1
|
Jegla T, Simonson BT, Spafford JD. A broad survey of choanoflagellates revises the evolutionary history of the Shaker family of voltage-gated K + channels in animals. Proc Natl Acad Sci U S A 2024; 121:e2407461121. [PMID: 39018191 PMCID: PMC11287247 DOI: 10.1073/pnas.2407461121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
The Shaker family of voltage-gated K+ channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K+ currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor. Here, we show that some choanoflagellates, the closest protozoan sister lineage to animals, also have Shaker family K+ channels. Choanoflagellate Shaker family channels are surprisingly most closely related to the animal Kv2-4 subfamilies which were believed to have evolved only after the divergence of ctenophores and sponges from cnidarians and bilaterians. Structural modeling predicts that the choanoflagellate channels share a T1 Zn2+ binding site with Kv2-4 channels that is absent in Kv1 channels. We functionally expressed three Shakers from Salpingoeca helianthica (SheliKvT1.1-3) in Xenopus oocytes. SheliKvT1.1-3 function only in two heteromultimeric combinations (SheliKvT1.1/1.2 and SheliKvT1.1/1.3) and encode fast N-type inactivating K+ channels with distinct voltage dependence that are most similar to the widespread animal Kv1-encoded A-type Shakers. Structural modeling of the T1 assembly domain supports a preference for heteromeric assembly in a 2:2 stoichiometry. These results push the origin of the Shaker family back into a common ancestor of metazoans and choanoflagellates. They also suggest that the animal common ancestor had at least two distinct molecular lineages of Shaker channels, a Kv1 subfamily lineage predicted from comparison of animal genomes and a Kv2-4 lineage predicted from comparison of animals and choanoflagellates.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - Benjamin T. Simonson
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
2
|
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, Zhang J. Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem 2024; 300:107288. [PMID: 38636662 PMCID: PMC11126801 DOI: 10.1016/j.jbc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.
Collapse
Affiliation(s)
- Bo Yu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiuyuan Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han Hu
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yuanshuo Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaoguang Hua
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Cuiling Xian
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanyan Li
- Department of Chemical Biology, School of Life Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Hermanstyne TO, Yang ND, Granados-Fuentes D, Li X, Mellor RL, Jegla T, Herzog ED, Nerbonne JM. Kv12-encoded K+ channels drive the day-night switch in the repetitive firing rates of SCN neurons. J Gen Physiol 2023; 155:e202213310. [PMID: 37516908 PMCID: PMC10373311 DOI: 10.1085/jgp.202213310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K+ channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1-/-) or Kcnh3 (Kv12.2-/-) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1-/- and Kv12.2-/- than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1-/-, Kv12.2-/-, and WT SCN neurons, and the day-night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1-/- and Kv12.2-/- SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, the pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of the nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1-/-, Kv12.2-/-, and Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals.
Collapse
Affiliation(s)
- Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nien-Du Yang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Xiaofan Li
- Department of Biology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Rebecca L. Mellor
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Jegla
- Department of Biology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
4
|
Hermanstyne TO, Yang ND, Granados-Fuentes D, Li X, Mellor RL, Jegla T, Herzog ED, Nerbonne JM. Kv12-Encoded K + Channels Drive the Day-Night Switch in the Repetitive Firing Rates of SCN Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526323. [PMID: 36778242 PMCID: PMC9915524 DOI: 10.1101/2023.01.30.526323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K + ) channels regulate daily oscillations in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K + conductance(s) driving these daily rhythms in repetitive firing rates, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K + channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1 -/- ) or Kcnh3 (Kv12.2 -/- ) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1 -/- and Kv12.2 -/- , than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1 -/- , Kv12.2 -/- and WT SCN neurons, and the day-night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1 -/- and Kv12.2 -/- SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1 -/- , Kv12.2 -/- , Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals.
Collapse
Affiliation(s)
- Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Nien-Du Yang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| | | | - Xiaofan Li
- Department of Biology, The Pennsylvania State University, University Park, PA
| | - Rebecca L. Mellor
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Timothy Jegla
- Department of Biology, The Pennsylvania State University, University Park, PA
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO
| | - Jeanne M. Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K + Current Entities. Cell Rep 2021; 32:107869. [PMID: 32640234 DOI: 10.1016/j.celrep.2020.107869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Auditory inner hair cells (IHCs) convert sound vibrations into receptor potentials that drive synaptic transmission. For the precise encoding of sound qualities, receptor potentials are shaped by K+ conductances tuning the properties of the IHC membrane. Using patch-clamp and computational modeling, we unravel this membrane specialization showing that IHCs express an exclusive repertoire of six voltage-dependent K+ conductances mediated by Kv1.8, Kv7.4, Kv11.1, Kv12.1, and BKCa channels. All channels are active at rest but are triggered differentially during sound stimulation. This enables non-saturating tuning over a far larger potential range than in IHCs expressing fewer current entities. Each conductance contributes to optimizing responses, but the combined activity of all channels synergistically improves phase locking and the dynamic range of intensities that IHCs can encode. Conversely, hypothetical simpler IHCs appear limited to encode only certain aspects (frequency or intensity). The exclusive channel repertoire of IHCs thus constitutes an evolutionary adaptation to encode complex sound through multifaceted receptor potentials.
