1
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by mass photometry. SOFT MATTER 2024; 20:5509-5515. [PMID: 38832814 PMCID: PMC11254546 DOI: 10.1039/d3sm01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA.
| | - Nathaniel J S Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by Mass Photometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572878. [PMID: 38187562 PMCID: PMC10769409 DOI: 10.1101/2023.12.21.572878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA
| | - Nathaniel J. S. Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Nithianantham S, Iwanski MK, Gaska I, Pandey H, Bodrug T, Inagaki S, Major J, Brouhard GJ, Gheber L, Rosenfeld SS, Forth S, Hendricks AG, Al-Bassam J. The kinesin-5 tail and bipolar minifilament domains are the origin of its microtubule crosslinking and sliding activity. Mol Biol Cell 2023; 34:ar111. [PMID: 37610838 PMCID: PMC10559304 DOI: 10.1091/mbc.e23-07-0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Kinesin-5 crosslinks and slides apart microtubules to assemble, elongate, and maintain the mitotic spindle. Kinesin-5 is a tetramer, where two N-terminal motor domains are positioned at each end of the motor, and the coiled-coil stalk domains are organized into a tetrameric bundle through the bipolar assembly (BASS) domain. To dissect the function of the individual structural elements of the motor, we constructed a minimal kinesin-5 tetramer (mini-tetramer). We determined the x-ray structure of the extended, 34-nm BASS domain. Guided by these structural studies, we generated active bipolar kinesin-5 mini-tetramer motors from Drosophila melanogastor and human orthologues which are half the length of native kinesin-5. We then used these kinesin-5 mini-tetramers to examine the role of two unique structural adaptations of kinesin-5: 1) the length and flexibility of the tetramer, and 2) the C-terminal tails which interact with the motor domains to coordinate their ATPase activity. The C-terminal domain causes frequent pausing and clustering of kinesin-5. By comparing microtubule crosslinking and sliding by mini-tetramer and full-length kinesin-5, we find that both the length and flexibility of kinesin-5 and the C-terminal tails govern its ability to crosslink microtubules. Once crosslinked, stiffer mini-tetramers slide antiparallel microtubules more efficiently than full-length motors.
Collapse
Affiliation(s)
- Stanley Nithianantham
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Malina K. Iwanski
- Departments of Biology and Bioengineering, McGill University, Montreal, Quebec Canada H3A 1B1
| | - Ignas Gaska
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Himanshu Pandey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Tatyana Bodrug
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Sayaka Inagaki
- Department of Pharmacology, Mayo Clinic, Jacksonville, FL 32224
| | - Jennifer Major
- Department of Pharmacology, Mayo Clinic, Jacksonville, FL 32224
| | - Gary J. Brouhard
- Departments of Biology and Bioengineering, McGill University, Montreal, Quebec Canada H3A 1B1
| | - Larissa Gheber
- Department of Chemistry, The Ben Gurion University, Ber Sheva, Israel
| | | | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Adam G. Hendricks
- Departments of Biology and Bioengineering, McGill University, Montreal, Quebec Canada H3A 1B1
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
4
|
Ray S, Zhang J, Dogic Z. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2023; 130:238301. [PMID: 37354394 DOI: 10.1103/physrevlett.130.238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023]
Abstract
We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with dynamics and polarization of nearby +1/2 topological defects. The chirality of defect polarities and the active nematic texture around the inclusion correlate with the inclusion's instantaneous rotation rate. Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting ordered motion from their inherently chaotic motion.
Collapse
Affiliation(s)
- Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Jie Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Joshi C, Ray S, Lemma LM, Varghese M, Sharp G, Dogic Z, Baskaran A, Hagan MF. Data-Driven Discovery of Active Nematic Hydrodynamics. PHYSICAL REVIEW LETTERS 2022; 129:258001. [PMID: 36608242 DOI: 10.1103/physrevlett.129.258001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Active nematics can be modeled using phenomenological continuum theories that account for the dynamics of the nematic director and fluid velocity through partial differential equations (PDEs). While these models provide a statistical description of the experiments, the relevant terms in the PDEs and their parameters are usually identified indirectly. We adapt a recently developed method to automatically identify optimal continuum models for active nematics directly from spatiotemporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After extensive benchmarking, we apply the method to experiments with microtubule-based active nematics, finding a surprisingly minimal description of the system. Our approach can be generalized to gain insights into active gels, microswimmers, and diverse other experimental active matter systems.
