1
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
2
|
Tao L, Coakley S, Shi R, Shen K. Dendrites use mechanosensitive channels to proofread ligand-mediated neurite extension during morphogenesis. Dev Cell 2022; 57:1615-1629.e3. [PMID: 35709764 DOI: 10.1016/j.devcel.2022.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Ligand-receptor interactions guide axon navigation and dendrite arborization. Mechanical forces also influence guidance choices. However, the nature of such mechanical stimulations, the mechanosensor identity, and how they interact with guidance receptors are unknown. Here, we demonstrate that mechanosensitive DEG/ENaC channels are required for dendritic arbor morphogenesis in Caenorhabditis elegans. Inhibition of DEG/ENaC channels causes reduced dendritic outgrowth and branching in vivo, a phenotype that is alleviated by overexpression of the mechanosensitive channels PEZO-1/Piezo or YVC1/TrpY1. DEG/ENaCs trigger local Ca2+ transients in growing dendritic filopodia via activation of L-type voltage-gated Ca2+ channels. Anchoring of filopodia by dendrite ligand-receptor complexes is required for the mechanical activation of DEG/ENaC channels. Therefore, mechanosensitive channels serve as a checkpoint for appropriate chemoaffinity by activating Ca2+ transients required for neurite growth.
Collapse
Affiliation(s)
- Li Tao
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca Shi
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA; Neurosciences IDP, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Ahmed T, Nisler CR, Fluck EC, Walujkar S, Sotomayor M, Moiseenkova-Bell VY. Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium. Structure 2022; 30:139-155.e5. [PMID: 34453887 PMCID: PMC8741645 DOI: 10.1016/j.str.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023]
Abstract
Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca2+, and the molecular evolution of TRP channels.
Collapse
Affiliation(s)
- Tofayel Ahmed
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Collin R Nisler
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Chemical Physics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Chemical Physics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Miner GE, Sullivan KD, Zhang C, Rivera-Kohr D, Guo A, Hurst LR, Ellis EC, Starr ML, Jones BC, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates Ca 2+ transport during yeast vacuolar fusion through the Ca 2+ ATPase Pmc1. Traffic 2021; 21:503-517. [PMID: 32388897 DOI: 10.1111/tra.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol-3-phosphate (PI3P) by the PI3P-5-kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans-SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2 . Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+ . Vacuoles lacking both Pmc1 and the H+ /Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ez C Ellis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Hamamoto S, Mori Y, Yabe I, Uozumi N. In vitro and in vivo characterization of modulation of the vacuolar cation channel TRPY1 from Saccharomyces cerevisiae. FEBS J 2018; 285:1146-1161. [PMID: 29405580 DOI: 10.1111/febs.14399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae possesses a transient receptor potential (TRP) channel homolog TRPY1 in its vacuolar membrane, considered to be an ancestral TRP channel. So far, studies have focused on the channel properties of TRPY1, but its regulation and physiologic role remained to be elucidated. Here, we investigated TRPY1 channel function in vitro and in vivo. Patch-clamp recording of TRPY1 in yeast vacuolar membranes showed that Ca2+ on the lumen side inhibited TRPY1-mediated channel activity, whereas luminal Zn2+ increased the currents. TRPY1 was activated in the presence of a reducing agent, 2-mercaptoethanol. The cysteine at position 624 was identified as the target for this activating action. This activation was independent of the presence of cytosolic Ca2+ . The amplitude of TRPY1-mediated current was reduced by addition of phosphatidylinositol 3-phosphate on the cytosolic side but not by phosphatidylinositol (PI) or phosphatidylinositol 3,5-phosphate. Measurement of the transient Ca2+ increase in response to hyper-osmotic shock in several yeast mutants defective in different steps of the PI phosphate biogenesis pathway supported this interpretation. Addition of a microtubule inhibitor strongly decreased the transient cytosolic Ca2+ increase upon hyper-osmotic shock. Taken together, the data indicate that the vacuolar TRPY1 Ca2+ channel mediates the perception of cytosolic signals that were induced by external changes in osmolarity, and participates in the modulation of cytosolic calcium signaling through Ca2+ release from the vacuole to maintain intracellular Ca2+ homeostasis in yeast.
