1
|
Abdelaziz R, Tomczak AP, Neef A, Pardo LA. Revealing a hidden conducting state by manipulating the intracellular domains in K V10.1 exposes the coupling between two gating mechanisms. eLife 2024; 12:RP91420. [PMID: 39259196 PMCID: PMC11390113 DOI: 10.7554/elife.91420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The KCNH family of potassium channels serves relevant physiological functions in both excitable and non-excitable cells, reflected in the massive consequences of mutations or pharmacological manipulation of their function. This group of channels shares structural homology with other voltage-gated K+ channels, but the mechanisms of gating in this family show significant differences with respect to the canonical electromechanical coupling in these molecules. In particular, the large intracellular domains of KCNH channels play a crucial role in gating that is still only partly understood. Using KCNH1(KV10.1) as a model, we have characterized the behavior of a series of modified channels that could not be explained by the current models. With electrophysiological and biochemical methods combined with mathematical modeling, we show that the uncovering of an open state can explain the behavior of the mutants. This open state, which is not detectable in wild-type channels, appears to lack the rapid flicker block of the conventional open state. Because it is accessed from deep closed states, it elucidates intermediate gating events well ahead of channel opening in the wild type. This allowed us to study gating steps prior to opening, which, for example, explain the mechanism of gating inhibition by Ca2+-Calmodulin and generate a model that describes the characteristic features of KCNH channels gating.
Collapse
Affiliation(s)
- Reham Abdelaziz
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Adam P Tomczak
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Andreas Neef
- Neurophysics Laboratory, Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| |
Collapse
|
2
|
Ghorbani M, Wang ZJ, Chen X, Tiwari PB, Klauda JB, Brelidze TI. Chlorpromazine inhibits EAG1 channels by altering the coupling between the PAS, CNBH and pore domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581826. [PMID: 38464246 PMCID: PMC10925124 DOI: 10.1101/2024.02.23.581826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
EAG1 depolarization-activated potassium selective channels are important targets for treatment of cancer and neurological disorders. EAG1 channels are formed by a tetrameric subunit assembly with each subunit containing an N-terminal Per-Arnt-Sim (PAS) domain and C-terminal cyclic nucleotide-binding homology (CNBH) domain. The PAS and CNBH domains from adjacent subunits interact and form an intracellular tetrameric ring that regulates the EAG1 channel gating, including the movement of the voltage sensor domain (VSD) from closed to open states. Small molecule ligands can inhibit EAG1 channels by binding to their PAS domains. However, the allosteric pathways of this inhibition are not known. Here we show that chlorpromazine, a PAS domain small molecule binder, alters interactions between the PAS and CNBH domains and decreases the coupling between the intracellular tetrameric ring and the pore of the channel, while having little effect on the coupling between the PAS and VSD domains. In addition, chlorpromazine binding to the PAS domain did not alter Cole-Moore shift characteristic of EAG1 channels, further indicating that chlorpromazine has no effect on VSD movement from the deep closed to opened states. Our study provides a framework for understanding global pathways of EAG1 channel regulation by small molecule PAS domain binders.
Collapse
|
3
|
Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating. Proc Natl Acad Sci U S A 2021; 118:2108796118. [PMID: 34716268 DOI: 10.1073/pnas.2108796118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.