Collapse
Affiliation(s)
- Chaitanya Joshi
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 USA
| | - Graham Sharp
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
6
|
Nasirimarekani V, Subramani S, Herzog S, Vilfan A, Guido I. Active Bending of Disordered Microtubule Bundles by Kinesin Motors. ACS OMEGA 2022; 7:43820-43828. [PMID: 36506136 PMCID: PMC9730755 DOI: 10.1021/acsomega.2c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Active networks of biopolymers and motor proteins in vitro self-organize and exhibit dynamic structures on length scales much larger than the interacting individual components of which they consist. How the dynamics is related across the range of length scales is still an open question. Here, we experimentally characterize and quantify the dynamic behavior of isolated microtubule bundles that bend due to the activity of motor proteins. At the motor level, we track and describe the motion features of kinesin-1 clusters stepping within the bending bundles. We find that there is a separation of length scales by at least 1 order of magnitude. At a run length of <1 μm, kinesin-1 activity leads to a bundle curvature in the range of tens of micrometers. We propose that the distribution of microtubule polarity plays a crucial role in the bending dynamics that we observe at both the bundle and motor levels. Our results contribute to the understanding of fundamental principles of vital intracellular processes by disentangling the multiscale dynamics in out-of-equilibrium active networks composed of cytoskeletal elements.
Collapse
Affiliation(s)
- Vahid Nasirimarekani
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
| | - Smrithika Subramani
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Department
of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin53211, United States
| | - Sebastian Herzog
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Department
for Computational Neuroscience, Third Institute of Physics −
Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077Göttingen, Germany
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
- Jožef
Stefan Institute, Jamova
39, 1000Ljubljana, Slovenia
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077Göttingen, Germany
| |
Collapse
|
7
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
8
|
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci U S A 2022; 119:2108046119. [PMID: 35173049 PMCID: PMC8872730 DOI: 10.1073/pnas.2108046119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Kinesin-14 motors represent an essential class of molecular motors that bind to microtubules and then walk toward the microtubule minus-end. However, whether these motors can interact with growing plus-ends of microtubules to impact the lengthening of microtubules remains unknown. We found that Kinesin-14 motors could bind to a protein that resides at growing microtubule plus-ends and then pull this protein away from the growing end. This interaction acted to disrupt microtubule growth and decrease microtubule lengths in cells, likely by exerting minus-end–directed forces at the microtubule tip to alter the configuration of the growing microtubule plus-end. This work demonstrates general principles for the diverse roles that force-generating molecular motors can play in regulating cellular processes. Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end–directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end–directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end–directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end–directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.
Collapse
|
9
|
Guido I. Spontaneously Beating Biomimetic Structures. Methods Mol Biol 2022; 2430:205-218. [PMID: 35476334 DOI: 10.1007/978-1-0716-1983-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The propulsion of motile cells such as sperms and the transport of fluids on cell surfaces rely on oscillatory bending of cellular appendages that can perform periodic oscillations. These structures are flagella and cilia. Their beating is driven by the interaction between microtubules and motor proteins and the mechanism regulating this is still a puzzle. One approach to address this issue is the assembling of synthetic minimal systems by using natural building blocks, e.g., microtubules and kinesin motors, which undergo persistent oscillation in the presence of ATP. An example of an autonomous molecular system is reported in this chapter. It dynamically self-organizes through its elasticity and the interaction with the environment represented by the active forces exerted by motor proteins. The resulting motion resembles the beating of sperm flagella. Assembling such minimal systems able to mimic the behavior of complex biological structures might help to unveil basic mechanisms underlying the beating of natural cilia and flagella.