Collapse
Affiliation(s)
- Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | - Isamu Yabe
- Department of Green and Sustainable Chemistry, Tokyo Denki University, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening. Sci Rep 2016; 6:33827. [PMID: 27666400 PMCID: PMC5035920 DOI: 10.1038/srep33827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
TRPV1 is a polymodal nociceptor for diverse physical and chemical stimuli that interact with different parts of the channel protein. Recent cryo-EM studies revealed detailed channel structures, opening the door for mapping structural elements mediating activation by each stimulus. Towards this goal, here we have combined unstructured peptide-insertion screening (UPS) with electrophysiological and fluorescence recordings to explore structural and functional roles of the intracellular regions of TRPV1 in mediating various activation stimuli. We found that most of the tightly packed protein regions did not tolerate structural perturbation by UPS when tested, indicating that structural integrity of the intracellular region is critical. In agreement with previous reports, Ca2+-dependent desensitization is strongly dependent on both intracellular N- and C-terminal domains; insertions of an unstructured peptide between these domains and the transmembrane core domain nearly eliminated Ca2+-dependent desensitization. In contrast, channel activations by capsaicin, low pH, divalent cations, and even heat are mostly intact in mutant channels containing the same insertions. These observations suggest that the transmembrane core domain of TRPV1, but not the intracellular domains, is responsible for sensing these stimuli.
Collapse
|
7
|
Brohawn SG. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 2015; 1352:20-32. [PMID: 26332952 DOI: 10.1111/nyas.12874] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to sense and respond to mechanical forces is essential for life and cells have evolved a variety of systems to convert physical forces into cellular signals. Within this repertoire are the mechanosensitive ion channels, proteins that play critical roles in mechanosensation by transducing forces into ionic currents across cellular membranes. Understanding how these channels work, particularly in animals, remains a major focus of study. Here, I review the current understanding of force gating for a family of metazoan mechanosensitive ion channels, the two-pore domain K(+) channels (K2Ps) TRAAK, TREK1, and TREK2. Structural and functional insights have led to a physical model for mechanical activation of these channels. This model of force sensation by K2Ps is compared to force sensation by bacterial mechanosensitive ion channels MscL and MscS to highlight principles shared among these evolutionarily unrelated channels, as well as differences of potential functional relevance. Recent advances address fundamental questions and stimulate new ideas about these unique mechanosensors.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| |
Collapse
|
8
|
Sasser TL, Fratti RA. Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion. CELLULAR LOGISTICS 2014; 4:e943588. [PMID: 25610719 DOI: 10.4161/21592780.2014.943588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/18/2014] [Indexed: 01/05/2023]
Abstract
Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion.
Collapse
Key Words
- ABC, ATP binding cassette
- Bpt1
- Ca2+ homeostasis
- DAG, diacylglycerol
- HOPS, homotypic fusion and vacuole protein sorting complex
- MDR, multidrug resistance
- MSD, membrane spanning domain
- NBD, nucleotide binding domain
- Nft1
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PI(3, 5)P2, phosphatidylinositol 3, 5-bisphosphate
- PI, phosphatidylinositol
- PI3P
- PI3P, phosphatidylinositol 3-phosphate
- PS, phosphatidylserine
- PX, phox homology
- SNARE
- SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptors
- Vam7
- Vmr1
- Ybt1
- Ycf1
- lipid flipping
Collapse
Affiliation(s)
- Terry L Sasser
- Department of Biochemistry; University of Illinois at Urbana-Champaign ; Urbana, IL USA
| | - Rutilio A Fratti
- Department of Biochemistry; University of Illinois at Urbana-Champaign ; Urbana, IL USA
| |
Collapse
|
9
|
Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 2014; 111:7898-905. [PMID: 24850861 DOI: 10.1073/pnas.1313364111] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life's origin entails enclosing a compartment to hoard material, energy, and information. The envelope necessarily comprises amphipaths, such as prebiotic fatty acids, to partition the two aqueous domains. The self-assembled lipid bilayer comes with a set of properties including its strong anisotropic internal forces that are chemically or physically malleable. Added bilayer stretch can alter force vectors on embedded proteins to effect conformational change. The force-from-lipid principle was demonstrated 25 y ago when stretches opened purified Escherichia coli MscL channels reconstituted into artificial bilayers. This reductionistic exercise has rigorously been recapitulated recently with two vertebrate mechanosensitive K(+) channels (TREK1 and TRAAK). Membrane stretches have also been known to activate various voltage-, ligand-, or Ca(2+)-gated channels. Careful analyses showed that Kv, the canonical voltage-gated channel, is in fact exquisitely sensitive even to very small tension. In an unexpected context, the canonical transient-receptor-potential channels in the Drosophila eye, long presumed to open by ligand binding, is apparently opened by membrane force due to PIP2 hydrolysis-induced changes in bilayer strain. Being the intimate medium, lipids govern membrane proteins by physics as well as chemistry. This principle should not be a surprise because it parallels water's paramount role in the structure and function of soluble proteins. Today, overt or covert mechanical forces govern cell biological processes and produce sensations. At the genesis, a bilayer's response to osmotic force is likely among the first senses to deal with the capricious primordial sea.