Collapse
|
4
|
Codding SJ, Johnson AA, Trudeau MC. Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains. Channels (Austin) 2021; 14:294-309. [PMID: 32924766 PMCID: PMC7515569 DOI: 10.1080/19336950.2020.1816107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in the C-terminal region. The intracellular PAS domains and CNBHDs interact directly and regulate some of the characteristic gating properties of each type of KCNH channel. The PAS-CNBHD interaction regulates slow closing (deactivation) of hERG channels, the kinetics of activation and pre-pulse dependent population of closed states (the Cole-Moore shift) in EAG channels and voltage-dependent potentiation in ELK channels. KCNH channels are all regulated by an intrinsic ligand motif in the C-terminal region which binds to the CNBHD. Here, we focus on some recent advances regarding the PAS-CNBHD interaction and the intrinsic ligand.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Ashley A Johnson
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| |
Collapse
|
5
|
Ben-Bassat A, Giladi M, Haitin Y. Structure of KCNH2 cyclic nucleotide-binding homology domain reveals a functionally vital salt-bridge. J Gen Physiol 2021; 152:151568. [PMID: 32191791 PMCID: PMC7141593 DOI: 10.1085/jgp.201912505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/04/2023] Open
Abstract
Human KCNH2 channels (hKCNH2, ether-à-go-go [EAG]–related gene, hERG) are best known for their contribution to cardiac action potential repolarization and have key roles in various pathologies. Like other KCNH family members, hKCNH2 channels contain a unique intracellular complex, consisting of an N-terminal eag domain and a C-terminal cyclic nucleotide-binding homology domain (CNBHD), which is crucial for channel function. Previous studies demonstrated that the CNBHD is occupied by an intrinsic ligand motif, in a self-liganded conformation, providing a structural mechanism for the lack of KCNH channel regulation by cyclic nucleotides. While there have been significant advancements in the structural and functional characterization of the CNBHD of KCNH channels, a high-resolution structure of the hKCNH2 intracellular complex has been missing. Here, we report the 1.5 Å resolution structure of the hKCNH2 channel CNBHD. The structure reveals the canonical fold shared by other KCNH family members, where the spatial organization of the intrinsic ligand is preserved within the β-roll region. Moreover, measurements of small-angle x-ray scattering profile in solution, as well as comparison with a recent NMR analysis of hKCNH2, revealed high agreement with the crystallographic structure, indicating an overall low flexibility in solution. Importantly, we identified a novel salt-bridge (E807-R863) which was not previously resolved in the NMR and cryo-EM structures. Electrophysiological analysis of charge-reversal mutations revealed the bridge’s crucial role in hKCNH2 function. Moreover, comparison with other KCNH members revealed the structural conservation of this salt-bridge, consistent with its functional significance. Together with the available structure of the mouse KCNH1 intracellular complex and previous electrophysiological and spectroscopic studies of KCNH family members, we propose that this salt-bridge serves as a strategically positioned linchpin to support both the spatial organization of the intrinsic ligand and the maintenance of the intracellular complex interface.
Collapse
Affiliation(s)
- Ariel Ben-Bassat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
7
|
Barros F, de la Peña P, Domínguez P, Sierra LM, Pardo LA. The EAG Voltage-Dependent K + Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front Pharmacol 2020; 11:411. [PMID: 32351384 PMCID: PMC7174612 DOI: 10.3389/fphar.2020.00411] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
EAG (ether-à-go-go or KCNH) are a subfamily of the voltage-gated potassium (Kv) channels. Like for all potassium channels, opening of EAG channels drives the membrane potential toward its equilibrium value for potassium, thus setting the resting potential and repolarizing action potentials. As voltage-dependent channels, they switch between open and closed conformations (gating) when changes in membrane potential are sensed by a voltage sensing domain (VSD) which is functionally coupled to a pore domain (PD) containing the permeation pathway, the potassium selectivity filter, and the channel gate. All Kv channels are tetrameric, with four VSDs formed by the S1-S4 transmembrane segments of each subunit, surrounding a central PD with the four S5-S6 sections arranged in a square-shaped structure. Structural information, mutagenesis, and functional experiments, indicated that in "classical/Shaker-type" Kv channels voltage-triggered VSD reorganizations are transmitted to PD gating via the α-helical S4-S5 sequence that links both modules. Importantly, these Shaker-type channels share a domain-swapped VSD/PD organization, with each VSD contacting the PD of the adjacent subunit. In this case, the S4-S5 linker, acting as a rigid mechanical lever (electromechanical lever coupling), would