Collapse
Affiliation(s)
- Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
10
|
Senoussi A, Galas JC, Estevez-Torres A. Programmed mechano-chemical coupling in reaction-diffusion active matter. SCIENCE ADVANCES 2021; 7:eabi9865. [PMID: 34919433 PMCID: PMC8682988 DOI: 10.1126/sciadv.abi9865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Embryo morphogenesis involves a complex combination of self-organization mechanisms that generate a great diversity of patterns. However, classical in vitro patterning experiments explore only one self-organization mechanism at a time, thus missing coupling effects. Here, we conjugate two major out-of-equilibrium patterning mechanisms—reaction-diffusion and active matter—by integrating dissipative DNA/enzyme reaction networks within an active gel composed of cytoskeletal motors and filaments. We show that the strength of the flow generated by the active gel controls the mechano-chemical coupling between the two subsystems. This property was used to engineer a synthetic material where contractions trigger chemical reaction networks both in time and space, thus mimicking key aspects of the polarization mechanism observed in C. elegans oocytes. We anticipate that reaction-diffusion active matter will promote the investigation of mechano-chemical transduction and the design of new materials with life-like properties.
Collapse
|
11
|
Lemma LM, Norton MM, Tayar AM, DeCamp SJ, Aghvami SA, Fraden S, Hagan MF, Dogic Z. Multiscale Microtubule Dynamics in Active Nematics. PHYSICAL REVIEW LETTERS 2021; 127:148001. [PMID: 34652175 DOI: 10.1103/physrevlett.127.148001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
In microtubule-based active nematics, motor-driven extensile motion of microtubule bundles powers chaotic large-scale dynamics. We quantify the interfilament sliding motion both in isolated bundles and in a dense active nematic. The extension speed of an isolated microtubule pair is comparable to the molecular motor stepping speed. In contrast, the net extension in dense 2D active nematics is significantly slower; the interfilament sliding speeds are widely distributed about the average and the filaments exhibit both contractile and extensile relative motion. These measurements highlight the challenge of connecting the extension rate of isolated bundles to the multimotor and multifilament interactions present in a dense 2D active nematic. They also provide quantitative data that is essential for building multiscale models.
Collapse
Affiliation(s)
- Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael M Norton
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Alexandra M Tayar
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Stephen J DeCamp
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
12
|
Nasirimarekani V, Strübing T, Vilfan A, Guido I. Tuning the Properties of Active Microtubule Networks by Depletion Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7919-7927. [PMID: 34132558 PMCID: PMC8264947 DOI: 10.1021/acs.langmuir.1c00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/05/2021] [Indexed: 05/12/2023]
Abstract
Suspensions of microtubules and nonadsorbing particles form thick and long bundles due to depletion forces. Such interactions act at the nanometer scale and define the structural and dynamical properties of the resulting networks. In this study, we analyze the depletion forces exerted by two types of nonadsorbing particles, namely, the polymer, poly(ethylene glycol) (PEG), and the block copolymer, Pluronic. We characterize their effects both in passive and active networks by adding motor proteins to the suspensions. By exploiting its bundling effect via entropic forces, we observed that PEG generates a network with thick structures showing a nematic order and larger mesh size. On the other hand, Pluronic builds up a much denser gel-like network without a recognizable mesh structure. This difference is also reflected in the network activity. PEG networks show moderate contraction in lateral directions while Pluronic networks exhibit faster and isotropic contraction. Interestingly, by mixing the two nonadsorbing polymers in different ratios, we observed that the system showed a behavior that exhibited properties of both agents, leading to a robust and fast responsive structure compared to the single-depletant networks. In conclusion, we show how passive osmotic compression modifies the distribution of biopolymers. Its combination with active motors results in a new active material with potential for nanotechnological applications.
Collapse
Affiliation(s)
- Vahid Nasirimarekani
- University
of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Tobias Strübing
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Colen J, Han M, Zhang R, Redford SA, Lemma LM, Morgan L, Ruijgrok PV, Adkins R, Bryant Z, Dogic Z, Gardel ML, de Pablo JJ, Vitelli V. Machine learning active-nematic hydrodynamics. Proc Natl Acad Sci U S A 2021; 118:e2016708118. [PMID: 33653956 PMCID: PMC7958379 DOI: 10.1073/pnas.2016708118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics.