Collapse
|
6
|
Dierich M, van Ham WB, Stary‐Weinzinger A, Leitner MG. Histidine at position 462 determines the low quinine sensitivity of ether-à-go-go channel superfamily member K v 12.1. Br J Pharmacol 2019; 176:2708-2723. [PMID: 31032878 PMCID: PMC6609544 DOI: 10.1111/bph.14693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The ether-à-go-go (Eag) Kv superfamily comprises closely related Kv 10, Kv 11, and Kv 12 subunits. Kv 11.1 (termed hERG in humans) gained much attention, as drug-induced inhibition of these channels is a frequent cause of sudden death in humans. The exclusive drug sensitivity of Kv 11.1 can be explained by central drug-binding pockets that are absent in most other channels. Currently, it is unknown whether Kv 12 channels are equipped with an analogous drug-binding pocket and whether drug-binding properties are conserved in all Eag superfamily members. EXPERIMENTAL APPROACH We analysed sensitivity of recombinant Kv 12.1 channels to quinine, a substituted quinoline that blocks Kv 10.1 and Kv 11.1 at low micromolar concentrations. KEY RESULTS Quinine inhibited Kv 12.1, but its affinity was 10-fold lower than for Kv 11.1. Contrary to Kv 11.1, quinine inhibited Kv 12.1 in a largely voltage-independent manner and induced channel opening at more depolarised potentials. Low sensitivity of Kv 12.1 and characteristics of quinine-dependent inhibition were determined by histidine 462, as site-directed mutagenesis of this residue into the homologous tyrosine of Kv 11.1 conferred Kv 11.1-like quinine block to Kv 12.1(H462Y). Molecular modelling demonstrated that the low affinity of Kv 12.1 was determined by only weak interactions of residues in the central cavity with quinine. In contrast, more favourable interactions can explain the higher quinine sensitivity of Kv 12.1(H462Y) and Kv 11.1 channels. CONCLUSIONS AND IMPLICATIONS The quinoline-binding "motif" is not conserved within the Eag superfamily, although the overall architecture of these channels is apparently similar. Our findings highlight functional and pharmacological diversity in this group of evolutionary-conserved channels.
Collapse
Affiliation(s)
- Marlen Dierich
- Department of Neurophysiology, Institute of Physiology and PathophysiologyPhilipps‐University MarburgMarburgGermany
| | - Willem B. van Ham
- Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | | | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and PathophysiologyPhilipps‐University MarburgMarburgGermany
- Division of Physiology, Department of Physiology and Medical PhysicsMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Jegla T, Busey G, Assmann SM. Evolution and Structural Characteristics of Plant Voltage-Gated K + Channels. THE PLANT CELL 2018; 30:2898-2909. [PMID: 30389753 PMCID: PMC6354262 DOI: 10.1105/tpc.18.00523] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 05/18/2023]
Abstract
Plant voltage-gated K+ channels have been referred to as "plant Shakers" in reference to animal Shaker channels, the first K+ channels identified. Recent advances in our knowledge of K+ channel evolution and structure have significantly deepened the divide between these plant and animal K+ channels, suggesting that it is time to completely retire the "plant Shaker" designation. Evolutionary genomics reveals that plant voltage-gated K+ channels and metazoan Shakers derive from distinct prokaryotic ancestors. The plant channels belong to a lineage that includes cyclic nucleotide-gated channels and metazoan ether-à-go-go and hyperpolarization-activated, cyclic nucleotide-gated channels. We refer to this lineage as the CNBD channel superfamily, because all these channels share a cytoplasmic gating domain homologous to cyclic nucleotide binding domains. The first structures of CNBD superfamily channels reveal marked differences in coupling between the voltage sensor and ion-conducting pore relative to metazoan Shaker channels. Viewing plant voltage-gated K+ channel function through the lens of CNBD superfamily structures should lead to insights into how these channels are regulated.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology and Huck Institute for the Life Sciences, Penn State University, 230 Life Sciences Building, University Park, Pennsylvania 16802
| | - Gregory Busey
- Department of Biology, Penn State University, 225 Life Sciences Building, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Penn State University, 354 North Frear, University Park, Pennsylvania 16802
| |
Collapse
|
8
|
Pisupati A, Mickolajczyk KJ, Horton W, van Rossum DB, Anishkin A, Chintapalli SV, Li X, Chu-Luo J, Busey G, Hancock WO, Jegla T. The S6 gate in regulatory Kv6 subunits restricts heteromeric K + channel stoichiometry. J Gen Physiol 2018; 150:1702-1721. [PMID: 30322883 PMCID: PMC6279357 DOI: 10.1085/jgp.201812121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Atypical substitutions in the S6 activation gate sequence distinguish “regulatory” Kv subunits, which cannot homotetramerize due to T1 self-incompatibility. Pisupati et al. show that such substitutions in Kv6 work together with self-incompatibility to restrict Kv2:Kv6 heteromeric stoichiometry to 3:1. The Shaker-like family of voltage-gated K+ channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1–4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a “silent” or “regulatory” phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.