lead to channel gate opening at the cytoplasmic S6 helices bundle. However, new functional data with EAG channels split between the VSD and PD modules indicate that, in some Kv channels, alternative VSD/PD coupling mechanisms do exist. Noticeably, recent elucidation of the architecture of some EAG channels, and other relatives, showed that their VSDs are non-domain swapped. Despite similarities in primary sequence and predicted structural organization for all EAG channels, they show marked kinetic differences whose molecular basis is not completely understood. Thus, while a common general architecture may establish the gating system used by the EAG channels and the physicochemical coupling of voltage sensing to gating, subtle changes in that common structure, and/or allosteric influences of protein domains relatively distant from the central gating machinery, can crucially influence the gating process. We consider here the latest advances on these issues provided by the elucidation of eag1 and erg1 three-dimensional structures, and by both classical and more recent functional studies with different members of the EAG subfamily.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Oviedo, Spain
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
8
|
Wang ZJ, Soohoo SM, Tiwari PB, Piszczek G, Brelidze TI. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. J Biol Chem 2020; 295:4114-4123. [PMID: 32047112 PMCID: PMC7105296 DOI: 10.1074/jbc.ra119.012377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known whether the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance, tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG and related ERG and ELK K+ channels and places the PAS domain as a new target for drug discovery in EAG and related channels. Up-regulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises the possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Stephanie M Soohoo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Grzegorz Piszczek
- Biophysics Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057.
| |
Collapse
|
9
|
Shi YP, Thouta S, Claydon TW. Modulation of hERG K + Channel Deactivation by Voltage Sensor Relaxation. Front Pharmacol 2020; 11:139. [PMID: 32184724 PMCID: PMC7059196 DOI: 10.3389/fphar.2020.00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
The hERG (human-ether-à-go-go-related gene) channel underlies the rapid delayed rectifier current, Ikr, in the heart, which is essential for normal cardiac electrical activity and rhythm. Slow deactivation is one of the hallmark features of the unusual gating characteristics of hERG channels, and plays a crucial role in providing a robust current that aids repolarization of the cardiac action potential. As such, there is significant interest in elucidating the underlying mechanistic determinants of slow hERG channel deactivation. Recent work has shown that the hERG channel S4 voltage sensor is stabilized following activation in a process termed relaxation. Voltage sensor relaxation results in energetic separation of the activation and deactivation pathways, producing a hysteresis, which modulates the kinetics of deactivation gating. Despite widespread observation of relaxation behaviour in other voltage-gated K+ channels, such as Shaker, Kv1.2 and Kv3.1, as well as the voltage-sensing phosphatase Ci-VSP, the relationship between stabilization of the activated voltage sensor by the open pore and voltage sensor relaxation in the control of deactivation has only recently begun to be explored. In this review, we discuss present knowledge and questions raised related to the voltage sensor relaxation mechanism in hERG channels and compare structure-function aspects of relaxation with those observed in related ion channels. We focus discussion, in particular, on the mechanism of coupling between voltage sensor relaxation and deactivation gating to highlight the insight that these studies provide into the control of hERG channel deactivation gating during their physiological functioning.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Robertson GA, Morais-Cabral JH. hERG Function in Light of Structure. Biophys J 2019; 118:790-797. [PMID: 31669064 DOI: 10.1016/j.bpj.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
The human ether-a-go-go-related gene1 (hERG) ion channel has been the subject of fascination since it was identified as a target of long QT syndrome more than 20 years ago. In this Biophysical Perspective, we look at what makes hERG intriguing and vexingly unique. By probing recent high-resolution structures in the context of functional and biochemical data, we attempt to summarize new insights into hERG-specific function and articulate important unanswered questions. X-ray crystallography and cryo-electron microscopy have revealed features not previously on the radar-the "nonswapped" transmembrane architecture, an "intrinsic ligand," and hydrophobic pockets off a pore cavity that is surprisingly small. Advances in our understanding of drug block and inactivation mechanisms are noted, but a full picture will require more investigation.
