1
|
Yang Y, Yu Z, Geng J, Liu M, Liu N, Li P, Hong W, Yue S, Jiang H, Ge H, Qian F, Xiong W, Wang P, Song S, Li X, Fan Y, Liu X. Cytosolic peptides encoding Ca V1 C-termini downregulate the calcium channel activity-neuritogenesis coupling. Commun Biol 2022; 5:484. [PMID: 35589958 PMCID: PMC9120191 DOI: 10.1038/s42003-022-03438-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
L-type Ca2+ (CaV1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by CaV1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary CaV1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with CaV1's apo-calmodulin binding motif. Distinct from nuclear DCT, various cytosolic peptides exert a gradient of inhibitory effects on Ca2+ influx via CaV1 channels and neurite extension and arborization, and also the intermediate events including CREB activation and c-Fos expression. The inhibition efficacies of DCT are quantitatively correlated with its binding affinities. Meanwhile, cytosolic inhibition tends to facilitate neuritogenesis indirectly by favoring Ca2+-sensitive nuclear retention of DCT. In summary, DCT peptides as a class of CaV1 inhibitors specifically regulate the channel activity-neuritogenesis coupling in a variant-, affinity-, and localization-dependent manner.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Zhen Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Jinli Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Min Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Weili Hong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - He Jiang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyan Ge
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ping Wang
- Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Sen Song
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Li
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Xiaodong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China. .,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Oz S, Pankonien I, Belkacemi A, Flockerzi V, Klussmann E, Haase H, Dascal N. Protein kinase A regulates C-terminally truncated Ca V 1.2 in Xenopus oocytes: roles of N- and C-termini of the α 1C subunit. J Physiol 2017; 595:3181-3202. [PMID: 28194788 DOI: 10.1113/jp274015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS β-Adrenergic stimulation enhances Ca2+ entry via L-type CaV 1.2 channels, causing stronger contraction of cardiac muscle cells. The signalling pathway involves activation of protein kinase A (PKA), but the molecular details of PKA regulation of CaV 1.2 remain controversial despite extensive research. We show that PKA regulation of CaV 1.2 can be reconstituted in Xenopus oocytes when the distal C-terminus (dCT) of the main subunit, α1C , is truncated. The PKA upregulation of CaV 1.2 does not require key factors previously implicated in this mechanism: the clipped dCT, the A kinase-anchoring protein 15 (AKAP15), the phosphorylation sites S1700, T1704 and S1928, or the β subunit of CaV 1.2. The gating element within the initial segment of the N-terminus of the cardiac isoform of α1C is essential for the PKA effect. We propose that the regulation described here is one of two or several mechanisms that jointly mediate the PKA regulation of CaV 1.2 in the heart. ABSTRACT β-Adrenergic stimulation enhances Ca2+ currents via L-type, voltage-gated CaV 1.2 channels, strengthening cardiac contraction. The signalling via β-adrenergic receptors (β-ARs) involves elevation of cyclic AMP (cAMP) levels and activation of protein kinase A (PKA). However, how PKA affects the channel remains controversial. Recent studies in heterologous systems and genetically engineered mice stress the importance of the post-translational proteolytic truncation of the distal C-terminus (dCT) of the main (α1C ) subunit. Here, we successfully reconstituted the cAMP/PKA regulation of the dCT-truncated CaV 1.2 in Xenopus oocytes, which previously failed with the non-truncated α1C . cAMP and the purified catalytic subunit of PKA, PKA-CS, injected into intact oocytes, enhanced CaV 1.2 currents by ∼40% (rabbit α1C ) to ∼130% (mouse α1C ). PKA blockers were used to confirm specificity and the need for dissociation of the PKA holoenzyme. The regulation persisted in the absence of the clipped dCT (as a separate protein), the A kinase-anchoring protein AKAP15, and the phosphorylation sites S1700 and T1704, previously proposed as essential for the PKA effect. The CaV β2b subunit was not involved, as suggested by extensive mutagenesis. Using deletion/chimeric mutagenesis, we have identified the initial segment of the cardiac long-N-terminal isoform of α1C as a previously unrecognized essential element involved in PKA regulation. We propose that the observed regulation, that exclusively involves the α1C subunit, is one of several mechanisms underlying the overall PKA action on CaV 1.2 in the heart. We hypothesize that PKA is acting on CaV 1.2, in part, by affecting a structural 'scaffold' comprising the interacting cytosolic N- and C-termini of α1C .
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ines Pankonien
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Anouar Belkacemi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Hannelore Haase
- Max Delbrück Center for Molecular Medicine (MDC), D-13092, and the German Centre for Cardiovascular Research (DZHK) partner site, Berlin, Germany
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Bannister RA. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. ACTA ACUST UNITED AC 2016; 219:175-82. [PMID: 26792328 DOI: 10.1242/jeb.124123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, Room 8006, B-139, Aurora, CO 80045, USA
| |
Collapse
|