Collapse
Affiliation(s)
- Aditya Pisupati
- Department of Biology, Pennsylvania State University, University Park, PA.,Medical Scientist Training Program, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - William Horton
- Department of Animal Science, Pennsylvania State University, University Park, PA
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA.,Division of Experimental Pathology, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xiaofan Li
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Jose Chu-Luo
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Gregory Busey
- Department of Biology, Pennsylvania State University, University Park, PA
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - Timothy Jegla
- Department of Biology, Pennsylvania State University, University Park, PA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
9
|
Dierich M, Leitner MG. K v12.1 channels are not sensitive to G qPCR-triggered activation of phospholipase Cβ. Channels (Austin) 2018; 12:228-239. [PMID: 30136882 PMCID: PMC6986784 DOI: 10.1080/19336950.2018.1475783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kv12.1 K+ channels are expressed in several brain areas, but no physiological function could be attributed to these subunits so far. As genetically-modified animal models are not available, identification of native Kv12.1 currents must rely on characterization of distinct channel properties. Recently, it was shown in Xenopus laevis oocytes that Kv12.1 channels were modulated by membrane PI(4,5)P2. However, it is not known whether these channels are also sensitive to physiologically-relevant PI(4,5)P2 dynamics. We thus studied whether Kv12.1 channels were modulated by activation of phospholipase C β (PLCβ) and found that they were insensitive to receptor-triggered depletion of PI(4,5)P2. Thus, Kv12.1 channels add to the growing list of K+ channels that are insensitive to PLCβ signaling, although modulated by PI(4,5)P2 in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Marlen Dierich
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany
| | - Michael G Leitner
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany.,b Division of Physiology, Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
10
|
Flinck M, Kramer SH, Pedersen SF. Roles of pH in control of cell proliferation. Acta Physiol (Oxf) 2018; 223:e13068. [PMID: 29575508 DOI: 10.1111/apha.13068] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/17/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
Precise spatiotemporal regulation of intracellular pH (pHi ) is a prerequisite for normal cell function, and changes in pHi or pericellular pH (pHe ) exert important signalling functions. It is well established that proliferation of mammalian cells is dependent on a permissive pHi in the slightly alkaline range (7.0-7.2). It is also clear that mitogen signalling in nominal absence of HCO3- is associated with an intracellular alkalinization (~0.3 pH unit above steady-state pHi ), which is secondary to activation of Na+ /H+ exchange. However, it remains controversial whether this increase in pHi is part of the mitogenic signal cascade leading to cell cycle entry and progression, and whether it is relevant under physiological conditions. Furthermore, essentially all studies of pHi in mammalian cell proliferation have focused on the mitogen-induced G0-G1 transition, and the regulation and roles of pHi during the cell cycle remain poorly understood. The aim of this review is to summarize and critically discuss the possible roles of pHi and pHe in cell cycle progression. While the focus is on the mammalian cell cycle, important insights from studies in lower eukaryotes are also discussed. We summarize current evidence of links between cell cycle progression and pHi and discuss possible pHi - and pHe sensors and signalling pathways relevant to mammalian proliferation control. The possibility that changes in pHi during cell cycle progression may be an integral part of the checkpoint control machinery is explored. Finally, we discuss the relevance of links between pH and proliferation in the context of the perturbed pH homoeostasis and acidic microenvironment of solid tumours.
