones and rods, we have characterized the molecular biology and biochemistry of the gecko rod phototransduction cascade. We have cloned cDNAs encoding all or part of major protein components of the phototransduction cascade by RT-PCR with degenerate oligonucleotides designed to amplify cone- or rod-like sequences. For all proteins examined we obtained only cone-like and never rod-like sequences. The proteins identified include transducin alpha (Galphat), phosphodiesterase (PDE6) catalytic and inhibitory subunits, cyclic nucleotide-gated channel (CNGalpha) and arrestin. We also cloned cDNA encoding gecko RGS9-1 (Regulator of G Protein Signaling 9, splice variant 1), which is expressed in both rods and cones of all species studied but is typically found at 10-fold higher concentrations in cones, and found that gecko rods contain slightly lower RGS9-1 levels than mammalian rods. Furthermore, we found that the levels of GTPase accelerating protein (GAP) activity and cyclic GMP (cGMP) phosphodiesterase activity were similar in gecko and mammalian rods. These results place substantial constraints on the critical changes needed to convert a cone into a rod in the course of evolution: The many features of phototransduction molecules conserved between those expressed in gecko rods and those expressed in cones cannot explain the physiological differences, whereas the higher levels of RGS9-1 and GAP activity in cones are likely among the essential requirements for the rapid photoresponses of cones.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
25
|
Zhang X, Wensel TG, Yuan C. Tokay Gecko Photoreceptors Achieve Rod-Like Physiology with Cone-Like Proteins. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09799.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Caruso G, Bisegna P, Shen L, Andreucci D, Hamm HE, DiBenedetto E. Modeling the role of incisures in vertebrate phototransduction. Biophys J 2006; 91:1192-212. [PMID: 16714347 PMCID: PMC1518654 DOI: 10.1529/biophysj.106.083618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phototransduction is mediated by a G-protein-coupled receptor-mediated cascade, activated by light and localized to rod outer segment (ROS) disk membranes, which, in turn, drives a diffusion process of the second messengers cGMP and Ca2+ in the ROS cytosol. This process is hindered by disks-which, however, bear physical cracks, known as incisures, believed to favor the longitudinal diffusion of cGMP and Ca2+. This article is aimed at highlighting the biophysical functional role and significance of incisures, and their effect on the local and global response of the photocurrent. Previous work on this topic regarded the ROS as well stirred in the radial variables, lumped the diffusion mechanism on the longitudinal axis of the ROS, and replaced the cytosolic diffusion coefficients by effective ones, accounting for incisures through their total patent area only. The fully spatially resolved model recently published by our group is a natural tool to take into account other significant details of incisures, including their geometry and distribution. Using mathematical theories of homogenization and concentrated capacity, it is shown here that the complex diffusion process undergone by the second messengers cGMP and Ca2+ in the ROS bearing incisures can be modeled by a family of two-dimensional diffusion processes on the ROS cross sections, glued together by other two-dimensional diffusion processes, accounting for diffusion in the ROS outer shell and in the bladelike regions comprised by the stack of incisures. Based on this mathematical model, a code has been written, capable of incorporating an arbitrary number of incisures and activation sites, with any given arbitrary distribution within the ROS. The code is aimed at being an operational tool to perform numerical experiments of phototransduction, in rods with incisures of different geometry and structure, under a wide spectrum of operating conditions. The simulation results show that incisures have a dual biophysical function. On the one hand, since incisures line up from disk to disk, they create vertical cytoplasmic channels crossing the disks, thus facilitating diffusion of second messengers; on the other hand, at least in those species bearing multiple incisures, they divide the disks into lobes like the petals of a flower, thus confining the diffusion of activated phosphodiesterase and localizing the photon response. Accordingly, not only the total area of incisures, but their geometrical shape and distribution as well, significantly influence the global photoresponse.