Collapse
Affiliation(s)
- Gail A Robertson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - João H Morais-Cabral
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
De Zio R, Gerbino A, Forleo C, Pepe M, Milano S, Favale S, Procino G, Svelto M, Carmosino M. Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome. J Cell Mol Med 2019; 23:6331-6342. [PMID: 31361068 PMCID: PMC6714209 DOI: 10.1111/jcmm.14521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022] Open
Abstract
The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.
Collapse
Affiliation(s)
- Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Martino Pepe
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
12
|
Brelidze TI. N- and C-terminal interactions in KCNH channels: The spotlight on the intrinsic ligand. J Gen Physiol 2019; 151:400-403. [PMID: 30782602 PMCID: PMC6445575 DOI: 10.1085/jgp.201812313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brelidze examines recent data revealing the new role of the intrinsic ligand in hERG potassium channel gating.
Collapse
Affiliation(s)
- Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
13
|
Barros F, Pardo LA, Domínguez P, Sierra LM, de la Peña P. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int J Mol Sci 2019; 20:ijms20020248. [PMID: 30634573 PMCID: PMC6359393 DOI: 10.3390/ijms20020248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-dependent potassium channels (Kv channels) are crucial regulators of cell excitability that participate in a range of physiological and pathophysiological processes. These channels are molecular machines that display a mechanism (known as gating) for opening and closing a gate located in a pore domain (PD). In Kv channels, this mechanism is triggered and controlled by changes in the magnitude of the transmembrane voltage sensed by a voltage-sensing domain (VSD). In this review, we consider several aspects of the VSD–PD coupling in Kv channels, and in some relatives, that share a common general structure characterized by a single square-shaped ion conduction pore in the center, surrounded by four VSDs located at the periphery. We compile some recent advances in the knowledge of their architecture, based in cryo-electron microscopy (cryo-EM) data for high-resolution determination of their structure, plus some new functional data obtained with channel variants in which the covalent continuity between the VSD and PD modules has been interrupted. These advances and new data bring about some reconsiderations about the use of exclusively a classical electromechanical lever model of VSD–PD coupling by some Kv channels, and open a view of the Kv-type channels as allosteric machines in which gating may be dynamically influenced by some long-range interactional/allosteric mechanisms.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
14
|
Codding SJ, Trudeau MC. The hERG potassium channel intrinsic ligand regulates N- and C-terminal interactions and channel closure. J Gen Physiol 2018; 151:478-488. [PMID: 30425124 PMCID: PMC6445578 DOI: 10.1085/jgp.201812129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
An intersubunit interaction between the N-terminal PAS domain and C-terminal cyclic nucleotide binding homology domain (CNBHD) regulates slow deactivation in hERG potassium channels. By mutating the intrinsic ligand, Codding and Trudeau disrupt slow deactivation and prevent the PAS-CNBHD interaction. Human ether-à-go-go–related gene (hERG, KCNH2) voltage-activated potassium channels are critical for cardiac excitability. hERG channels have characteristic slow closing (deactivation), which is auto-regulated by a direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). hERG channels are not activated by the binding of extrinsic cyclic nucleotide ligands, but rather bind an “intrinsic ligand” that is composed of residues 860–862 within the CNBHD and mimics a cyclic nucleotide. The intrinsic ligand is located at the PAS–CNBHD interface, but its mechanism of action in hERG is not well understood. Here we use whole-cell patch-clamp electrophysiology and FRET spectroscopy to examine how the intrinsic ligand regulates gating. To carry out this work, we coexpress PAS (a PAS domain fused to cyan fluorescent protein) in trans with hERG “core” channels (channels with a deletion of the PAS domain fused to citrine fluorescent protein). The PAS domain in trans with hERG core channels has slow (regulated) deactivation, like that of WT hERG channels, as well as robust FRET, which indicates there is a direct functional and structural interaction of the PAS domain with the channel core. In contrast, PAS in trans with hERG F860A core channels has intermediate deactivation and intermediate FRET, indicating perturbation of the PAS domain interaction with the CNBHD. Furthermore, PAS in trans with hERG L862A core channels, or PAS in trans with hERG F860G,L862G core channels, has fast (nonregulated) deactivation and no measurable FRET, indicating abolition of the PAS and CNBHD interaction. These results indicate that the intrinsic ligand is necessary for the functional and structural interaction between the PAS domain and the CNBHD, which regulates the characteristic slow deactivation gating in hERG channels.