Collapse
Affiliation(s)
- M. Flinck
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - S. H. Kramer
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - S. F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
11
|
Dai G, James ZM, Zagotta WN. Dynamic rearrangement of the intrinsic ligand regulates KCNH potassium channels. J Gen Physiol 2018; 150:625-635. [PMID: 29567795 PMCID: PMC5881448 DOI: 10.1085/jgp.201711989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
KCNH potassium channels possess an intrinsic ligand in their cyclic nucleotide-binding homology domain, located at the N- and C-terminal domain interface. Dai et al. show that this intrinsic ligand regulates voltage-dependent potentiation via a rearrangement between the ligand and its binding site. KCNH voltage-gated potassium channels (EAG, ERG, and ELK) play significant roles in neuronal and cardiac excitability. They contain cyclic nucleotide-binding homology domains (CNBHDs) but are not directly regulated by cyclic nucleotides. Instead, the CNBHD ligand-binding cavity is occupied by an intrinsic ligand, which resides at the intersubunit interface between the N-terminal eag domain and the C-terminal CNBHD. We show that, in Danio rerio ELK channels, this intrinsic ligand is critical for voltage-dependent potentiation (VDP), a process in which channel opening is stabilized by prior depolarization. We demonstrate that an exogenous peptide corresponding to the intrinsic ligand can bind to and regulate zebrafish ELK channels. This exogenous intrinsic ligand inhibits the channels before VDP and potentiates the channels after VDP. Furthermore, using transition metal ion fluorescence resonance energy transfer and a fluorescent noncanonical amino acid L-Anap, we show that there is a rearrangement of the intrinsic ligand relative to the CNBHD during VDP. We propose that the intrinsic ligand switches from antagonist to agonist as a result of a rearrangement of the eag domain–CNBHD interaction during VDP.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Dierich M, Evers S, Wilke BU, Leitner MG. Inverse Modulation of Neuronal K v12.1 and K v11.1 Channels by 4-Aminopyridine and NS1643. Front Mol Neurosci 2018; 11:11. [PMID: 29440988 PMCID: PMC5797642 DOI: 10.3389/fnmol.2018.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023] Open
Abstract
The three members of the ether-à-go-go-gene-like (Elk; Kv12.1-Kv12.3) family of voltage-gated K+ channels are predominantly expressed in neurons, but only little information is available on their physiological relevance. It was shown that Kv12.2 channels modulate excitability of hippocampal neurons, but no native current could be attributed to Kv12.1 and Kv12.3 subunits yet. This may appear somewhat surprising, given high expression of their mRNA transcripts in several brain areas. Native Kv12 currents may have been overlooked so far due to limited knowledge on their biophysical properties and lack of specific pharmacology. Except for Kv12.2, appropriate genetically modified mouse models have not been described; therefore, identification of Kv12-mediated currents in native cell types must rely on characterization of unique properties of the channels. We focused on recombinant human Kv12.1 to identify distinct properties of these channels. We found that Kv12.1 channels exhibited significant mode shift of activation, i.e., stabilization of the voltage sensor domain in a “relaxed” open state after prolonged channel activation. This mode shift manifested by a slowing of deactivation and, most prominently, a significant shift of voltage dependence to hyperpolarized potentials. In contrast to related Kv11.1, mode shift was not sensitive to extracellular Na+, which allowed for discrimination between these isoforms. Sensitivity of Kv12.1 and Kv11.1 to the broad-spectrum K+ antagonist 4-aminopyridine was similar. However, 4-AP strongly activated Kv12.1 channels, but it was an inhibitor of Kv11 channels. Interestingly, the agonist of Kv11 channels NS1643 also differentially modulated the activity of these channels, i.e., NS1643 activated Kv11.1, but strongly inhibited Kv12.1 channels. Thus, these closely related channels are distinguished by inverse pharmacological profiles. In summary, we identified unique biophysical and pharmacological properties of Kv12.1 channels and established straightforward experimental protocols to characterize Kv12.1-mediated currents. Identification of currents in native cell types with mode shift that are activated through 4-AP and inhibited by NS1643 can provide strong evidence for contribution of Kv12.1 to whole cell currents.
Collapse
Affiliation(s)
- Marlen Dierich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Bettina U Wilke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Michael G Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany.,Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
13
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
14
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A 2017; 114:E5608-E5615. [PMID: 28652368 DOI: 10.1073/pnas.1701607114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral-aboral axis in Nematostella We also show functionally that the conserved "kernel" of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.