Collapse
Affiliation(s)
- Jonathan Colen
- Department of Physics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Ming Han
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Rui Zhang
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, People's Republic of China
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, MA 02454
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Link Morgan
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Raymond Adkins
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University Medical Center, Stanford, CA 94305
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Margaret L Gardel
- Department of Physics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Juan J de Pablo
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637;
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439
| | - Vincenzo Vitelli
- Department of Physics, University of Chicago, Chicago, IL 60637;
- James Franck Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
14
|
Zhou Z, Joshi C, Liu R, Norton MM, Lemma L, Dogic Z, Hagan MF, Fraden S, Hong P. Machine learning forecasting of active nematics. SOFT MATTER 2021; 17:738-747. [PMID: 33220675 DOI: 10.1039/d0sm01316a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.
Collapse
|
15
|
Watson JL, Aich S, Oller-Salvia B, Drabek AA, Blacklow SC, Chin J, Derivery E. High-efficacy subcellular micropatterning of proteins using fibrinogen anchors. J Cell Biol 2021; 220:211662. [PMID: 33416860 PMCID: PMC7802367 DOI: 10.1083/jcb.202009063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Protein micropatterning allows proteins to be precisely deposited onto a substrate of choice and is now routinely used in cell biology and in vitro reconstitution. However, drawbacks of current technology are that micropatterning efficiency can be variable between proteins and that proteins may lose activity on the micropatterns. Here, we describe a general method to enable micropatterning of virtually any protein at high specificity and homogeneity while maintaining its activity. Our method is based on an anchor that micropatterns well, fibrinogen, which we functionalized to bind to common purification tags. This enhances micropatterning on various substrates, facilitates multiplexed micropatterning, and dramatically improves the on-pattern activity of fragile proteins like molecular motors. Furthermore, it enhances the micropatterning of hard-to-micropattern cells. Last, this method enables subcellular micropatterning, whereby complex micropatterns simultaneously control cell shape and the distribution of transmembrane receptors within that cell. Altogether, these results open new avenues for cell biology.
Collapse
Affiliation(s)
- Joseph L. Watson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Samya Aich
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew A. Drabek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Jason Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emmanuel Derivery
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK,Correspondence to Emmanuel Derivery:
| |
Collapse
|
16
|
Alberdi L, Vergnes A, Manneville JB, Tembo DL, Fang Z, Zhao Y, Schroeder N, Dumont A, Lagier M, Bassereau P, Redondo-Morata L, Gorvel JP, Méresse S. Regulation of kinesin-1 activity by the Salmonella enterica effectors PipB2 and SifA. J Cell Sci 2020; 133:133/9/jcs239863. [PMID: 32409568 DOI: 10.1242/jcs.239863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, Salmonella effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments. In particular, they allow the formation of tubules from the vacuole and their extension along the microtubule cytoskeleton, and thus promote membrane exchanges and nutrient supply. We have developed in vitro and in cellulo assays to better understand the specific role played by these two effectors in the recruitment and regulation of kinesin-1. Our results reveal a specific interaction between the two effectors and indicate that, contrary to what studies on infected cells suggested, interaction with PipB2 is sufficient to relieve the autoinhibition of kinesin-1. Finally, they suggest the involvement of other Salmonella effectors in the control of the activity of this molecular motor.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | | | - Ziyan Fang
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yaya Zhao
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Nina Schroeder
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Dumont
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Margaux Lagier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 1 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
17
|
Senoussi A, Kashida S, Voituriez R, Galas JC, Maitra A, Estevez-Torres A. Tunable corrugated patterns in an active nematic sheet. Proc Natl Acad Sci U S A 2019; 116:22464-22470. [PMID: 31611385 PMCID: PMC6842637 DOI: 10.1073/pnas.1912223116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Active matter locally converts chemical energy into mechanical work and, for this reason, it provides new mechanisms of pattern formation. In particular, active nematic fluids made of protein motors and filaments are far-from-equilibrium systems that may exhibit spontaneous motion, leading to actively driven spatiotemporally chaotic states in 2 and 3 dimensions and coherent flows in 3 dimensions (3D). Although these dynamic flows reveal a characteristic length scale resulting from the interplay between active forcing and passive restoring forces, the observation of static and large-scale spatial patterns in active nematic fluids has remained elusive. In this work, we demonstrate that a 3D solution of kinesin motors and microtubule filaments spontaneously forms a 2D free-standing nematic active sheet that actively buckles out of plane into a centimeter-sized periodic corrugated sheet that is stable for several days at low activity. Importantly, the nematic orientational field does not display topological defects in the corrugated state and the wavelength and stability of the corrugations are controlled by the motor concentration, in agreement with a hydrodynamic theory. At higher activities these patterns are transient and chaotic flows are observed at longer times. Our results underline the importance of both passive and active forces in shaping active matter and demonstrate that a spontaneously flowing active fluid can be sculpted into a static material through an active mechanism.