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Relative positioning of Kv11.1 (hERG) K + channel cytoplasmic domain-located fluorescent tags toward the plasma membrane. Sci Rep 2018; 8:15494. [PMID: 30341381 PMCID: PMC6195548 DOI: 10.1038/s41598-018-33492-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Recent cryo-EM data have provided a view of the KCNH potassium channels molecular structures. However, some details about the cytoplasmic domains organization and specially their rearrangements associated to channel functionality are still lacking. Here we used the voltage-dependent dipicrylamine (DPA)-induced quench of fluorescent proteins (FPS) linked to different positions at the cytoplasmic domains of KCNH2 (hERG) to gain some insights about the coarse structure of these channel parts. Fast voltage-clamp fluorometry with HEK293 cells expressing membrane-anchored FPs under conditions in which only the plasma membrane potential is modified, demonstrated DPA voltage-dependent translocation and subsequent FRET-triggered FP quenching. Our data demonstrate for the first time that the distance between an amino-terminal FP tag and the intracellular plasma membrane surface is shorter than that between the membrane and a C-terminally-located tag. The distances varied when the FPs were attached to other positions along the channel cytoplasmic domains. In some cases, we also detected slower fluorometric responses following the fast voltage-dependent dye translocation, indicating subsequent label movements orthogonal to the plasma membrane. This finding suggests the existence of additional conformational rearrangements in the hERG cytoplasmic domains, although their association with specific aspects of channel operation remains to be established.
Collapse
|
16
|
Dai G, James ZM, Zagotta WN. Dynamic rearrangement of the intrinsic ligand regulates KCNH potassium channels. J Gen Physiol 2018; 150:625-635. [PMID: 29567795 PMCID: PMC5881448 DOI: 10.1085/jgp.201711989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
KCNH potassium channels possess an intrinsic ligand in their cyclic nucleotide-binding homology domain, located at the N- and C-terminal domain interface. Dai et al. show that this intrinsic ligand regulates voltage-dependent potentiation via a rearrangement between the ligand and its binding site. KCNH voltage-gated potassium channels (EAG, ERG, and ELK) play significant roles in neuronal and cardiac excitability. They contain cyclic nucleotide-binding homology domains (CNBHDs) but are not directly regulated by cyclic nucleotides. Instead, the CNBHD ligand-binding cavity is occupied by an intrinsic ligand, which resides at the intersubunit interface between the N-terminal eag domain and the C-terminal CNBHD. We show that, in Danio rerio ELK channels, this intrinsic ligand is critical for voltage-dependent potentiation (VDP), a process in which channel opening is stabilized by prior depolarization. We demonstrate that an exogenous peptide corresponding to the intrinsic ligand can bind to and regulate zebrafish ELK channels. This exogenous intrinsic ligand inhibits the channels before VDP and potentiates the channels after VDP. Furthermore, using transition metal ion fluorescence resonance energy transfer and a fluorescent noncanonical amino acid L-Anap, we show that there is a rearrangement of the intrinsic ligand relative to the CNBHD during VDP. We propose that the intrinsic ligand switches from antagonist to agonist as a result of a rearrangement of the eag domain–CNBHD interaction during VDP.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
17
|
Abstract
Khoo and Pless examine new work that provides mechanistic insight into the role of the intrinsic ligand in KCNH ion channels.
Collapse
Affiliation(s)
- Keith K Khoo
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
de la Peña P, Domínguez P, Barros F. Gating mechanism of Kv11.1 (hERG) K + channels without covalent connection between voltage sensor and pore domains. Pflugers Arch 2017; 470:517-536. [PMID: 29270671 PMCID: PMC5805800 DOI: 10.1007/s00424-017-2093-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4–S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4–S5 linker induces an increasing negative shift in activation voltage dependence, a reduced zg value and a more negative ΔG0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4–S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4–S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.