Collapse
Affiliation(s)
- Giovanni Caruso
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Pentia DC, Hosier S, Cote RH. The glutamic acid-rich protein-2 (GARP2) is a high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that modulates its catalytic properties. J Biol Chem 2006; 281:5500-5. [PMID: 16407240 PMCID: PMC2825572 DOI: 10.1074/jbc.m507488200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glutamic acid-rich protein-2 (GARP2) is a splice variant of the beta-subunit of the cGMP-gated ion channel of rod photoreceptors. GARP2 is believed to interact with several membrane-associated phototransduction proteins in rod photoreceptors. In this study, we demonstrated that GARP2 is a high affinity PDE6-binding protein and that PDE6 co-purifies with GARP2 during several stages of chromatographic purification. We found that hydrophobic interaction chromatography succeeds in quantitatively separating GARP2 from the PDE6 holoenzyme. Furthermore, the 17-kDa prenyl-binding protein, abundant in retinal cells, selectively released PDE6 (but not GARP2) from rod outer segment membranes, demonstrating the specificity of the interaction between GARP2 and PDE6. Purified GARP2 was able to suppress 80% of the basal activity of the nonactivated, membrane-bound PDE6 holoenzyme at concentrations equivalent to its endogenous concentration in rod outer segment membranes. However, GARP2 was unable to reverse the transducin activation of PDE6 (in contrast to a previous study) nor did it significantly alter catalysis of the fully activated PDE6 catalytic dimer. The high binding affinity of GARP2 for PDE6 and its ability to regulate PDE6 activity in its dark-adapted state suggest a novel role for GARP2 as a regulator of spontaneous activation of rod PDE6, thereby serving to lower rod photoreceptor "dark noise" and allowing these sensory cells to operate at the single photon detection limit.
Collapse
Affiliation(s)
- Dana C. Pentia
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Suzanne Hosier
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Rick H. Cote
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| |
Collapse
|
28
|
Zhang X, Feng Q, Cote RH. Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Invest Ophthalmol Vis Sci 2005; 46:3060-6. [PMID: 16123402 PMCID: PMC1343468 DOI: 10.1167/iovs.05-0257] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Phosphodiesterase (PDE) inhibitors are important therapeutic agents, but their effects on photoreceptor PDE (PDE6) and photoreceptor cells are poorly understood. The potency and selectivity of various classes of PDE inhibitors on purified rod and cone PDE6 and on intact rod outer segments (ROS) were characterized. METHODS The inhibition constant (K(i)) of isozyme-selective PDE inhibitors was determined for purified rod and cone PDE6. Perturbations of cGMP levels in isolated ROS suspensions by PDE inhibitors were quantitated by a cGMP enzyme-linked immunoassay. RESULTS Most PDE5-selective inhibitors were excellent PDE6 inhibitors. Vardenafil, a potent PDE5 inhibitor (K(i) = 0.2 nM), was the most potent PDE6 inhibitor tested (K(i) = 0.7 nM). Zaprinast was the only drug that inhibited PDE6 more potently than did PDE5. PDE1-selective inhibitors were equally effective in inhibiting PDE6. In intact ROS, PDE inhibitors elevated cGMP levels, but none fully inhibited PDE6. Their potency for elevating cGMP levels in ROS was much lower than their ability to inhibit the purified enzyme. Competition between PDE5/6-selective drugs and the inhibitory gamma-subunit for the active site of PDE6 is proposed to reduce the effectiveness of drugs at the enzyme-active site. CONCLUSIONS Several classes of PDE inhibitors inhibit PDE6 equally as well as the PDE family to which they are targeted. In intact ROS, high PDE6 concentrations, binding of the gamma-subunit to the active site, and calcium feedback mechanisms attenuate the effectiveness of PDE inhibitors to inhibit PDE6 and disrupt the cGMP signaling pathway during visual transduction.
Collapse
Affiliation(s)
| | | | - Rick H. Cote
- Corresponding author: Rick H. Cote, Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824,
, Phone: 603-862-2458, FAX: 603-862-4013
| |
Collapse
|
29
|
Holcman D, Korenbrot JI. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones. ACTA ACUST UNITED AC 2005; 125:641-60. [PMID: 15928405 PMCID: PMC2234084 DOI: 10.1085/jgp.200509277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca2+ that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca2+ buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is ∼55 ms. In nonmammalian rods, in contrast, active PDE lifetime is ∼555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.
Collapse
Affiliation(s)
- David Holcman
- Keck Center for Theoretical Neurobiology and Department of Physiology, School of Medicine, University of California at San Francisco, 94143, USA
| | | |
Collapse
|
30
|
Ramanathan S, Detwiler PB, Sengupta AM, Shraiman BI. G-protein-coupled enzyme cascades have intrinsic properties that improve signal localization and fidelity. Biophys J 2005; 88:3063-71. [PMID: 15681646 PMCID: PMC1305458 DOI: 10.1529/biophysj.103.039321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein-coupled enzyme cascades are used by eukaryotic cells to detect external signals and transduce them into intracellular messages that contain biological information relevant to the cell's function. Since G-protein-coupled receptors that are designed to detect different kinds of external signals can generate the same kind of intracellular response, effective signaling requires that there are mechanisms to increase signal specificity and fidelity. Here we examine the kinetic equations for the initial three stages in a generic G-protein-coupled cascade and show that the physical properties of the transduction pathway result in two intrinsic features that benefit signaling. 1), The response to a single activated receptor is naturally confined to a localized spatial domain, which could improve signal specificity by reducing cross talk. 2), The peak of the response generated by such a signaling domain is limited. This saturation effect reduces trial-to-trial variability and increases signaling fidelity by limiting the response to receptors that remain active for longer than average. We suggest that this mechanism for reducing response fluctuations may be a contributing factor in making the single photon responses of vertebrate retinal rods so remarkably reproducible.
Collapse
|
31
|
Andreucci D, Bisegna P, Caruso G, Hamm HE, DiBenedetto E. Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction. Biophys J 2003; 85:1358-76. [PMID: 12944255 PMCID: PMC1303314 DOI: 10.1016/s0006-3495(03)74570-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A model describing the role of transversal and longitudinal diffusion of cGMP and Ca(2+) in signaling in the rod outer segment of vertebrates is developed. Utilizing a novel notion of surface-volume reaction and the mathematical theories of homogenization and concentrated capacity, the diffusion of cGMP and Ca(2+) in the inter-disc spaces is shown to be reducible to a one-parameter family of diffusion processes taking place on a single rod cross section; whereas the diffusion in the outer shell is shown to be reducible to a diffusion on a cylindrical surface. Moreover, the exterior flux of the former serves as a source term for the latter, alleviating the assumption of a well-stirred cytosol. A previous model of visual transduction that assumes a well-stirred rod outer segment cytosol (and thus contains no spatial information) can be recovered from this model by imposing a "bulk" assumption. The model shows that upon activation of a single rhodopsin, cGMP changes are local, and exhibit both a longitudinal and a transversal component. Consequently, membrane current is also highly localized. The spatial spread of the single photon response along the longitudinal axis of the outer segment is predicted to be 3-5 microm, consistent with experimental data. This approach represents a tool to analyze point-wise signaling dynamics without requiring averaging over the entire cell by global Michaelis-Menten kinetics.
Collapse
Affiliation(s)
- D Andreucci
- Dipartimento di Metodi e Modelli Matematici, Università di Roma La Sapienza, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
Abstract
Phototransduction is the process by which a photon of light captured by a molecule of visual pigment generates an electrical response in a photoreceptor cell. Vertebrate rod phototransduction is one of the best-studied G protein signaling pathways. In this pathway the photoreceptor-specific G protein, transducin, mediates between the visual pigment, rhodopsin, and the effector enzyme, cGMP phosphodiesterase. This review focuses on two quantitative features of G protein signaling in phototransduction: signal amplification and response timing. We examine how the interplay between the mechanisms that contribute to amplification and those that govern termination of G protein activity determine the speed and the sensitivity of the cellular response to light.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Howe Laboratory of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
33
|
Abstract
Visual transduction captures widespread interest because its G-protein signaling motif recurs throughout nature yet is uniquely accessible for study in the photoreceptor cells. The light-activated currents generated at the photoreceptor outer segment provide an easily observed real-time measure of the output of the signaling cascade, and the ease of obtaining pure samples of outer segments in reasonable quantity facilitates biochemical experiments. A quiet revolution in the study of the mechanism has occurred during the past decade with the advent of gene-targeting techniques. These have made it possible to observe how transduction is perturbed by the deletion, overexpression, or mutation of specific components of the transduction apparatus.
