1
|
Ferreon JC, Kongchan N, Tsoi PS, Choi KJ, Kenrick S, Neilson J, Ferreon ACM. Multivalent Protein-Nucleic Acid Interactions Probed by Composition-Gradient Multiangle Light Scattering. ACS OMEGA 2024; 9:41003-41010. [PMID: 39371993 PMCID: PMC11447847 DOI: 10.1021/acsomega.4c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Many RNA-binding proteins, such as TDP-43 or CELF1, interact multivalently with nucleic acid repetitive elements. The molecular stoichiometry of protein to nucleic acid is often difficult to assess, particularly by standard electrophoretic mobility shift assays (EMSAs). Here, we investigate the use of composition-gradient multiangle light scattering (CG-MALS) for quantifying binding affinity and stoichiometry for two RNA-binding proteins with their nucleic acid partners of varied sequence and length: TDP43's N-terminal RNA recognition motifs with both TG/GU-repeat ssDNA and ssRNA, respectively, and CELF1's two N-terminal RNA recognition motifs with (TG/UGUU/GU) repeats and an experimentally defined cognate GU-rich element (GRE). Our CG-MALS data derived from each of these interactions is consistent with expected ranges of binding affinity and stoichiometry for proteins binding to shorter nucleic acid repeats. Furthermore, we conclude that CG-MALS can be an excellent method for obtaining quantitative estimates even for high (>2) protein-nucleic acid stoichiometric ratios.
Collapse
Affiliation(s)
- Josephine C. Ferreon
- Department
of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Natee Kongchan
- Department
of Integrative Physiology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Phoebe S. Tsoi
- Department
of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kyoung-Jae Choi
- Department
of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sophia Kenrick
- Wyatt
Technology, LLC, Santa Barbara, California 93111, United States
| | - Joel Neilson
- Department
of Integrative Physiology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Allan Chris M. Ferreon
- Department
of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Segura É, Zhao J, Broszczak M, Audet F, Sauvé R, Parent L. Investigating the Impact of Electrostatic Interactions on Calmodulin Binding and Ca 2+-Dependent Activation of the Calcium-Gated Potassium SK4 Channel. Int J Mol Sci 2024; 25:4255. [PMID: 38673845 PMCID: PMC11050286 DOI: 10.3390/ijms25084255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ca2+ binding to the ubiquitous Ca2+ sensing protein calmodulin (CaM) activates the intermediate conductance Ca2+-activated SK4 channel. Potential hydrophilic pockets for CaM binding have been identified at the intracellular HA and HB helices in the C-terminal of SK4 from the three published cryo-EM structures of SK4. Single charge reversal substitutions at either site, significantly weakened the pull-down of SK4 by CaM wild-type (CaM), and decreased the TRAM-34 sensitive outward K+ current densities in native HEK293T cells when compared with SK4 WT measured under the same conditions. Only the doubly substituted SK4 R352D/R355D (HB helix) obliterated the CaM-mediated pull-down and thwarted outward K+ currents. However, overexpression of CaM E84K/E87K, which had been predicted to face the arginine doublet, restored the CaM-mediated pull-down of SK4 R352D/R355D and normalized its whole-cell current density. Virtual analysis of the putative salt bridges supports a unique role for the positively charged arginine doublet at the HB helix into anchoring the interaction with the negatively charged CaM glutamate 84 and 87 CaM. Our findings underscore the unique contribution of electrostatic interactions in carrying CaM binding onto SK4 and support the role of the C-terminal HB helix to the Ca2+-dependent gating process.
Collapse
Affiliation(s)
- Émilie Segura
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC H1T 1C8, Canada; (É.S.); (F.A.)
| | - Juan Zhao
- Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC H1T 1C8, Canada; (J.Z.); (M.B.)
| | - Marlena Broszczak
- Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC H1T 1C8, Canada; (J.Z.); (M.B.)
| | - Frédéric Audet
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC H1T 1C8, Canada; (É.S.); (F.A.)
| | - Rémy Sauvé
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC H3T 1J4, Canada;
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC H1T 1C8, Canada; (É.S.); (F.A.)
