• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625217)   Today's Articles (2459)   Subscriber (49475)
For: Csanády L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. ACTA ACUST UNITED AC 2005;125:171-86. [PMID: 15657296 PMCID: PMC2217491 DOI: 10.1085/jgp.200409076] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Number Cited by Other Article(s)
1
Souza Amado de Carvalho R, Rasel MSI, Khandelwal NK, Tomasiak TM. Cryo-EM reveals a phosphorylated R-domain envelops the NBD1 catalytic domain in an ABC transporter. Life Sci Alliance 2024;7:e202402779. [PMID: 39209537 PMCID: PMC11361370 DOI: 10.26508/lsa.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]  Open
2
Infield DT, Schene ME, Galpin JD, Ahern CA. Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology. Chem Rev 2024. [PMID: 39207057 DOI: 10.1021/acs.chemrev.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
3
de Carvalho RSA, Rasel SI, Khandelwal NK, Tomasiak TM. Cryo-EM structure of the tetra-phosphorylated R-domain in Ycf1 reveals key interactions for transport regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583773. [PMID: 38496555 PMCID: PMC10942426 DOI: 10.1101/2024.03.06.583773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
4
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024;283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
5
Bolger GB. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int J Mol Sci 2023;24:17363. [PMID: 38139192 PMCID: PMC10744217 DOI: 10.3390/ijms242417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]  Open
6
Csanády L. Blue flash sheds light on the roles of individual phosphoserines in CFTR channel activation. J Gen Physiol 2023;155:e202313336. [PMID: 37017643 PMCID: PMC10082323 DOI: 10.1085/jgp.202313336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]  Open
7
Infield DT, Schene ME, Fazan FS, Galles GD, Galpin JD, Ahern CA. Real-time observation of functional specialization among phosphorylation sites in CFTR. J Gen Physiol 2023;155:e202213216. [PMID: 36695813 PMCID: PMC9930130 DOI: 10.1085/jgp.202213216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]  Open
8
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021;153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]  Open
9
Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proc Natl Acad Sci U S A 2020;117:21740-21746. [PMID: 32817533 PMCID: PMC7474675 DOI: 10.1073/pnas.2007910117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
10
Chen JH. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem 2020;295:4577-4590. [PMID: 32102849 DOI: 10.1074/jbc.ra119.008427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/25/2020] [Indexed: 01/12/2023]  Open
11
VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci Rep 2019;9:13460. [PMID: 31530897 PMCID: PMC6749054 DOI: 10.1038/s41598-019-49921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]  Open
12
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019;99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
13
Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci U S A 2018;115:12757-12762. [PMID: 30459277 PMCID: PMC6294961 DOI: 10.1073/pnas.1815287115] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]  Open
14
Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018;10:E444. [PMID: 30966479 PMCID: PMC6415274 DOI: 10.3390/polym10040444] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]  Open
15
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018;150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022]  Open
16
Molecular Structure of the Human CFTR Ion Channel. Cell 2017;169:85-95.e8. [PMID: 28340353 DOI: 10.1016/j.cell.2017.02.024] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/13/2023]
17
Oz S, Pankonien I, Belkacemi A, Flockerzi V, Klussmann E, Haase H, Dascal N. Protein kinase A regulates C-terminally truncated CaV 1.2 in Xenopus oocytes: roles of N- and C-termini of the α1C subunit. J Physiol 2017;595:3181-3202. [PMID: 28194788 DOI: 10.1113/jp274015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 11/08/2022]  Open
18
Synergy of cAMP and calcium signaling pathways in CFTR regulation. Proc Natl Acad Sci U S A 2017;114:E2086-E2095. [PMID: 28242698 PMCID: PMC5358358 DOI: 10.1073/pnas.1613546114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
19
Chin S, Hung M, Bear CE. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 2017;74:57-66. [PMID: 27722768 PMCID: PMC11107731 DOI: 10.1007/s00018-016-2388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
20
Schmidt BZ, Haaf JB, Leal T, Noel S. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clin Pharmacol 2016;8:127-140. [PMID: 27703398 PMCID: PMC5036583 DOI: 10.2147/cpaa.s100759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
21
McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016;311:L719-L733. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022]  Open
22
Zwick M, Esposito C, Hellstern M, Seelig A. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Biol Chem 2016;291:14483-98. [PMID: 27226582 DOI: 10.1074/jbc.m116.721415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/25/2023]  Open
23
Billet A, Jia Y, Jensen TJ, Hou YX, Chang XB, Riordan JR, Hanrahan JW. Potential sites of CFTR activation by tyrosine kinases. Channels (Austin) 2015;10:247-51. [PMID: 26645934 DOI: 10.1080/19336950.2015.1126010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
24
Billet A, Jia Y, Jensen T, Riordan JR, Hanrahan JW. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. FASEB J 2015;29:3945-53. [PMID: 26062600 DOI: 10.1096/fj.15-273151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 11/11/2022]
25
Wang G. Molecular Basis for Fe(III)-Independent Curcumin Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Activity. Biochemistry 2015;54:2828-40. [DOI: 10.1021/acs.biochem.5b00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
26
