1
|
Mahmood A, Otruba Z, Weisgerber AW, Palay MD, Nguyen MT, Bills BL, Knowles MK. Exosome secretion kinetics are controlled by temperature. Biophys J 2023; 122:1301-1314. [PMID: 36814381 PMCID: PMC10111348 DOI: 10.1016/j.bpj.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
When multivesicular endosomes (MVEs) fuse with the plasma membrane, exosomes are released into the extracellular space where they can affect other cells. The ability of exosomes to regulate cells nearby or further away depends on whether they remain attached to the secreting cell membrane. The regulation and kinetics of exosome secretion are not well characterized, but probes for directly imaging single MVE fusion events have allowed for visualization of the fusion and release process. In particular, the design of an exosome marker with a pH-sensitive dye in the middle of the tetraspanin protein CD63 has facilitated studies of individual MVE fusion events. Using TIRF microscopy, single fusion events were measured in A549 cells held at 23-37°C and events were identified using an automated detection algorithm. Stable docking precedes fusion almost always and a decrease in temperature was accompanied by decrease in the rate of content loss and in the frequency of fusion events. The loss of CD63-pHluorin fluorescence was measured at fusion sites and fit with a single or double exponential decay, with most events requiring two components and a plateau because the loss of fluorescence was typically incomplete. To interpret the kinetics, fusion events were simulated as a localized release of tethered/untethered exosomes coupled with the membrane diffusion of CD63. The experimentally observed decay required three components in the simulation: 1) free exosomes, 2) CD63 membrane diffusion from the endosomal membrane into the plasma membrane, and 3) tethered exosomes. Modeling with slow diffusion of the tethered exosomes (0.0015-0.004 μm2/s) accurately fits the experimental data for all temperatures. However, simulating with immobile tethers or the absence of tethers fails to replicate the data. Our model suggests that exosome release from the fusion site is incomplete due to postfusion, membrane attachment.
Collapse
Affiliation(s)
- Anarkali Mahmood
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Max D Palay
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Melodie T Nguyen
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado
| | - Broderick L Bills
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado; Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado.
| |
Collapse
|
2
|
Chen PC, Wang CT. Rat Pheochromocytoma PC12 Cells in Culture. Methods Mol Biol 2023; 2565:3-15. [PMID: 36205883 DOI: 10.1007/978-1-0716-2671-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PC12 cells serve as a secretory cell model, especially suitable for studying the molecular mechanisms underlying fusion pore kinetics in regulated exocytosis of dense-core vesicles (DCVs). In this chapter, we describe a series of PC12 cell culture procedures optimized for real-time functional assays such as single-vesicle amperometry. In addition, these conditions have been widely used for single-cell biochemical assays such as the proximity ligation assay with immunostaining.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
4
|
Manca F, Pincet F, Truskinovsky L, Rothman JE, Foret L, Caruel M. SNARE machinery is optimized for ultrafast fusion. Proc Natl Acad Sci U S A 2019; 116:2435-2442. [PMID: 30700546 PMCID: PMC6377469 DOI: 10.1073/pnas.1820394116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
SNARE proteins zipper to form complexes (SNAREpins) that power vesicle fusion with target membranes in a variety of biological processes. A single SNAREpin takes about 1 s to fuse two bilayers, yet a handful can ensure release of neurotransmitters from synaptic vesicles much faster: in a 10th of a millisecond. We propose that, similar to the case of muscle myosins, the ultrafast fusion results from cooperative action of many SNAREpins. The coupling originates from mechanical interactions induced by confining scaffolds. Each SNAREpin is known to have enough energy to overcome the fusion barrier of 25-[Formula: see text]; however, the fusion barrier only becomes relevant when the SNAREpins are nearly completely zippered, and from this state, each SNAREpin can deliver only a small fraction of this energy as mechanical work. Therefore, they have to act cooperatively, and we show that at least three of them are needed to ensure fusion in less than a millisecond. However, to reach the prefusion state collectively, starting from the experimentally observed half-zippered metastable state, the SNAREpins have to mechanically synchronize, which takes more time as the number of SNAREpins increases. Incorporating this somewhat counterintuitive idea in a simple coarse-grained model results in the prediction that there should be an optimum number of SNAREpins for submillisecond fusion: three to six over a wide range of parameters. Interestingly, in situ cryoelectron microscope tomography has very recently shown that exactly six SNAREpins participate in the fusion of each synaptic vesicle. This number is in the range predicted by our theory.