| |
Collapse
|
3
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Halling DB, Philpo AE, Aldrich RW. Calcium dependence of both lobes of calmodulin is involved in binding to a cytoplasmic domain of SK channels. eLife 2022; 11:e81303. [PMID: 36583726 PMCID: PMC9803350 DOI: 10.7554/elife.81303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
KCa2.1-3 Ca2+-activated K+-channels (SK) require calmodulin to gate in response to cellular Ca2+. A model for SK gating proposes that the N-terminal domain (N-lobe) of calmodulin is required for activation, but an immobile C-terminal domain (C-lobe) has constitutive, Ca2+-independent binding. Although structures support a domain-driven hypothesis of SK gate activation by calmodulin, only a partial understanding is possible without measuring both channel activity and protein binding. We measured SK2 (KCa2.2) activity using inside-out patch recordings. Currents from calmodulin-disrupted SK2 channels can be restored with exogenously applied calmodulin. We find that SK2 activity only approaches full activation with full-length calmodulin with both an N- and a C-lobe. We measured calmodulin binding to a C-terminal SK peptide (SKp) using both composition-gradient multi-angle light-scattering and tryptophan emission spectra. Isolated lobes bind to SKp with high affinity, but isolated lobes do not rescue SK2 activity. Consistent with earlier models, N-lobe binding to SKp is stronger in Ca2+, and C-lobe-binding affinity is strong independent of Ca2+. However, a native tryptophan in SKp is sensitive to Ca2+ binding to both the N- and C-lobes of calmodulin at Ca2+ concentrations that activate SK2, demonstrating that the C-lobe interaction with SKp changes with Ca2+. Our peptide-binding data and electrophysiology show that SK gating models need deeper scrutiny. We suggest that the Ca2+-dependent associations of both lobes of calmodulin to SKp are crucial events during gating. Additional investigations are necessary to complete a mechanistic gating model consistent with binding, physiology, and structure.
Collapse
Affiliation(s)
- David B Halling
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Ashley E Philpo
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Richard W Aldrich
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
5
|
Metabolic regulation and dysregulation of endothelial small conductance calcium activated potassium channels. Eur J Cell Biol 2022; 101:151208. [DOI: 10.1016/j.ejcb.2022.151208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
|
6
|
Protein intrinsic viscosity determination with the Viscosizer TD instrument: reaching beyond the initially expected applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:587-595. [PMID: 33486532 DOI: 10.1007/s00249-020-01492-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Intrinsic viscosity is a key hydrodynamic parameter to understand molecular structure and hydration, as well as intramolecular interactions. Commercially available instruments measure intrinsic viscosity by recording the macromolecular mobility in a capillary. These instruments monitor Taylor dispersion using an absorbance or fluorescence detector. By design, these instruments behave like U-tube viscometers. To our knowledge, there are no studies to date showing that the Viscosizer TD instrument (Malvern-Panalytical) is able to measure the intrinsic viscosity of macromolecules. In this study, we then performed our assays on the Poly(ethylene oxide) polymer (PEO), used classically as a standard for viscometry measurements and on three model proteins: the bovine serum albumin (BSA), the bevacizumab monoclonal antibody, and the RTX Repeat Domain (RD) of the adenylate cyclase toxin of Bordetella pertussis (CyaA). The presence of P20 in the samples is critical to get reliable results. The data obtained with our in-house protocol show a strong correlation with intrinsic viscosity values obtained using conventional techniques. However, with respect to them, our measurements could be performed at relatively low concentrations, between 2 and 5 mg/ml, using only 7 µL per injection. Altogether, our results show that the Viscosizer TD instrument is able to measure intrinsic viscosities in a straightforward manner. This simple and innovative approach should give a new boost to intrinsic viscosity measurements and should reignite the interest of biophysicists, immunologists, structural biologists and other researchers for this key physicochemical parameter.