Collapse
Affiliation(s)
- Anis Senoussi
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Shunnichi Kashida
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Raphael Voituriez
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université and CNRS, F-75005 Paris, France
| | | | - Ananyo Maitra
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France;
| | | |
Collapse
|
18
|
Vilfan A, Subramani S, Bodenschatz E, Golestanian R, Guido I. Flagella-like Beating of a Single Microtubule. NANO LETTERS 2019; 19:3359-3363. [PMID: 30998020 PMCID: PMC6727605 DOI: 10.1021/acs.nanolett.9b01091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Kinesin motors can induce a buckling instability in a microtubule with a fixed minus end. Here we show that by modifying the surface with a protein-repellent functionalization and using clusters of kinesin motors, the microtubule can exhibit persistent oscillatory motion resembling the beating of sperm flagella. The observed period is of the order of 1 min. From the experimental images we theoretically determine a distribution of motor forces that explains the observed shapes using a maximum likelihood approach. A good agreement is achieved with a small number of motor clusters acting simultaneously on a microtubule. The tangential forces exerted by a cluster are mostly in the range 0-8 pN toward the microtubule minus end, indicating the action of 1 or 2 kinesin motors. The lateral forces are distributed symmetrically and mainly below 10 pN, while the lateral velocity has a strong peak around zero. Unlike well-known models for flapping filaments, kinesins are found to have a strong "pinning" effect on the beating filaments. Our results suggest new strategies to utilize molecular motors in dynamic roles that depend sensitively on the stress built-up in the system.
Collapse
Affiliation(s)
- Andrej Vilfan
- Max Planck Institute
for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef
Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Smrithika Subramani
- Max Planck Institute
for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Eberhard Bodenschatz
- Max Planck Institute
for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Institute
for Dynamics of Complex Systems, Georg-August-University
Göttingen, 37073 Göttingen, Germany
- Laboratory
of Atomic and Solid-State Physics, Cornell
University, Ithaca, New York 14853, United
States
| | - Ramin Golestanian
- Max Planck Institute
for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf
Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Isabella Guido
- Max Planck Institute
for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Phone: +49 (0)551 5176310. Fax: +49 (0)551 5176302. E-mail:
| |
Collapse
|
19
|
Lemma LM, DeCamp SJ, You Z, Giomi L, Dogic Z. Statistical properties of autonomous flows in 2D active nematics. SOFT MATTER 2019; 15:3264-3272. [PMID: 30920553 PMCID: PMC6924514 DOI: 10.1039/c8sm01877d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We study the dynamics of a tunable 2D active nematic liquid crystal composed of microtubules and kinesin motors confined to an oil-water interface. Kinesin motors continuously inject mechanical energy into the system through ATP hydrolysis, powering the relative microscopic sliding of adjacent microtubules, which in turn generates macroscale autonomous flows and chaotic dynamics. We use particle image velocimetry to quantify two-dimensional flows of active nematics and extract their statistical properties. In agreement with the hydrodynamic theory, we find that the vortex areas comprising the chaotic flows are exponentially distributed, which allows us to extract the characteristic system length scale. We probe the dependence of this length scale on the ATP concentration, which is the experimental knob that tunes the magnitude of the active stress. Our data suggest a possible mapping between the ATP concentration and the active stress that is based on the Michaelis-Menten kinetics that governs the motion of individual kinesin motors.