Collapse
Affiliation(s)
- Fabio Manca
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Lev Truskinovsky
- Physique et Mécanique des Milieux Hétérogènes, CNRS, Ecole Supérieure de Physique et de Chimie Industrielles, Université PSL, 75231 Paris Cedex 05, France
| | - James E Rothman
- Department of Cell Biology, Yale University, New Haven, CT 06520;
- Department of Experimental Epilepsy, Institute of Neurology, University College London, London WC1E 6BT, United Kingdom
| | - Lionel Foret
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Matthieu Caruel
- Modélisation et Simulation Multi-Echelle, CNRS, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| |
Collapse
|
5
|
Abbineni PS, Axelrod D, Holz RW. Visualization of expanding fusion pores in secretory cells. J Gen Physiol 2018; 150:1640-1646. [PMID: 30470717 PMCID: PMC6279363 DOI: 10.1085/jgp.201812186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
Abstract
Abbineni et al. examine recent imaging work on fusion pores and discuss the dynamics of PI-4,5-P2 accumulation on granule membranes.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI .,Department of Physics and LSA Biophysics, University of Michigan Medical School, Ann Arbor, MI
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
6
|
Chanaday NL, Kavalali ET. Time course and temperature dependence of synaptic vesicle endocytosis. FEBS Lett 2018; 592:3606-3614. [DOI: 10.1002/1873-3468.13268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| | - Ege T. Kavalali
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| |
Collapse
|
7
|
Zhu YC, Cooper RL. Cold Exposure Effects on Cardiac Function and Synaptic Transmission at the Neuromuscular Junction in Invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijzr.2018.49.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Wang J, Richards DA. The actin binding protein scinderin acts in PC12 cells to tether dense-core vesicles prior to secretion. Mol Cell Neurosci 2017; 85:12-18. [PMID: 28823945 DOI: 10.1016/j.mcn.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of the control of vesicle motion from within a secretory cell to the site of exocytosis remains incomplete. In this work, we have used total internal reflection (TIRF) microscopy to examine the mobility of secretory vesicles at the plasma membrane. Under resting conditions, we found vesicles showed little lateral mobility. Anchoring of vesicles in this membrane proximal compartment could be disrupted with latrunculin A, indicating an apparent actin dependent process. A candidate intermediary between vesicles and the actin skeleton is the actin binding protein scinderin. Co-transfection of an shRNA construct against scinderin blocked secretion, and also increased the mobility of vesicles in the membrane-proximal section of the cell, indicating a dual role for scinderin in secretion; tethering vesicles to the cytoskeleton, as well as liberating them following stimulation through the previously described calcium dependent actin severing activity. Analysis of lipid dependence indicates that scinderin exhibits calcium dependent binding to phosphatidyl-inositol monophosphate, providing a possible mechanism for vesicle binding.
Collapse
Affiliation(s)
- J Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - D A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, 1 College Circle, Bangor, ME 04401, United States.
| |
Collapse
|
9
|
Entropic forces drive self-organization and membrane fusion by SNARE proteins. Proc Natl Acad Sci U S A 2017; 114:5455-5460. [PMID: 28490503 DOI: 10.1073/pnas.1611506114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric-electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release.
Collapse
|
10
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
11
|
El Hachmane MF, Komai AM, Olofsson CS. Cooling reduces cAMP-stimulated exocytosis and adiponectin secretion at a Ca2+-dependent step in 3T3-L1 adipocytes. PLoS One 2015; 10:e0119530. [PMID: 25793888 PMCID: PMC4368704 DOI: 10.1371/journal.pone.0119530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of temperature on white adipocyte exocytosis (measured as increase in membrane capacitance) and short-term adiponectin secretion with the aim to elucidate mechanisms important in regulation of white adipocyte stimulus-secretion coupling. Exocytosis stimulated by cAMP (included in the pipette solution together with 3 mM ATP) in the absence of Ca2+ (10 mM intracellular EGTA) was equal at all investigated temperatures (23°C, 27°C, 32°C and 37°C). However, the augmentation of exocytosis induced by an elevation of the free cytosolic [Ca2+] to ~1.5 μM (9 mM Ca2+ + 10 mM EGTA) was potent at 32°C or 37°C but less distinct at 27°C and abolished at 23°C. Adiponectin secretion stimulated by 30 min incubations with the membrane permeable cAMP analogue 8-Br-cAMP (1 mM) or a combination of 10 μM forskolin and 200 μM IBMX was unaffected by a reduction of temperature from 32°C to 23°C. At 32°C, cAMP-stimulated secretion was 2-fold amplified by inclusion of the Ca2+ ionophore ionomycin (1μM), an effect that was not observed at 23°C. We suggest that cooling affects adipocyte exocytosis/adiponectin secretion at a Ca2+-dependent step, likely involving ATP-dependent processes, important for augmentation of cAMP-stimulated adiponectin release.