Collapse
Affiliation(s)
- M E Burns
- Department of Neurobiology, Stanford University Medical Center, Stanford, California 94305, USA.
| | | |
Collapse
|
34
|
Granovsky AE, Artemyev NO. Partial reconstitution of photoreceptor cGMP phosphodiesterase characteristics in cGMP phosphodiesterase-5. J Biol Chem 2001; 276:21698-703. [PMID: 11285263 DOI: 10.1074/jbc.m100626200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.
Collapse
MESH Headings
- 3',5'-Cyclic-GMP Phosphodiesterases/chemistry
- 3',5'-Cyclic-GMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Alanine
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Catalytic Domain
- Cloning, Molecular
- Computer Simulation
- Conserved Sequence
- Cyclic Nucleotide Phosphodiesterases, Type 5
- Cyclic Nucleotide Phosphodiesterases, Type 6
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Photoreceptor Cells, Vertebrate/enzymology
- Protein Conformation
- Protein Structure, Secondary
- Protein Subunits
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Software
- Vertebrates
Collapse
Affiliation(s)
- A E Granovsky
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
35
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
36
|
Norton AW, D'Amours MR, Grazio HJ, Hebert TL, Cote RH. Mechanism of transducin activation of frog rod photoreceptor phosphodiesterase. Allosteric interactiona between the inhibitory gamma subunit and the noncatalytic cGMP-binding sites. J Biol Chem 2000; 275:38611-9. [PMID: 10993884 DOI: 10.1074/jbc.m004606200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.
Collapse
Affiliation(s)
- A W Norton
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-3544, USA
| | | | | | | | | |
Collapse
|
37
|
Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh EN, Arshavsky VY. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 2000; 27:525-37. [PMID: 11055435 DOI: 10.1016/s0896-6273(00)00063-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have resolved a central and long-standing paradox in understanding the amplification of rod phototransduction by making direct measurements of the gains of the underlying enzymatic amplifiers. We find that under optimized conditions a single photoisomerized rhodopsin activates transducin molecules and phosphodiesterase (PDE) catalytic subunits at rates of 120-150/s, much lower than indirect estimates from light-scattering experiments. Further, we measure the Michaelis constant, Km, of the rod PDE activated by transducin to be 10 microM, at least 10-fold lower than published estimates. Thus, the gain of cGMP hydrolysis (determined by kcat/Km) is at least 10-fold higher than reported in the literature. Accordingly, our results now provide a quantitative account of the overall gain of the rod cascade in terms of directly measured factors.