Collapse
Affiliation(s)
- Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
20
|
Guillamat P, Kos Ž, Hardoüin J, Ignés-Mullol J, Ravnik M, Sagués F. Active nematic emulsions. SCIENCE ADVANCES 2018; 4:eaao1470. [PMID: 29740605 PMCID: PMC5938235 DOI: 10.1126/sciadv.aao1470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/16/2018] [Indexed: 05/11/2023]
Abstract
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.
Collapse
Affiliation(s)
- Pau Guillamat
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Jérôme Hardoüin
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
- Corresponding author.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- Institute of Nanoscience and Nanotechnology, IN2UB, University de Barcelona, Barcelona, Catalonia
| |
Collapse
|
21
|
Šarlah A, Vilfan A. Minimum requirements for motility of a processive motor protein. PLoS One 2017; 12:e0185948. [PMID: 29016643 PMCID: PMC5634618 DOI: 10.1371/journal.pone.0185948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Motor proteins generally have a two-way coupling between the ATP hydrolysis site, the lever movement and the binding affinity for their track, which allows them to perform efficient stepping. Here we explore the minimal requirements for directed motility based on simpler schemes in which the binding/unbinding from the track is decoupled from the ATPase cycle. We show that a directed power stroke alone is not sufficient for motility, but combined with an asymmetry in force-induced unbinding rates it can generate stepping. The energetic efficiency of such stepping is limited to approximately 20%. We conclude that the allosteric coupling between the ATP hydrolysis and the track binding is not strictly necessary for motility, but it greatly improves its efficiency.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (AŠ); (AV)
| | - Andrej Vilfan
- J. Stefan Institute, Ljubljana, Slovenia
- * E-mail: (AŠ); (AV)
| |
Collapse
|
22
|
Guillamat P, Ignés-Mullol J, Sagués F. Taming active turbulence with patterned soft interfaces. Nat Commun 2017; 8:564. [PMID: 28916801 PMCID: PMC5601458 DOI: 10.1038/s41467-017-00617-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales. Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
Collapse
Affiliation(s)
- P Guillamat
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - J Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - F Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.
| |
Collapse
|
23
|
Abstract
Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix.
Collapse
|
24
|
Mieck C, Molodtsov MI, Drzewicka K, van der Vaart B, Litos G, Schmauss G, Vaziri A, Westermann S. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3. eLife 2015; 4. [PMID: 25626168 PMCID: PMC4338441 DOI: 10.7554/elife.04489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors, we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a 'foothold' that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus.
Collapse
Affiliation(s)
| | | | | | | | - Gabriele Litos
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Modular aspects of kinesin force generation machinery. Biophys J 2013; 104:1969-78. [PMID: 23663840 DOI: 10.1016/j.bpj.2013.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022] Open
Abstract
The motor head of kinesin carries out microtubule binding, ATP hydrolysis, and force generation. Despite a high level of sequence and structural conservation, subtle variations in subdomains of the motor head determine family-specific properties. In particular, both Kinesin-1 (Kin-1) and Kinesin-5 (Kin-5) walk processively to the microtubule plus-end, yet show distinct motility characteristics suitable for their functions. We studied chimeric Kin-1/Kin-5 constructs with a combination of single molecule motility assays and molecular dynamics simulations to demonstrate that Kin-5 possesses a force-generating element similar to Kin-1, i.e., the cover-neck bundle. Furthermore, the Kin-5 neck linker makes additional contacts with the core of the motor head via loop L13, which putatively compensates for the shorter cover-neck bundle of Kin-5. Our results indicate that Kin-1 is mechanically optimized for individual cargo transport, whereas Kin-5 does not necessarily maximize its mechanical performance. Its biochemical rates and enhanced force sensitivity may instead be beneficial for operation in a group of motors. Such variations in subdomains would be a strategy for achieving diversity in motility with the conserved motor head.