Collapse
Affiliation(s)
- Mickaël F. El Hachmane
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali M. Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Charlotta S. Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
12
|
Chiang N, Hsiao YT, Yang HJ, Lin YC, Lu JC, Wang CT. Phosphomimetic mutation of cysteine string protein-α increases the rate of regulated exocytosis by modulating fusion pore dynamics in PC12 cells. PLoS One 2014; 9:e99180. [PMID: 24956274 PMCID: PMC4067274 DOI: 10.1371/journal.pone.0099180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background Cysteine string protein-α (CSPα) is a chaperone to ensure protein folding. Loss of CSPα function associates with many neurological diseases. However, its function in modulating regulated exocytosis remains elusive. Although cspα-knockouts exhibit impaired synaptic transmission, overexpression of CSPα in neuroendocrine cells inhibits secretion. These seemingly conflicting results lead to a hypothesis that CSPα may undergo a modification that switches its function in regulating neurotransmitter and hormone secretion. Previous studies implied that CSPα undergoes phosphorylation at Ser10 that may influence exocytosis by altering fusion pore dynamics. However, direct evidence is missing up to date. Methodology/Principal Findings Using amperometry, we investigated how phosphorylation at Ser10 of CSPα (CSPα-Ser10) modulates regulated exocytosis and if this modulation involves regulating a specific kinetic step of fusion pore dynamics. The real-time exocytosis of single vesicles was detected in PC12 cells overexpressing control vector, wild-type CSPα (WT), the CSPα phosphodeficient mutant (S10A), or the CSPα phosphomimetic mutants (S10D and S10E). The shapes of amperometric signals were used to distinguish the full-fusion events (i.e., prespike feet followed by spikes) and the kiss-and-run events (i.e., square-shaped flickers). We found that the secretion rate was significantly increased in cells overexpressing S10D or S10E compared to WT or S10A. Further analysis showed that overexpression of S10D or S10E prolonged fusion pore lifetime compared to WT or S10A. The fraction of kiss-and-run events was significantly lower but the frequency of full-fusion events was higher in cells overexpressing S10D or S10E compared to WT or S10A. Advanced kinetic analysis suggests that overexpression of S10D or S10E may stabilize open fusion pores mainly by inhibiting them from closing. Conclusions/Significance CSPα may modulate fusion pore dynamics in a phosphorylation-dependent manner. Therefore, through changing its phosphorylated state influenced by diverse cellular signalings, CSPα may have a great capacity to modulate the rate of regulated exocytosis.
Collapse
Affiliation(s)
- Ning Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Yang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail: (C-TW); (J-CL)
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail: (C-TW); (J-CL)
| |
Collapse
|
13
|
Abstract
Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 μm forskolin and 2.5-5 mm dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 μm forskolin and 10-15 mm dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations.
Collapse
|
14
|
Wang Y, Wu Q, Sui K, Chen XX, Fang J, Hu X, Wu M, Liu Y. A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells. NANOSCALE 2013; 5:4737-4743. [PMID: 23598531 DOI: 10.1039/c3nr00796k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoparticles (NPs) have been widely studied and applied in biomedicine and other fields. It is important to know the basic process of interaction between NPs and cells in terms of cellular endocytosis and exocytosis. However, little attention has been paid to the cellular exocytosis of NPs. Herein, using a multi-step cellular subculture method, we ascertain quantitatively the endocytosis and exocytosis of widely used TiO2 NPs using the neural stem cells (NSC) as a cellular model and ICP-AES as an analytic measure. Irrespective of the type and dose of TiO2 NPs, approximately 30% of the total TiO2 NPs entered NSCs after 48 h incubation. In the first 24 h after removing TiO2NPs, from the culture medium, about 35.0%, 34.6% and 41.7% of NP1 (50 nm), NP2 (30 nm) and NTs (nanotubes, 100 nm × 4-6 nm) were released (exocytosed) from cells, respectively. The release decreased over time, and became negligible at 72 h. Exocytosis did not happen during cell division. In addition, our results suggested that both endocytosis and exocytosis of TiO2NPs were energy-dependent processes, and NPs uptake by cells was influenced by serum proteins. Furthermore, we achieved primary dynamic confocal imaging of the exocytosis, allowing tracking of TiO2 NPs from NSCs. These findings may benefit studies on nanotoxicology and nanomedicine of TiO2 NPs.