Collapse
Affiliation(s)
- I B Leskov
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cote RH. Kinetics and regulation of cGMP binding to noncatalytic binding sites on photoreceptor phosphodiesterase. Methods Enzymol 2000; 315:646-72. [PMID: 10736732 DOI: 10.1016/s0076-6879(00)15873-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- R H Cote
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824-3544, USA
| |
Collapse
|
39
|
Koutalos Y, Yau KW. Characterization of guanylyl cyclase and phosphodiesterase activities in single rod outer segments. Methods Enzymol 2000; 315:742-52. [PMID: 10736738 DOI: 10.1016/s0076-6879(00)15879-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Y Koutalos
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Denver 80262, USA
| | | |
Collapse
|
40
|
Pugh E, Lamb T. Chapter 5 Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80008-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Gray-Keller M, Denk W, Shraiman B, Detwiler PB. Longitudinal spread of second messenger signals in isolated rod outer segments of lizards. J Physiol 1999; 519 Pt 3:679-92. [PMID: 10457083 PMCID: PMC2269547 DOI: 10.1111/j.1469-7793.1999.0679n.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 06/25/1999] [Indexed: 11/28/2022] Open
Abstract
1. In vertebrate rods activation of the phototransduction cascade by light triggers changes in the concentrations of at least two diffusible intracellular second messengers (cGMP and Ca2+) whose actions depend on how far they spread from their site of production or entry. To address questions about their spatial spread, cell-attached patch current recording and fluorescence imaging of Calcium Green-dextran were used to measure the longitudinal spread of cGMP and Ca2+, respectively, in functionally intact isolated Gecko gecko lizard rod outer segments under whole-cell voltage clamp. 2. The light-evoked changes in cGMP and Ca2+ concentrations decayed with distance from a site of steady focal activation by two-photon absorption of 1064 nm light with similar decay lengths of approximately 3.5 microm. 3. These results can be understood on the basis of a quantitative model of coupled diffusible intracellular messengers, which is likely to have broad relevance for second messenger signalling pathways in general. 4. The decay length for the spread of adaptation from a site of steady local illumination was about 8 microm, i.e. substantially longer than the decay lengths measured for the spread of cGMP and Ca2+. There are a number of factors, however, that could broaden the apparent relationship between functional changes in the light response and the concentration of a diffusible messenger. For these reasons the measured decay length is an upper limit estimate of the spread of adaptation and does not rule out the possibility that Ca2+ and/or cGMP carry the adaptation signal.
Collapse
Affiliation(s)
- M Gray-Keller
- University of Washington, Department of Physiology and Biophysics, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
42
|
D'Amours MR, Cote RH. Regulation of photoreceptor phosphodiesterase catalysis by its non-catalytic cGMP-binding sites. Biochem J 1999; 340 ( Pt 3):863-9. [PMID: 10359674 PMCID: PMC1220321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The photoreceptor 3':5'-cyclic nucleotide phosphodiesterase (PDE) is the central enzyme of visual excitation in rod photoreceptors. The hydrolytic activity of PDE is precisely regulated by its inhibitory gamma subunit (Pgamma), which binds directly to the catalytic site. We examined the inhibition of frog rod outer segment PDE by endogenous Pgamma, as well as by synthetic peptides corresponding to its central and C-terminal domains, to determine whether the non-catalytic cGMP-binding sites on the catalytic alphabeta dimer of PDE allosterically regulate PDE activity. We found that the apparent binding affinity of Pgamma for PDE was 28 pM when cGMP occupied the non-catalytic sites, whereas Pgamma had an apparent affinity only 1/16 of this when the sites were empty. The elevated basal activity of PDE with empty non-catalytic sites can be decreased by the addition of nanomolar levels of cGMP, demonstrating that the high-affinity non-catalytic sites on the PDE catalytic dimer mediate this effect. No evidence for a direct allosteric effect of the non-catalytic sites on catalysis could be detected for the activated enzyme lacking bound Pgamma. The intrinsic affinity of a synthetic C-terminal (residues 63-87) Pgamma peptide to bind and to inhibit the hydrolytic activity of activated PDE was enhanced 300-fold in the presence of cGMP compared with cAMP. We conclude that the binding of cGMP to the non-catalytic sites of PDE induces an allosteric change in the structure of the catalytic domain that greatly enhances the interaction of the C-terminus of Pgamma with the catalytic domain.