Collapse
|
26
|
Joshi M, Duan D, Drew D, Jia Z, Davis D, Campbell RL, Allingham JS. Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the C terminus of the Vik1 subunit. J Biol Chem 2013; 288:36957-70. [PMID: 24240171 DOI: 10.1074/jbc.m113.492264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Force production by kinesins has been linked to structural rearrangements of the N and C termini of their motor domain upon nucleotide binding. In recent crystal structures, the Kar3-associated protein Vik1 shows unexpected homology to these conformational states even though it lacks a nucleotide-binding site. This conservation infers a degree of commonality in the function of the N- and C-terminal regions during the mechanochemical cycle of all kinesins and kinesin-related proteins. We tested this inference by examining the functional effects on Kar3Vik1 of mutating or deleting residues in Vik1 that are involved in stabilizing the C terminus against the core and N terminus of the Vik1 motor homology domain (MHD). Point mutations at two moderately conserved residues near the Vik1 C terminus impaired microtubule gliding and microtubule-stimulated ATP turnover by Kar3Vik1. Deletion of the seven C-terminal residues inhibited Kar3Vik1 motility much more drastically. Interestingly, none of the point mutants seemed to perturb the ability of Kar3Vik1 to bind microtubules, whereas the C-terminal truncation mutant did. Molecular dynamics simulations of these C-terminal mutants showed distinct root mean square fluctuations in the N-terminal region of the Vik1 MHD that connects it to Kar3. Here, the degree of motion in the N-terminal portion of Vik1 highly correlated with that in the C terminus. These observations suggest that the N and C termini of the Vik1 MHD form a discrete folding motif that is part of a communication pathway to the nucleotide-binding site of Kar3.
Collapse
Affiliation(s)
- Monika Joshi
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang WJ, Murray JW, Wolkoff AW. Oatp1a1 requires PDZK1 to traffic to the plasma membrane by selective recruitment of microtubule-based motor proteins. Drug Metab Dispos 2013; 42:62-9. [PMID: 24115750 DOI: 10.1124/dmd.113.054536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies identified a family of organic anion transport proteins (OATPs), many of which have C-terminal PDZ binding consensus sequences. In particular, the C-terminal four amino acids of Oatp1a1, a transporter on rat and mouse hepatocytes, comprise a consensus binding site for PDZK1. In PDZK1 knockout mice and in transfected cells where PDZK1 expression was knocked down, Oatp1a1 accumulates in intracellular vesicles. The present study tests the hypothesis that Oatp1a1 traffics to and from the cell surface in vesicles along microtubules, and that PDZK1 guides recruitment of specific motors to these vesicles. Oatp1a1-containing vesicles were prepared from wild-type and PDZK1 knockout mice. As seen by immunofluorescence, kinesin-1, a microtubule plus-end directed motor, was largely associated with vesicles from wild-type mouse liver, whereas dynein, a minus-end directed motor, was largely associated with vesicles from PDZK1 knockout mouse liver. Quantification of motility on directionally marked microtubules following addition of 50 µM ATP showed that wild-type vesicles moved equally toward the plus and minus ends whereas PDZK1 knockout vesicles moved predominantly toward the minus end, consistent with net movement toward the cell interior. These studies provide a novel mechanism by which PDZK1 regulates intracellular trafficking of Oatp1a1 by recruiting specific motors to Oatp1a1-containing vesicles. In the absence of PDZK1, Oatp1a1-containing vesicles cannot recruit kinesin-1 and associate with dynein as a predominant minus-end directed motor. Whether this is a result of direct interaction of the Oatp1a1 cytoplasmic domain with dynein or with a dynein-containing protein complex remains to be established.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York
| | | | | |
Collapse
|
28
|
Shu YG, Zhang XH, Ou-Yang ZC, Li M. The neck linker of kinesin 1 seems optimally designed to approach the largest stepping velocity: a simulation study of an ideal model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:035105. [PMID: 22173184 DOI: 10.1088/0953-8984/24/3/035105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The neck linker is widely believed to play a critical role in the hand-over-hand walking of conventional kinesin 1. Experiments have shown that change of the neck linker length will significantly change the stepping velocity of the motor. In this paper, we studied this length effect based on a highly simplified chemically powered ratchet model. In this model, we assume that the chemical steps (ATP hydrolysis, ADP and P(i) release, ATP binding, neck linker docking) are fast enough under conditions far from equilibrium and the mechanical steps (detachment, diffusional search and re-attachment of the free head) are rate-limiting in kinesin walking. According to this model, and regarding the neck linker as a worm-like-chain polypeptide, we can calculate the steady state stepping velocity of the motor for different neck linker lengths. Our results show, under the actual values of binding energy between kinesin head and microtubule (~15k(B)T) and the persistence length of neck linker (~0.5 nm), that there is an optimal neck linker length (~14-16 a.a.) corresponding to the maximal velocity, which implies that the length of the wild-type neck linker (~15 a.a.) might be optimally designed for kinesin 1 to approach the largest stepping velocity.