Collapse
Affiliation(s)
- Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus de El Cristo, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
19
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Dai G, Zagotta WN. Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels. eLife 2017; 6. [PMID: 28443815 PMCID: PMC5440166 DOI: 10.7554/elife.26355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
EAG-like (ELK) voltage-gated potassium channels are abundantly expressed in the brain. These channels exhibit a behavior called voltage-dependent potentiation (VDP), which appears to be a specialization to dampen the hyperexitability of neurons. VDP manifests as a potentiation of current amplitude, hyperpolarizing shift in voltage sensitivity, and slowing of deactivation in response to a depolarizing prepulse. Here we show that VDP of D. rerio ELK channels involves the structural interaction between the intracellular N-terminal eag domain and C-terminal CNBHD. Combining transition metal ion FRET, patch-clamp fluorometry, and incorporation of a fluorescent noncanonical amino acid, we show that there is a rearrangement in the eag domain-CNBHD interaction with the kinetics, voltage-dependence, and ATP-dependence of VDP. We propose that the activation of ELK channels involves a slow open-state dependent rearrangement of the direct interaction between the eag domain and CNBHD, which stabilizes the opening of the channel. DOI:http://dx.doi.org/10.7554/eLife.26355.001 In humans and other animals, electrical signals trigger the heart to beat and carry information around the brain and nervous system. Particular cells can generate these signals by regulating the flow of ions into and out of the cell via proteins called ion channels. These proteins sit in the membrane that surrounds the cell and will open or close in response to specific signals. For example, an ion channel in humans called hERG allows positively-charged potassium ions to flow out of a heart cell to help the cell return to its “resting” state after producing an electrical signal. Defects in hERG can alter the rhythm at which the heart beats, leading to a serious condition called Long QT syndrome. The human hERG channel is part of a family of related channels known as the KCNH channels. These channels are made of four protein subunits that assemble to form a pore that spans the cell membrane. When a cell is resting before producing an electrical signal, KCNH channels are generally closed. However, once an electrical signal starts, the flow of ions through other ion channels in the cell membrane changes an electrical property across the membrane known as the “voltage”. This change in voltage causes KCNH channels to open. Dai and Zagotta studied how a KCNH channel known as ELK from zebrafish responds to changes in membrane voltage. The experiments show that the manner in which ELK channels respond to the voltage is due to changes in how the subunits interact in the part of the channel that lies inside the cell. Further experiments using several new techniques reveal in much more detail how the shape of the channel alters as the voltage changes. These new techniques could also be used to observe how other KCNH channels in the heart and brain change shape in response to changes in voltage. This could lead to the design of new drugs to treat heart and neurological diseases. DOI:http://dx.doi.org/10.7554/eLife.26355.002
Collapse
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
21
|
Tomczak AP, Fernández-Trillo J, Bharill S, Papp F, Panyi G, Stühmer W, Isacoff EY, Pardo LA. A new mechanism of voltage-dependent gating exposed by K V10.1 channels interrupted between voltage sensor and pore. J Gen Physiol 2017; 149:577-593. [PMID: 28360219 PMCID: PMC5412533 DOI: 10.1085/jgp.201611742] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/03/2022] Open
Abstract
A linker that connects the voltage-sensing domain and pore domain in voltage-gated K+ channels is thought to provide coupling during gating, but this view has been challenged in KCNH channels. Tomczak et al. investigate gating in KV10.1 channels with disrupted linkers and reveal multiple mechanisms. Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4–S5 linker). However, our recent work on channels disrupted in the S4–S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4–S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use “split” channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4–S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4–S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism.
Collapse
Affiliation(s)
- Adam P Tomczak
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Jorge Fernández-Trillo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Shashank Bharill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|