Collapse
Affiliation(s)
- M R D'Amours
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824-3544, USA
| | | |
Collapse
|
43
|
Hebert MC, Schwede F, Jastorff B, Cote RH. Structural features of the noncatalytic cGMP binding sites of frog photoreceptor phosphodiesterase using cGMP analogs. J Biol Chem 1998; 273:5557-65. [PMID: 9488681 DOI: 10.1074/jbc.273.10.5557] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cGMP-specific phosphodiesterase (PDE) of retinal photoreceptors is a central regulatory enzyme in the visual transduction pathway of vertebrate vision. Although the mechanism of activation of PDE by transducin is well understood, the role of the noncatalytic cGMP binding sites located on the catalytic subunits of PDE remains obscure. We report here for the first time the molecular basis of the noncovalent interactions between cGMP and the high affinity, noncatalytic cGMP binding sites of frog photoreceptor PDE. None of the tested cGMP analogs were able to bind with greater affinity than cGMP itself, and the noncatalytic sites were unable to bind cAMP. The major determinant for discrimination of cGMP over cAMP is in the N-1/C-6 region of the purine ring of cGMP where hydrogen bonding probably stabilizes the selective binding of cGMP. Substitutions at the C-2 position demonstrate that this region of the molecule plays a secondary but significant role in stabilizing cGMP binding to PDE through hydrogen bond interactions. The unaltered hydrogen at the C-8 position is also important for high affinity binding. A significant interaction between the binding pocket and the ribose ring of cGMP occurs at the 2'-hydroxyl position. Steric constraints were greatest in the C-8 and possibly the C-6/N-1 regions, whereas the C-2/N-3 and C-2' regions tolerated bulky substituents better. Several lines of evidence indicate that the noncatalytic site binds cGMP in the anti-conformation. The numerous noncovalent interactions between cGMP and the noncatalytic binding pocket of the photoreceptor PDE described in this study account for both the high affinity for cGMP and the high level of discrimination of cGMP from other cyclic nucleotides at the noncatalytic site.
Collapse
Affiliation(s)
- M C Hebert
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | |
Collapse
|
44
|
Nikonov S, Engheta N, Pugh EN. Kinetics of recovery of the dark-adapted salamander rod photoresponse. J Gen Physiol 1998; 111:7-37. [PMID: 9417132 PMCID: PMC1887775 DOI: 10.1085/jgp.111.1.7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1997] [Accepted: 10/29/1997] [Indexed: 02/05/2023] Open
Abstract
The kinetics of the dark-adapted salamander rod photocurrent response to flashes producing from 10 to 10(5) photoisomerizations (Phi) were investigated in normal Ringer's solution, and in a choline solution that clamps calcium near its resting level. For saturating intensities ranging from approximately 10(2) to 10(4) Phi, the recovery phases of the responses in choline were nearly invariant in form. Responses in Ringer's were similarly invariant for saturating intensities from approximately 10(3) to 10(4) Phi. In both solutions, recoveries to flashes in these intensity ranges translated on the time axis a constant amount (tauc) per e-fold increment in flash intensity, and exhibited exponentially decaying "tail phases" with time constant tauc. The difference in recovery half-times for responses in choline and Ringer's to the same saturating flash was 5-7 s. Above approximately 10(4) Phi, recoveries in both solutions were systematically slower, and translation invariance broke down. Theoretical analysis of the translation-invariant responses established that tauc must represent the time constant of inactivation of the disc-associated cascade intermediate (R*, G*, or PDE*) having the longest lifetime, and that the cGMP hydrolysis and cGMP-channel activation reactions are such as to conserve this time constant. Theoretical analysis also demonstrated that the 5-7-s shift in recovery half-times between responses in Ringer's and in choline is largely (4-6 s) accounted for by the calcium-dependent activation of guanylyl cyclase, with the residual (1-2 s) likely caused by an effect of calcium on an intermediate with a nondominant time constant. Analytical expressions for the dim-flash response in calcium clamp and Ringer's are derived, and it is shown that the difference in the responses under the two conditions can be accounted for quantitatively by cyclase activation. Application of these expressions yields an estimate of the calcium buffering capacity of the rod at rest of approximately 20, much lower than previous estimates.