Collapse
|
7
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
8
|
Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels. Annu Rev Pharmacol Toxicol 2019; 60:219-240. [PMID: 31337271 DOI: 10.1146/annurev-pharmtox-010919-023420] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Heesung Shim
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|
9
|
Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 2018; 360:508-513. [PMID: 29724949 DOI: 10.1126/science.aas9466] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels mediate neuron excitability and are associated with synaptic transmission and plasticity. They also regulate immune responses and the size of blood cells. Activation of SK channels requires calmodulin (CaM), but how CaM binds and opens SK channels has been unclear. Here we report cryo-electron microscopy (cryo-EM) structures of a human SK4-CaM channel complex in closed and activated states at 3.4- and 3.5-angstrom resolution, respectively. Four CaM molecules bind to one channel tetramer. Each lobe of CaM serves a distinct function: The C-lobe binds to the channel constitutively, whereas the N-lobe interacts with the S4-S5 linker in a Ca2+-dependent manner. The S4-S5 linker, which contains two distinct helices, undergoes conformational changes upon CaM binding to open the channel pore. These structures reveal the gating mechanism of SK channels and provide a basis for understanding SK channel pharmacology.
Collapse
Affiliation(s)
- Chia-Hsueh Lee
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Sean C. Edington
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Coordination to lanthanide ions distorts binding site conformation in calmodulin. Proc Natl Acad Sci U S A 2018; 115:E3126-E3134. [PMID: 29545272 DOI: 10.1073/pnas.1722042115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca2+-sensing protein calmodulin (CaM) is a popular model of biological ion binding since it is both experimentally tractable and essential to survival in all eukaryotic cells. CaM modulates hundreds of target proteins and is sensitive to complex patterns of Ca2+ exposure, indicating that it functions as a sophisticated dynamic transducer rather than a simple on/off switch. Many details of this transduction function are not well understood. Fourier transform infrared (FTIR) spectroscopy, ultrafast 2D infrared (2D IR) spectroscopy, and electronic structure calculations were used to probe interactions between bound metal ions (Ca2+ and several trivalent lanthanide ions) and the carboxylate groups in CaM's EF-hand ion-coordinating sites. Since Tb3+ is commonly used as a luminescent Ca2+ analog in studies of protein-ion binding, it is important to characterize distinctions between the coordination of Ca2+ and the lanthanides in CaM. Although functional assays indicate that Tb3+ fully activates many Ca2+-dependent proteins, our FTIR spectra indicate that Tb3+, La3+, and Lu3+ disrupt the bidentate coordination geometry characteristic of the CaM binding sites' strongly conserved position 12 glutamate residue. The 2D IR spectra indicate that, relative to the Ca2+-bound form, lanthanide-bound CaM exhibits greater conformational flexibility and larger structural fluctuations within its binding sites. Time-dependent 2D IR lineshapes indicate that binding sites in Ca2+-CaM occupy well-defined configurations, whereas binding sites in lanthanide-bound-CaM are more disordered. Overall, the results show that binding to lanthanide ions significantly alters the conformation and dynamics of CaM's binding sites.
Collapse
|
12
|
Structural basis and energy landscape for the Ca 2+ gating and calmodulation of the Kv7.2 K + channel. Proc Natl Acad Sci U S A 2018; 115:2395-2400. [PMID: 29463698 PMCID: PMC5873240 DOI: 10.1073/pnas.1800235115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ion channels are sophisticated proteins that exert control over a plethora of body functions. Specifically, the members of the Kv7 family are prominent components of the nervous systems, responsible for the ion fluxes that regulate the electrical signaling in neurons and cardiac myocytes. Albeit its relevance, there are still several questions, including the Ca2+/calmodulin (CaM)-mediated gating mechanism. We found that Ca2+ binding to CaM triggers a segmental rotation that allosterically transmits the signal from the cytosol up to the transmembrane region. NMR-derived analysis of the dynamics demonstrates that it occurs through a conformational selection mechanism. Energetically, CaM association with the channel tunes the affinities of the CaM lobes (calmodulation) so that the channel can sense the specific changes in [Ca2+] resulting after an action potential. The Kv7.2 (KCNQ2) channel is the principal molecular component of the slow voltage-gated, noninactivating K+ M-current, a key controller of neuronal excitability. To investigate the calmodulin (CaM)-mediated Ca2+ gating of the channel, we used NMR spectroscopy to structurally and dynamically describe the association of helices hA and hB of Kv7.2 with CaM, as a function of Ca2+ concentration. The structures of the CaM/Kv7.2-hAB complex at two different calcification states are reported here. In the presence of a basal cytosolic Ca2+ concentration (10–100 nM), only the N-lobe of CaM is Ca2+-loaded and the complex (representative of the open channel) exhibits collective dynamics on the millisecond time scale toward a low-populated excited state (1.5%) that corresponds to the inactive state of the channel. In response to a chemical or electrical signal, intracellular Ca2+ levels rise up to 1–10 μM, triggering Ca2+ association with the C-lobe. The associated conformational rearrangement is the key biological signal that shifts populations to the closed/inactive channel. This reorientation affects the C-lobe of CaM and both helices in Kv7.2, allosterically transducing the information from the Ca2+-binding site to the transmembrane region of the channel.