Collapse
Affiliation(s)
- Yao-Gen Shu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Gennerich A, Vale RD. Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 2009; 21:59-67. [PMID: 19179063 DOI: 10.1016/j.ceb.2008.12.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/22/2022]
Abstract
Molecular motors drive key biological processes such as cell division, intracellular organelle transport, and sperm propulsion and defects in motor function can give rise to various human diseases. Two dimeric microtubule-based motor proteins, kinesin-1 and cytoplasmic dynein can take over one hundred steps without detaching from the track. In this review, we discuss how these processive motors coordinate the activities of their two identical motor domains so that they can walk along microtubules.
Collapse
Affiliation(s)
- Arne Gennerich
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2200, USA
| | | |
Collapse
|
30
|
Liepelt S, Lipowsky R. Operation modes of the molecular motor kinesin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011917. [PMID: 19257079 DOI: 10.1103/physreve.79.011917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/16/2008] [Indexed: 05/27/2023]
Abstract
The velocity and the adenosine triphosphate (ATP) hydrolysis rate of the molecular motor kinesin are studied using a general network representation for the motor, which incorporates both the energetics of ATP hydrolysis and the experimentally observed separation of time scales between chemical and mechanical transitions. Both the motor velocity and its hydrolysis rate can be expressed as superpositions of excess fluxes for the directed cycles (or dicycles) of the network. The sign of these dicycle excess fluxes depends only on two thermodynamic control parameters as provided by the load force F and the chemical energy Deltamicro released during the hydrolysis of a single ATP molecule. In contrast, both the motor velocity and its hydrolysis rate depend, in general, on the load force F as well as on the three concentrations of ATP, adenosine diphosphate (ADP), and inorganic phosphate (P), separately. Thus, in order to represent the different operation modes of the motor in the (F,Deltamicro) plane, one has to specify two concentrations such as the product concentrations [ADP] and [P]. As a result, we find four different operation modes corresponding to the four possible combinations of ATP hydrolysis or synthesis with forward or backward mechanical steps. Our operation diagram implies in particular that backward steps are coupled to ATP hydrolysis for sufficiently large ATP concentrations, but to ATP synthesis for sufficiently large ADP and/or P concentrations.
Collapse
Affiliation(s)
- S Liepelt
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
31
|
Thoresen T, Gelles J. Processive movement by a kinesin heterodimer with an inactivating mutation in one head. Biochemistry 2008; 47:9514-21. [PMID: 18702529 PMCID: PMC2586147 DOI: 10.1021/bi800747e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50% of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other.
Collapse
Affiliation(s)
- Todd Thoresen
- Biochemistry Department and Biophysics & Structural Biology Graduate Program, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
32
|
Guydosh NR, Block SM. Not so lame after all: kinesin still walks with a hobbled head. ACTA ACUST UNITED AC 2008; 130:441-4. [PMID: 17968023 PMCID: PMC2151672 DOI: 10.1085/jgp.200709902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Subramanian R, Gelles J. Two Distinct Modes of Processive Kinesin Movement in Mixtures of ATP and AMP-PNP. J Biophys Biochem Cytol 2007. [DOI: 10.1083/jcb1794oia11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|