Collapse
Affiliation(s)
- Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
16
|
Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, Loftus R, Krapf D, Tamkun MM. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 2012; 23:2917-29. [PMID: 22648171 PMCID: PMC3408418 DOI: 10.1091/mbc.e12-01-0047] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection–based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.
Collapse
Affiliation(s)
- Emily Deutsch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Aubrey V. Weigel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Elizabeth J. Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Phil Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Gentry Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Rob Loftus
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
17
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Friedrich R, Ashery U. From spike to graph--a complete automated single-spike analysis. J Neurosci Methods 2010; 193:271-80. [PMID: 20869399 DOI: 10.1016/j.jneumeth.2010.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 09/06/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022]
Abstract
Amperometry is a commonly used technique for detecting the kinetics of single-vesicle exocytosis with excellent temporal and spatial resolution. However, different methods of analyzing the amperometric signals can produce conflicting conclusions. We developed an efficient automated method for kinetics analysis of single spikes that does not filter the data and therefore prevents distortion of the results. The algorithm assesses the signal-to-noise ratios (SNRs) and accordingly, separates the signals using an adjustable two-threshold calculation. This enables comparing data with different SNRs from different setups. The software also includes a complete statistical analysis, with an automated selection of the most appropriate statistical tests and a graphical representation. The algorithms can be used for any other experimental results requiring the separation of signals from noise, making this method useful for many applications.
Collapse
Affiliation(s)
- Reut Friedrich
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
20
|
Zhang Z, Jackson MB. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis. Biophys J 2010; 98:2524-34. [PMID: 20513396 DOI: 10.1016/j.bpj.2010.02.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/15/2010] [Accepted: 02/26/2010] [Indexed: 11/30/2022] Open
Abstract
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca(2+)-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca(2+)-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca(2+)-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
21
|
Zhang Z, Hui E, Chapman ER, Jackson MB. Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Mol Biol Cell 2010; 21:2821-31. [PMID: 20573977 PMCID: PMC2921110 DOI: 10.1091/mbc.e10-04-0285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synaptotagmin isoforms and mutants altered fusion event frequency and fusion pore transitions. These effects showed a strong correlation with PS binding, but not with SNARE binding. Synaptotagmin-PS interaction thus function in two distinct kinetic steps in Ca2+ triggered exocytosis, and stabilize open fusion pores. Synaptotagmin (syt) serves as a Ca2+ sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca2+, but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca2+ triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.
Collapse
Affiliation(s)
- Zhen Zhang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
Zhang Z, Hui E, Chapman ER, Jackson MB. Phosphatidylserine regulation of Ca2+-triggered exocytosis and fusion pores in PC12 cells. Mol Biol Cell 2010; 20:5086-95. [PMID: 19828732 DOI: 10.1091/mbc.e09-08-0691] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The synaptic vesicle protein synaptotagmin I (Syt I) binds phosphatidylserine (PS) in a Ca(2+)-dependent manner. This interaction is thought to play a role in exocytosis, but its precise functions remain unclear. To determine potential roles for Syt I-PS binding, we varied the PS content in PC12 cells and liposomes and studied the effects on the kinetics of exocytosis and Syt I binding in parallel. Raising PS produced a steeply nonlinear, saturating increase in Ca(2+)-triggered fusion, and a graded slowing of the rate of fusion pore dilation. Ca(2+)-Syt I bound liposomes more tightly as PS content was raised, with a steep increase in binding at low PS, and a further gradual increase at higher PS. These two phases in the PS dependence of Ca(2+)-dependent Syt I binding to lipid may correspond to the two distinct and opposing kinetic effects of PS on exocytosis. PS influences exocytosis in two ways, enhancing an early step leading to fusion pore opening, and slowing a later step when fusion pores dilate. The possible relevance of these results to Ca(2+)-triggered Syt I binding is discussed along with other possible roles of PS.
Collapse
Affiliation(s)
- Zhen Zhang
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin School of Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
23
|
A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci U S A 2010; 107:3517-21. [PMID: 20133592 DOI: 10.1073/pnas.0914723107] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast fusion which can occur in cells. Here we show that single vesicles containing the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fuse rapidly with planar, supported bilayers containing the synaptic/exocytic t-SNAREs syntaxin-SNAP25. Fusion rates decreased dramatically when the number of externally oriented v-SNAREs per vesicle was reduced below 5-10, directly establishing this as the minimum number required for rapid fusion. Docking-to-fusion delay time distributions were consistent with a requirement that 5-11 t-SNAREs be recruited to achieve fusion, closely matching the v-SNARE requirement.
Collapse
|
24
|
Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 2009; 137:1308-19. [PMID: 19563761 DOI: 10.1016/j.cell.2009.04.064] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 02/09/2009] [Accepted: 04/17/2009] [Indexed: 02/06/2023]
Abstract
Post-Golgi vesicles target and deliver most biosynthetic cargoes to the cell surface. However, the molecules and mechanisms involved in fusion of these vesicles are not well understood. We have employed a system to simultaneously monitor release of luminal and membrane biosynthetic cargoes from individual post-Golgi vesicles. Exocytosis of these vesicles is not calcium triggered. Release of luminal cargo can be accompanied by complete, partial, or no release of membrane cargo. Partial and no release of membrane cargo of a fusing vesicle are fates associated with kiss-and-run exocytosis, and we find that these are the predominant mode of post-Golgi vesicle exocytosis. Partial cargo release by post-Golgi vesicles occurs because of premature closure of the fusion pore and is modulated by the activity of clathrin, actin, and dynamin. Our results demonstrate that these components of the endocytic machinery modulate the nature and extent of biosynthetic cargo delivery by post-Golgi vesicles at the cell membrane.
Collapse
|
25
|
Smith SM, Renden R, von Gersdorff H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 2008; 31:559-68. [PMID: 18817990 DOI: 10.1016/j.tins.2008.08.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Several modes of synaptic vesicle release, retrieval and recycling have been identified. In a well-established mode of exocytosis, termed 'full-collapse fusion', vesicles empty their neurotransmitter content fully into the synaptic cleft by flattening out and becoming part of the presynaptic membrane. The fused vesicle membrane is then reinternalized via a slow and clathrin-dependent mode of compensatory endocytosis that takes several seconds. A more fleeting mode of vesicle fusion, termed 'kiss-and-run' exocytosis or 'flicker-fusion', indicates that during synaptic transmission some vesicles are only briefly connected to the presynaptic membrane by a transient fusion pore. Finally, a mode that retrieves a large amount of membrane, equivalent to that of several fused vesicles, termed 'bulk endocytosis', has been found after prolonged exocytosis. We are of the opinion that both fast and slow modes of endocytosis co-exist at central nervous system nerve terminals and that one mode can predominate depending on stimulus strength, temperature and synaptic maturation.
Collapse
Affiliation(s)
- Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
26
|
Hanna ST, Pigeau GM, Galvanovskis J, Clark A, Rorsman P, MacDonald PE. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells. Pflugers Arch 2008; 457:1343-50. [PMID: 18795319 DOI: 10.1007/s00424-008-0588-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 01/18/2023]
Abstract
Exocytosis of secretory vesicles results in the release of insulin from pancreatic beta-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human beta-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 microM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human beta-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.
Collapse
Affiliation(s)
- Salma T Hanna
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, HRIF East, Rm 6-126, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The aqueous compartment inside a vesicle makes its first connection with the extracellular fluid through an intermediate structure termed the exocytotic fusion pore. Progress in exocytosis can be measured in terms of the formation and growth of the fusion pore. The fusion pore has become a major focus of research in exocytosis; sensitive biophysical measurements have provided various glimpses of what it looks like and how it behaves. Some of the principal questions about the molecular mechanism of exocytosis can be cast explicitly in terms of properties and transitions of fusion pores. This Review will present current knowledge about fusion pores in Ca(2+)-triggered exocytosis, highlight recent advances and relate questions about fusion pores to broader issues concerning how cells regulate exocytosis and how nerve terminals release neurotransmitter.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison,WI 53706, USA.
| | | |
Collapse
|
28
|
Zhang Z, Jackson MB. Temperature Dependence of Fusion Kinetics and Fusion Pores in Ca 2+-triggered Exocytosis from PC12 Cells. J Biophys Biochem Cytol 2008. [DOI: 10.1083/jcb1802oia8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|