Collapse
|
10
|
Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 2014; 111:3614-9. [PMID: 24550493 DOI: 10.1073/pnas.1320768111] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanosensitive ion channels underlie neuronal responses to physical forces in the sensation of touch, hearing, and other mechanical stimuli. The fundamental basis of force transduction in eukaryotic mechanosensitive ion channels is unknown. Are mechanical forces transmitted directly from membrane to channel as in prokaryotic mechanosensors or are they mediated through macromolecular tethers attached to the channel? Here we show in cells that the K(+) channel TRAAK (K2P4.1) is responsive to mechanical forces similar to the ion channel Piezo1 and that mechanical activation of TRAAK can electrically counter Piezo1 activation. We then show that the biophysical origins of force transduction in TRAAK and TREK1 (K2P2.1) two-pore domain K(+) (K2P) channels come from the lipid membrane, not from attached tethers. These findings extend the "force-from-lipid" principle established for prokaryotic mechanosensitive channels MscL and MscS to these eukaryotic mechanosensitive K(+) channels.
Collapse
|
11
|
Schneider ER, Anderson EO, Gracheva EO, Bagriantsev SN. Temperature sensitivity of two-pore (K2P) potassium channels. CURRENT TOPICS IN MEMBRANES 2014; 74:113-33. [PMID: 25366235 DOI: 10.1016/b978-0-12-800181-3.00005-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At normal body temperature, the two-pore potassium channels TREK-1 (K2P2.1/KCNK2), TREK-2 (K2P10.1/KCNK10), and TRAAK (K2P4.1/KCNK2) regulate cellular excitability by providing voltage-independent leak of potassium. Heat dramatically potentiates K2P channel activity and further affects excitation. This review focuses on the current understanding of the physiological role of heat-activated K2P current, and discusses the molecular mechanism of temperature gating in TREK-1, TREK-2, and TRAAK.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Evan O Anderson
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
12
|
Prole DL, Taylor CW. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 2013; 8:e66068. [PMID: 23785469 PMCID: PMC3681921 DOI: 10.1371/journal.pone.0066068] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
13
|
Prole DL, Taylor CW. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 2012; 7:e42404. [PMID: 22876320 PMCID: PMC3410928 DOI: 10.1371/journal.pone.0042404] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/05/2012] [Indexed: 01/08/2023] Open
Abstract
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for genes encoding homologues of cation channels, which are prominent drug targets. Many of the fungal genomes examined contain genes encoding homologues of potassium (K+), calcium (Ca2+) and transient receptor potential (Trp) channels, but not sodium (Na+) channels or ligand-gated channels. Some fungal genomes contain multiple genes encoding homologues of K+ and Trp channel subunits, and genes encoding novel homologues of voltage-gated Kv channel subunits are found in Cryptococcus spp. Only a single gene encoding a homologue of a plasma membrane Ca2+ channel was identified in the genome of each pathogenic fungus examined. These homologues are similar to the Cch1 Ca2+ channel of Saccharomyces cerevisiae. The genomes of Aspergillus spp. and Cryptococcus spp., but not those of S. cerevisiae or the other pathogenic fungi examined, also encode homologues of the mitochondrial Ca2+ uniporter (MCU). In contrast to humans, which express many K+, Ca2+ and Trp channels, the genomes of pathogenic fungi encode only very small numbers of K+, Ca2+ and Trp channel homologues. Furthermore, the sequences of fungal K+, Ca2+, Trp and MCU channels differ from those of human channels in regions that suggest differences in regulation and susceptibility to drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
14
|
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 2012; 125:3075-83. [PMID: 22797911 DOI: 10.1242/jcs.092353] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|