Collapse
|
13
|
Affiliation(s)
- Brandon M Brown
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| | - Heesung Shim
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| | - Heike Wulff
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| |
Collapse
|
14
|
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Curr Mol Pharmacol 2016; 8:188-205. [PMID: 25966688 DOI: 10.2174/1874467208666150507110359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 2016; 501:4-22. [PMID: 26896682 PMCID: PMC5804501 DOI: 10.1016/j.ab.2016.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Halling DB, Liebeskind BJ, Hall AW, Aldrich RW. Conserved properties of individual Ca2+-binding sites in calmodulin. Proc Natl Acad Sci U S A 2016; 113:E1216-25. [PMID: 26884197 PMCID: PMC4780646 DOI: 10.1073/pnas.1600385113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) is a Ca(2+)-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca(2+) concentration into cellular signals by binding to a wide range of target proteins in a Ca(2+)-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca(2+)-binding sites, called EF-hands, may contribute to CaM's functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca(2+) signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease.
Collapse
Affiliation(s)
- D Brent Halling
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712
| | - Benjamin J Liebeskind
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712
| | - Amelia W Hall
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Richard W Aldrich
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712;
| |
Collapse
|
17
|
Abdulkareem ZA, Gee JMW, Cox CD, Wann KT. Knockdown of the small conductance Ca(2+) -activated K(+) channels is potently cytotoxic in breast cancer cell lines. Br J Pharmacol 2016; 173:177-90. [PMID: 26454020 PMCID: PMC4737296 DOI: 10.1111/bph.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Small conductance calcium-activated potassium (KCa 2.x) channels have a widely accepted canonical function in regulating cellular excitability. In this study, we address a potential non-canonical function of KCa 2.x channels in breast cancer cell survival, using in vitro models. EXPERIMENTAL APPROACH The expression of all KCa 2.x channel isoforms was initially probed using RT-PCR, Western blotting and microarray analysis in five widely studied breast cancer cell lines. In order to assess the effect of pharmacological blockade and siRNA-mediated knockdown of KCa 2.x channels on these cell lines, we utilized MTS proliferation assays and also followed the corresponding expression of apoptotic markers. KEY RESULTS All of the breast cancer cell lines, regardless of their lineage or endocrine responsiveness, were highly sensitive to KCa 2.x channel blockade. UCL1684 caused cytotoxicity, with LD50 values in the low nanomolar range, in all cell lines. The role of KCa 2.x channels was confirmed using pharmacological inhibition and siRNA-mediated knockdown. This reduced cell viability and also reduced expression of Bcl-2 but increased expression of active caspase-7 and caspase-9. Complementary to these results, a variety of cell lines can be protected from apoptosis induced by staurosporine using the KCa 2.x channel activator CyPPA. CONCLUSIONS AND IMPLICATIONS In addition to a well-established role for KCa 2.x channels in migration, blockade of these channels was potently cytotoxic in breast cancer cell lines, pointing to modulation of KCa 2.x channels as a potential therapeutic approach to breast cancer.
Collapse
Affiliation(s)
| | - Julia MW Gee
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffCF10 3NBUK
| | - Charles D Cox
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
| | - Kenneth T Wann
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffCF10 3NBUK
| |
Collapse
|
18
|
Mitchell SL, Ismail AM, Kenrick SA, Camilli A. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae. BMC Microbiol 2015; 15:59. [PMID: 25887601 PMCID: PMC4352251 DOI: 10.1186/s12866-015-0387-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. RESULTS Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. CONCLUSION Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | - Ayman M Ismail
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | | | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| |
Collapse
|
19
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|