Collapse
Affiliation(s)
- S Nikonov
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
45
|
Calvert PD, Ho TW, LeFebvre YM, Arshavsky VY. Onset of feedback reactions underlying vertebrate rod photoreceptor light adaptation. J Gen Physiol 1998; 111:39-51. [PMID: 9417133 PMCID: PMC1887766 DOI: 10.1085/jgp.111.1.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1997] [Accepted: 10/31/1997] [Indexed: 02/05/2023] Open
Abstract
Light adaptation in vertebrate photoreceptors is thought to be mediated through a number of biochemical feedback reactions that reduce the sensitivity of the photoreceptor and accelerate the kinetics of the photoresponse. Ca2+ plays a major role in this process by regulating several components of the phototransduction cascade. Guanylate cyclase and rhodopsin kinase are suggested to be the major sites regulated by Ca2+. Recently, it was proposed that cGMP may be another messenger of light adaptation since it is able to regulate the rate of transducin GTPase and thus the lifetime of activated cGMP phosphodiesterase. Here we report measurements of the rates at which the changes in Ca2+ and cGMP are followed by the changes in the rates of corresponding enzymatic reactions in frog rod outer segments. Our data indicate that there is a temporal hierarchy among reactions that underlie light adaptation. Guanylate cyclase activity and rhodopsin phosphorylation respond to changes in Ca2+ very rapidly, on a subsecond time scale. This enables them to accelerate the falling phase of the flash response and to modulate flash sensitivity during continuous illumination. To the contrary, the acceleration of transducin GTPase, even after significant reduction in cGMP, occurs over several tens of seconds. It is substantially delayed by the slow dissociation of cGMP from the noncatalytic sites for cGMP binding located on cGMP phosphodiesterase. Therefore, cGMP-dependent regulation of transducin GTPase is likely to occur only during prolonged bright illumination.
Collapse
Affiliation(s)
- P D Calvert
- Howe Laboratory of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Noise in the rod photoreceptors limits the ability of the dark-adapted visual system to detect dim lights. We investigated the molecular mechanism of the continuous component of the electrical dark noise in toad rods. Membrane current was recorded from intact, isolated rods or truncated, internally dialyzed rod outer segments. The continuous noise was separated from noise due to thermal activation of rhodopsin and to transitions in the cGMP-activated channels. Selectively disabling different elements of the phototransduction cascade allowed examination of their contributions to the continuous noise. These experiments indicate that the noise is generated by spontaneous activation of cGMP phosphodiesterase (PDE) through a process that does not involve transducin. The addition of recombinant gamma, the inhibitory subunit of PDE, did not suppress the noise, indicating that endogenous gamma does not completely dissociate from the catalytic subunit of PDE during spontaneous activation. Quantitative analysis of the noise provided estimates of the rate constants for spontaneous PDE activation and deactivation and the catalytic activity of a single PDE molecule in situ.
Collapse
Affiliation(s)
- F Rieke
- Department of Neurobiology, Stanford University, California 94305, USA.
| | | |
Collapse
|
47
|
Florio SK, Prusti RK, Beavo JA. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit. J Biol Chem 1996; 271:24036-47. [PMID: 8798640 DOI: 10.1074/jbc.271.39.24036] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Retinal rod and cone phosphodiesterases are oligomeric enzymes that consist of a dimeric catalytic core (alpha'2 in cones and alphabeta in rods) with inhibitory subunits (gamma) that regulate their activity. In addition, a 17-kDa protein referred to as the delta subunit co-purifies with the rod soluble phosphodiesterase and the cone phosphodiesterase. We report here partial protein sequencing of the rod delta subunit and isolation of a cDNA clone encoding it. The predicted amino acid sequence is unrelated to any other known protein. Of eight bovine tissue mRNA preparations examined by Northern analysis, the strongest delta subunit-specific signal was present in the retina. A less intense signal was seen in the brain and adrenal mRNA. In bovine retinal sections, rod delta subunit anti-peptide antibodies label rod but not cone outer segments. delta subunit, added back to washed outer segment membranes, solubilizes a large fraction of the membrane-bound phosphodiesterase, indicating that this subunit binds to the classical membrane associated phosphodiesterase. The subunit forms a tight complex with native, but not trypsin-released phosphodiesterase, suggesting that the isoprenylated carboxyl termini of the catalytic subunits may be involved in binding of the delta subunit to the phosphodiesterase holoenzyme.