Wang G. Interplay between Inhibitory Ferric and Stimulatory Curcumin Regulates Phosphorylation-Dependent Human Cystic Fibrosis Transmembrane Conductance Regulator and ΔF508 Activity. Biochemistry 2015;54:1558-66. [DOI: 10.1021/bi501318h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Pasyk S, Molinski S, Ahmadi S, Ramjeesingh M, Huan LJ, Chin S, Du K, Yeger H, Taylor P, Moran MF, Bear CE. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Proteomics 2014;15:447-61. [PMID: 25330774 DOI: 10.1002/pmic.201400218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 11/11/2022]
28
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014;52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
29
Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PLoS One 2013;8:e74232. [PMID: 24058532 PMCID: PMC3776838 DOI: 10.1371/journal.pone.0074232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/29/2013] [Indexed: 01/09/2023]  Open
30
Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD. Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J 2013;280:4407-16. [PMID: 23826884 PMCID: PMC4160016 DOI: 10.1111/febs.12422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
31
Hunt JF, Wang C, Ford RC. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 2013;3:a009514. [PMID: 23378596 DOI: 10.1101/cshperspect.a009514] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
32
Hwang TC, Kirk KL. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 2013;3:a009498. [PMID: 23284076 DOI: 10.1101/cshperspect.a009498] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
33
Wang G, Duan DD. Regulation of activation and processing of the cystic fibrosis transmembrane conductance regulator (CFTR) by a complex electrostatic interaction between the regulatory domain and cytoplasmic loop 3. J Biol Chem 2012;287:40484-92. [PMID: 23060444 DOI: 10.1074/jbc.m112.360214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
34
Jih KY, Sohma Y, Hwang TC. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. ACTA ACUST UNITED AC 2012;140:347-59. [PMID: 22966014 PMCID: PMC3457689 DOI: 10.1085/jgp.201210834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
35
Jih KY, Sohma Y, Li M, Hwang TC. Identification of a novel post-hydrolytic state in CFTR gating. ACTA ACUST UNITED AC 2012;139:359-70. [PMID: 22508846 PMCID: PMC3343372 DOI: 10.1085/jgp.201210789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
36
Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Mol Biol Cell 2012;23:996-1009. [PMID: 22278744 PMCID: PMC3302758 DOI: 10.1091/mbc.e11-08-0662] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]  Open
37
Rogan MP, Stoltz DA, Hornick DB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011;139:1480-1490. [PMID: 21652558 DOI: 10.1378/chest.10-2077] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
38
Stolarczyk EI, Reiling CJ, Paumi CM. Regulation of ABC transporter function via phosphorylation by protein kinases. Curr Pharm Biotechnol 2011;12:621-35. [PMID: 21118091 DOI: 10.2174/138920111795164075] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
39
Csanády L, Vergani P, Gulyás-Kovács A, Gadsby DC. Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation. Methods Mol Biol 2011;741:443-469. [PMID: 21594801 DOI: 10.1007/978-1-61779-117-8_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
40
Wang G. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator. J Biol Chem 2010;286:2171-82. [PMID: 21059651 DOI: 10.1074/jbc.m110.145540] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
41
Wang G. State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3. J Biol Chem 2010;285:40438-47. [PMID: 20952391 DOI: 10.1074/jbc.m110.161497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
42
Loo TW, Bartlett MC, Clarke DM. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Biochemistry 2009;48:9882-90. [PMID: 19761259 DOI: 10.1021/bi9004842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
43
Moran O. Model of the cAMP activation of chloride transport by CFTR channel and the mechanism of potentiators. J Theor Biol 2009;262:73-9. [PMID: 19766125 DOI: 10.1016/j.jtbi.2009.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/12/2009] [Accepted: 08/22/2009] [Indexed: 11/30/2022]
44
King JD, Fitch AC, Lee JK, McCane JE, Mak DOD, Foskett JK, Hallows KR. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. Am J Physiol Cell Physiol 2009;297:C94-101. [PMID: 19419994 DOI: 10.1152/ajpcell.00677.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
45
Wellhauser L, Chiaw PK, Pasyk S, Li C, Ramjeesingh M, Bear CE. A Small-Molecule Modulator Interacts Directly with ΔPhe508-CFTR to Modify Its ATPase Activity and Conformational Stability. Mol Pharmacol 2009;75:1430-8. [DOI: 10.1124/mol.109.055608] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
46
Hegedus T, Aleksandrov A, Mengos A, Cui L, Jensen TJ, Riordan JR. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009;1788:1341-9. [PMID: 19328185 DOI: 10.1016/j.bbamem.2009.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/25/2009] [Accepted: 03/19/2009] [Indexed: 12/16/2022]
47
Kongsuphol P, Cassidy D, Hieke B, Treharne KJ, Schreiber R, Mehta A, Kunzelmann K. Mechanistic insight into control of CFTR by AMPK. J Biol Chem 2008;284:5645-53. [PMID: 19095655 PMCID: PMC2645823 DOI: 10.1074/jbc.m806780200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
48
Paumi CM, Chuk M, Chevelev I, Stagljar I, Michaelis S. Negative regulation of the yeast ABC transporter Ycf1p by phosphorylation within its N-terminal extension. J Biol Chem 2008;283:27079-88. [PMID: 18667437 DOI: 10.1074/jbc.m802569200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
49
Chen TY, Hwang TC. CLC-0 and CFTR: Chloride Channels Evolved From Transporters. Physiol Rev 2008;88:351-87. [DOI: 10.1152/physrev.00058.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
50
Hegedus T, Serohijos AWR, Dokholyan NV, He L, Riordan JR. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. J Mol Biol 2008;378:1052-63. [PMID: 18423665 DOI: 10.1016/j.jmb.2008.03.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 03/11/2008] [Accepted: 03/15/2008] [Indexed: 01/09/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA