1
|
Mareux E, Lapalus M, Amzal R, Almes M, Aït-Slimane T, Delaunay JL, Adnot P, Collado-Hilly M, Davit-Spraul A, Falguières T, Callebaut I, Gonzales E, Jacquemin E. Functional rescue of an ABCB11 mutant by ivacaftor: A new targeted pharmacotherapy approach in bile salt export pump deficiency. Liver Int 2020; 40:1917-1925. [PMID: 32433800 DOI: 10.1111/liv.14518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIM The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.
Collapse
Affiliation(s)
- Elodie Mareux
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Martine Lapalus
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Rachida Amzal
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Marion Almes
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France.,Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Tounsia Aït-Slimane
- Inserm, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jean-Louis Delaunay
- Inserm, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Pauline Adnot
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Mauricette Collado-Hilly
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Anne Davit-Spraul
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France.,CHU Bicêtre, Biochemistry Unit, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomas Falguières
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Isabelle Callebaut
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Emmanuel Gonzales
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France.,Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Emmanuel Jacquemin
- Inserm, Physiopathogénèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, Université Paris-Saclay, Orsay, France.,Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Hirano R, Yabuchi T, Sakurai M, Furuta T. Development of an ATP force field for coarse-grained simulation of ATPases and its application to the maltose transporter. J Comput Chem 2019; 40:2096-2102. [PMID: 31090948 DOI: 10.1002/jcc.25861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/28/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023]
Abstract
The biological functions of ATPases, such as myosin, kinesin, and ABC transporter, are due to large conformational motions driven by energy obtained from ATP. Elucidation of the mechanisms underlying these ATP-driven movements is one of the greatest challenges in computational chemistry. It has been shown that the MARTINI coarse-grained method is a promising tool for the investigation of large conformational motions in various proteins. However, this method has not yet been applied to ATPases because of the lack of a force field for the ATP molecule. Here, we developed force field parameters for the ATP molecule and conducted simulations using these parameters for the subunits (MalK2 ) and the full-length structure (MalFGK2 -E) of a maltose transporter. It was found for both targets that the dimerization of the nucleotide binding domains (NBDs) is induced upon ATP binding. Moreover, for the full-length transporter, the conformational transition from the pre-translocation state to the outward-facing state was observed and was accompanied by an initial transport motion of the substrate. It is expected that coarse-grained simulations utilizing the parameters for the ATP molecule developed here will serve as a powerful tool for investigating other ATPases as well. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryosuke Hirano
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tsubasa Yabuchi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
4
|
Furuta T, Yamaguchi T, Kato H, Sakurai M. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations. Biochemistry 2014; 53:4261-72. [PMID: 24937232 DOI: 10.1021/bi500255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ATP-binding cassette (ABC) transporters are constructed from some common structural units: the highly conserved nucleotide-binding domains (NBDs), which work as a nucleotide-dependent engine for driving substrate transport, the diverse transmembrane domains (TMDs), which create the translocation pathway, and the coupling helices (CHs), which are located at the NBD-TMD interface. Although the CHs are believed to be essential for NBD-TMD communication, their roles remain unclear. In this study, we performed enzyme assays and molecular dynamics (MD) simulations of the ABC transporter MsbA and two MsbA mutants in which the amino acid residues of one of the CHs were mutated to alanines: (i) wild type (Wt), (ii) CH1 mutant (Mt1), and (iii) CH2 mutant (Mt2). The experiments show that the CH2 mutation decreases the ATPase activity (kcat) compared with that of the Wt (a decrease of 32%), and a nearly equal degree of decrease in the ATP binding affinity (Km) was observed for both Mt1 and Mt2. The MD simulations successfully accounted for several structural and dynamical origins for these experimental observations. In addition, on the basis of collective motion and morphing analyses, we propose that the reverse-rotational motions and noddinglike motions between the NBDs and TMDs are indispensable for the conformational transition between the inward- and outward-facing conformations. In particular, CH2 is significantly important for the occurrence of the noddinglike motion. These findings provide important insights into the structure-function relationship of ABC transporters.
Collapse
Affiliation(s)
- Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
5
|
Jih KY, Sohma Y, Li M, Hwang TC. Identification of a novel post-hydrolytic state in CFTR gating. ACTA ACUST UNITED AC 2012; 139:359-70. [PMID: 22508846 PMCID: PMC3343372 DOI: 10.1085/jgp.201210789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC protein family may share an evolutionary origin. Although ABC exporters harness the free energy of ATP hydrolysis to fuel a transport cycle, for CFTR, ATP-induced dimerization of its nucleotide-binding domains (NBDs) and subsequent hydrolysis-triggered dimer separation are proposed to be coupled, respectively, to the opening and closing of the gate in its transmembrane domains. In this study, by using nonhydrolyzable ATP analogues, such as pyrophosphate or adenylyl-imidodiphosphate as baits, we captured a short-lived state (state X), which distinguishes itself from the previously identified long-lived C2 closed state by its fast response to these nonhydrolyzable ligands. As state X is caught during the decay phase of channel closing upon washout of the ligand ATP but before the channel sojourns to the C2 closed state, it likely emerges after the bound ATP in the catalysis-competent site has been hydrolyzed and the hydrolytic products have been released. Thus, this newly identified post-hydrolytic state may share a similar conformation of NBDs as the C2 closed state (i.e., a partially separated NBD and a vacated ATP-binding pocket). The significance of this novel state in understanding the structural basis of CFTR gating is discussed.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
6
|
Zoghbi ME, Fuson KL, Sutton RB, Altenberg GA. Kinetics of the association/dissociation cycle of an ATP-binding cassette nucleotide-binding domain. J Biol Chem 2012; 287:4157-64. [PMID: 22158619 PMCID: PMC3281709 DOI: 10.1074/jbc.m111.318378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/07/2011] [Indexed: 11/06/2022] Open
Abstract
Most ATP binding cassette (ABC) proteins are pumps that transport substrates across biological membranes using the energy of ATP hydrolysis. Functional ABC proteins have two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is unresolved. This is due in part to the limited kinetic information on NBD association and dissociation. Here, we show dimerization of a catalytically active NBD and follow in real time the association and dissociation of NBDs from the changes in fluorescence emission of a tryptophan strategically located at the center of the dimer interface. Spectroscopic and structural studies demonstrated that the tryptophan can be used as dimerization probe, and we showed that under hydrolysis conditions (millimolar MgATP), not only the dimer dissociation rate increases, but also the dimerization rate. Neither dimer formation or dissociation are clearly favored, and the end result is a dynamic equilibrium where the concentrations of monomer and dimer are very similar. We proposed that based on their variable rates of hydrolysis, the rate-limiting step of the hydrolysis cycle may differ among full-length ABC proteins.
Collapse
Affiliation(s)
- Maria E. Zoghbi
- From the Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551
| | - Kerry L. Fuson
- From the Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551
| | - Roger B. Sutton
- From the Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551
| | - Guillermo A. Altenberg
- From the Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551
| |
Collapse
|
7
|
Kopeikin Z, Sohma Y, Li M, Hwang TC. On the mechanism of CFTR inhibition by a thiazolidinone derivative. ACTA ACUST UNITED AC 2010; 136:659-71. [PMID: 21078867 PMCID: PMC2995156 DOI: 10.1085/jgp.201010518] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effects of a thiazolidinone derivative, 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (or CFTRinh-172), on cystic fibrosis transmembrane conductance regulator (CFTR) gating were studied in excised inside-out membrane patches from Chinese hamster ovary cells transiently expressing wild-type and mutant CFTR. We found that the application of CFTRinh-172 results in an increase of the mean closed time and a decrease of the mean open time of the channel. A hyperbolic relationship between the closing rate and [CFTRinh-172] suggests that CFTRinh-172 does not act as a simple pore blocker. Interestingly, the potency of inhibition increases as the open time of the channel is increased with an IC50 in the low nanomolar range for CFTR channels locked in an open state for tens of seconds. Our studies also provide evidence that CFTRinh-172 can bind to both the open state and the closed state. However, at least one additional step, presumably reflecting inhibitor-induced conformational changes, is required to shut down the conductance after the binding of the inhibitor to the channel. Using the hydrolysis-deficient mutant E1371S as a tool as the closing rate of this mutant is dramatically decreased, we found that CFTRinh-172-dependent inhibition of CFTR channel gating, in two aspects, mimics the inactivation of voltage-dependent cation channels. First, similar to the recovery from inactivation in voltage-gated channels, once CFTR is inhibited by CFTRinh-172, reopening of the channel can be seen upon removal of the inhibitor in the absence of adenosine triphosphate (ATP). Second, ATP induced a biphasic current response on inhibitor-bound closed channels as if the ATP-opened channels "inactivate" despite a continuous presence of ATP. A simplified six-state kinetic scheme can well describe our data, at least qualitatively. Several possible structural mechanisms for the effects of CFTRinh-172 will be discussed.
Collapse
Affiliation(s)
- Zoia Kopeikin
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|