Collapse
|
16
|
Dai G, Zagotta WN. Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels. eLife 2017; 6. [PMID: 28443815 PMCID: PMC5440166 DOI: 10.7554/elife.26355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
EAG-like (ELK) voltage-gated potassium channels are abundantly expressed in the brain. These channels exhibit a behavior called voltage-dependent potentiation (VDP), which appears to be a specialization to dampen the hyperexitability of neurons. VDP manifests as a potentiation of current amplitude, hyperpolarizing shift in voltage sensitivity, and slowing of deactivation in response to a depolarizing prepulse. Here we show that VDP of D. rerio ELK channels involves the structural interaction between the intracellular N-terminal eag domain and C-terminal CNBHD. Combining transition metal ion FRET, patch-clamp fluorometry, and incorporation of a fluorescent noncanonical amino acid, we show that there is a rearrangement in the eag domain-CNBHD interaction with the kinetics, voltage-dependence, and ATP-dependence of VDP. We propose that the activation of ELK channels involves a slow open-state dependent rearrangement of the direct interaction between the eag domain and CNBHD, which stabilizes the opening of the channel. DOI:http://dx.doi.org/10.7554/eLife.26355.001 In humans and other animals, electrical signals trigger the heart to beat and carry information around the brain and nervous system. Particular cells can generate these signals by regulating the flow of ions into and out of the cell via proteins called ion channels. These proteins sit in the membrane that surrounds the cell and will open or close in response to specific signals. For example, an ion channel in humans called hERG allows positively-charged potassium ions to flow out of a heart cell to help the cell return to its “resting” state after producing an electrical signal. Defects in hERG can alter the rhythm at which the heart beats, leading to a serious condition called Long QT syndrome. The human hERG channel is part of a family of related channels known as the KCNH channels. These channels are made of four protein subunits that assemble to form a pore that spans the cell membrane. When a cell is resting before producing an electrical signal, KCNH channels are generally closed. However, once an electrical signal starts, the flow of ions through other ion channels in the cell membrane changes an electrical property across the membrane known as the “voltage”. This change in voltage causes KCNH channels to open. Dai and Zagotta studied how a KCNH channel known as ELK from zebrafish responds to changes in membrane voltage. The experiments show that the manner in which ELK channels respond to the voltage is due to changes in how the subunits interact in the part of the channel that lies inside the cell. Further experiments using several new techniques reveal in much more detail how the shape of the channel alters as the voltage changes. These new techniques could also be used to observe how other KCNH channels in the heart and brain change shape in response to changes in voltage. This could lead to the design of new drugs to treat heart and neurological diseases. DOI:http://dx.doi.org/10.7554/eLife.26355.002
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
17
|
Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations. Sci Rep 2016; 6:23417. [PMID: 27005320 PMCID: PMC4804213 DOI: 10.1038/srep23417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 11/28/2022] Open
Abstract
Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases.
Collapse
|
18
|
Aman TK, Gordon SE, Zagotta WN. Regulation of CNGA1 Channel Gating by Interactions with the Membrane. J Biol Chem 2016; 291:9939-47. [PMID: 26969165 DOI: 10.1074/jbc.m116.723932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are expressed in rod photoreceptors and open in response to direct binding of cyclic nucleotides. We have previously shown that potentiation of CNGA1 channels by transition metals requires a histidine in the A' helix following the S6 transmembrane segment. Here, we used transition metal ion FRET and patch clamp fluorometry with a fluorescent, noncanonical amino acid (3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap)) to show that the potentiating transition metal Co(2+) binds in or near the A' helix. Adding high-affinity metal-binding sites to the membrane (stearoyl-nitrilotriacetic acid (C18-NTA)) increased potentiation for low Co(2+) concentrations, indicating that the membrane can coordinate metal ions with the A' helix. These results suggest that restraining the A' helix to the plasma membrane potentiates CNGA1 channel opening. Similar interactions between the A' helix and the plasma membrane may underlie regulation of structurally related hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium subfamily H (KCNH) channels by plasma membrane components.
Collapse
Affiliation(s)
- Teresa K Aman
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Sharona E Gordon
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - William N Zagotta
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
19
|
Corbin-Leftwich A, Mossadeq SM, Ha J, Ruchala I, Le AHN, Villalba-Galea CA. Retigabine holds KV7 channels open and stabilizes the resting potential. ACTA ACUST UNITED AC 2016; 147:229-41. [PMID: 26880756 PMCID: PMC4772374 DOI: 10.1085/jgp.201511517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
Abstract
The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine's action remains unknown, previous studies have identified the pore region of KV7 channels as the drug's target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered.
Collapse
Affiliation(s)
- Aaron Corbin-Leftwich
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Sayeed M Mossadeq
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Junghoon Ha
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Iwona Ruchala
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Audrey Han Ngoc Le
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|