Collapse
Affiliation(s)
- S K Florio
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
48
|
Abstract
Over the past decade and a half, there have been great advances in our understanding of how light is transduced into electrical signals by the retinal rod and cone photoreceptors in vertebrates. One essential feature of these sensory neurons is their ability to adapt to background illumination, which allows them to function over a broad range of light intensities. This adaptation appears to arise mostly from negative feedback on phototransduction that is mediated by calcium ions. Recent work has suggested that this feedback is fairly complex, and involves several pathways directed at different components of phototransduction. From direct measurements of these feedback pathways in rods, it is possible to evaluate their relative contributions to the overall sensitivity of the cell. At the same time, these feedback mechanisms, as currently known, appear to be sufficient for explaining the change in sensitivity of rods during adaptation to light.
Collapse
Affiliation(s)
- Y Koutalos
- Dept of Physiology, University of Colorado School of Medicine, Denver 80262, USA
| | | |
Collapse
|
49
|
Lamb TD. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci U S A 1996; 93:566-70. [PMID: 8570596 PMCID: PMC40092 DOI: 10.1073/pnas.93.2.566] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The guanine nucleotide binding protein (G protein) cascade underlying phototransduction is one of the best understood of all signaling pathways. The diffusional interactions of the proteins underlying the cascade have been analyzed, both at a macroscopic level and also in terms of the stochastic nature of the molecular contacts. In response to a single activated rhodopsin (R*) formed as a result of a single photon hit, it can be shown that molecules of the G-protein transducin will be activated approximately linearly with time. This, in turn, will cause the number of activated molecules of the effector protein (the phosphodiesterase) also to increase linearly with time. These kinetics of protein activation provide an accurate description of the time course of the rising phase of the photoreceptor's electrical response over a wide range of flash intensities. Recent estimates indicate that at room temperature each R* triggers activation of the phosphodiesterase at a rate of 1000-2000 subunits.s-1. Now that a quantitative description of the activation steps in transduction has been obtained, perhaps the greatest challenge for the future is to provide a comprehensive description of the shutoff reactions, so that a complete account of the photoreceptor's response to light can be achieved.
Collapse
Affiliation(s)
- T D Lamb
- Physiological Laboratory, University of Cambridge, United Kingdom
| |
Collapse
|
50
|
Lyubarsky A, Nikonov S, Pugh EN. The kinetics of inactivation of the rod phototransduction cascade with constant Ca2+i. J Gen Physiol 1996; 107:19-34. [PMID: 8741728 PMCID: PMC2219253 DOI: 10.1085/jgp.107.1.19] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A rich variety of mechanisms govern the inactivation of the rod phototransduction cascade. These include rhodopsin phosphorylation and subsequent binding of arrestin; modulation of rhodopsin kinase by S-modulin (recoverin); regulation of G-protein and phosphodiesterase inactivation by GTPase-activating factors; and modulation of guanylyl cyclase by a high-affinity Ca(2+)-binding protein. The dependence of several of the inactivation mechanisms on Ca2+i makes it difficult to assess the contributions of these mechanisms to the recovery kinetics in situ, where Ca2+i is dynamically modulated during the photoresponse. We recorded the circulating currents of salamander rods, the inner segments of which are held in suction electrodes in Ringer's solution. We characterized the response kinetics to flashes under two conditions: when the outer segments are in Ringer's solution, and when they are in low-Ca2+ choline solutions, which we show clamp Ca2+i very near its resting level. At T = 20-22 degrees C, the recovery phases of responses to saturating flashes producing 10(2.5)-10(4.5) photoisomerizations under both conditions are characterized by a dominant time constant, tau c = 2.4 +/- 0.4 s, the value of which is not dependent on the solution bathing the outer segment and therefore not dependent on Ca2+i. We extended a successful model of activation by incorporating into it a first-order inactivation of R*, and a first-order, simultaneous inactivation of G-protein (G*) and phosphodiesterase (PDE*). We demonstrated that the inactivation kinetics of families of responses obtained with Ca2+i clamped to rest are well characterized by this model, having one of the two inactivation time constants (tau r* or tau PDE*) equal to tau c, and the other time constant equal to 0.4 +/- 0.06 s.
Collapse
Affiliation(s)
- A Lyubarsky
- Department of Psychology, University of Pennsylvania, Philadelphia 19104-6196, USA
| | | | | |
Collapse
|