1
|
Stefanski KM, Huang H, Luu DD, Hutchison JM, Saksena N, Fisch AJ, Hasaka TP, Bauer JA, Kenworthy AK, Van Horn WD, Sanders CR. Small-Molecule Modulators of Lipid Raft Stability and Protein-Raft Partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620521. [PMID: 39713458 PMCID: PMC11661060 DOI: 10.1101/2024.10.28.620521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft , leading to two classes of compounds. Class I molecules altered the raft affinity of PMP22 and MAL and also reduced raft formation in a protein-dependent manner. Class II molecules modulated raft formation in a protein-independent manner. This suggests independent forces work collectively to stabilize lipid rafts. Both classes of compounds altered membrane fluidity in cells and modulated TRPM8 channel function. These compounds provide new tools for probing lipid raft function in cells and for furthering our understanding of raft biophysics.
Collapse
Affiliation(s)
- Katherine M. Stefanski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dustin D. Luu
- School of Molecular Sciences; The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - James M. Hutchison
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Nilabh Saksena
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alexander J. Fisch
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas P. Hasaka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joshua A. Bauer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wade D. Van Horn
- School of Molecular Sciences; The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Varma SG, Mitra A, Sarkar S. Self-diffusion is temperature independent on active membranes. Phys Chem Chem Phys 2024; 26:23348-23362. [PMID: 39211961 DOI: 10.1039/d4cp02470b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Molecular transport maintains cellular structures and functions. For example, lipid and protein diffusion sculpts the dynamic shapes and structures on the cell membrane that perform essential cellular functions, such as cell signaling. Temperature variations in thermal equilibrium rapidly change molecular transport properties. The coefficient of lipid self-diffusion increases exponentially with temperature in thermal equilibrium, for example. Hence, maintaining cellular homeostasis through molecular transport is hard in thermal equilibrium in the noisy cellular environment, where temperatures can fluctuate widely due to local heat generation. In this paper, using both molecular and lattice-based modeling of membrane transport, we show that the presence of active transport originating from the cell's cytoskeleton can make the self-diffusion of the molecules on the membrane robust to temperature fluctuations. The resultant temperature-independence of self-diffusion keeps the precision of cellular signaling invariant over a broad range of ambient temperatures, allowing cells to make robust decisions. We have also found that the Kawasaki algorithm, the widely used model of lipid transport on lattices, predicts incorrect temperature dependence of lipid self-diffusion in equilibrium. We propose a new algorithm that correctly captures the equilibrium properties of lipid self-diffusion and reproduces experimental observations.
Collapse
Affiliation(s)
- Saurav G Varma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Argha Mitra
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Sumantra Sarkar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
3
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
4
|
Kervin TA, Overduin M. Membranes are functionalized by a proteolipid code. BMC Biol 2024; 22:46. [PMID: 38414038 PMCID: PMC10898092 DOI: 10.1186/s12915-024-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.
Collapse
Affiliation(s)
- Troy A Kervin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Graf IR, Machta BB. A bifurcation integrates information from many noisy ion channels and allows for milli-Kelvin thermal sensitivity in the snake pit organ. Proc Natl Acad Sci U S A 2024; 121:e2308215121. [PMID: 38294944 PMCID: PMC10861916 DOI: 10.1073/pnas.2308215121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/10/2023] [Indexed: 02/02/2024] Open
Abstract
In various biological systems, information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to milli-Kelvin (mK) temperature increases, a thousand times more sensitive than their molecular sensors, thermo-transient receptor potential (TRP) ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the times between consecutive APs even in the presence of readout noise. A key model prediction is that the coefficient of variation in the distribution of interspike times decreases with AP frequency, and quantitative comparison with experiments indeed suggests that nerve fibers of snakes are located very close to the bifurcation. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.
Collapse
Affiliation(s)
| | - Benjamin B. Machta
- Department of Physics, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| |
Collapse
|
6
|
Fernandes CAH, Vénien-Bryan C. Human Kir2.1 Potassium Channel: Protocols for Cryo-EM Data Processing and Molecular Dynamics Simulations. Methods Mol Biol 2024; 2796:157-184. [PMID: 38856901 DOI: 10.1007/978-1-0716-3818-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Kir channels are potassium (K+) channels responsible for the mechanism of inward rectification, which plays a fundamental role in maintaining the resting membrane potential. There are seven Kir subfamilies, and their opening and closing mechanism is regulated by different regulatory factors. Genetically inherited defects in Kir channels are responsible for several rare human diseases, and for most of them, there are currently no effective therapeutic treatments. High-resolution structural information is not available for several members within the Kir subfamilies. Recently, our group achieved a significant breakthrough by utilizing cryo-EM single-particle analysis to elucidate the first structure of the human Kir2.1 channel. We present here the data processing protocol of the cryo-EM data of the human Kir2.1 channel, which is applicable to the structural determination of other ion channels by cryo-EM single-particle analysis. We also introduce a protocol designed to assess the structural heterogeneity within the cryo-EM data, allowing for the identification of other possible protein structure conformations present in the collected data. Moreover, we present a protocol for conducting all-atom molecular dynamics (MD) simulations for K+ channels, which can be incorporated into various membrane models to simulate different environments. We also propose some methods for analyzing the MD simulations, with a particular emphasis on assessing the local mobility of protein residues.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, Paris, France.
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, Paris, France.
| |
Collapse
|
7
|
Shelby SA, Veatch SL. The Membrane Phase Transition Gives Rise to Responsive Plasma Membrane Structure and Function. Cold Spring Harb Perspect Biol 2023; 15:a041395. [PMID: 37553204 PMCID: PMC10626261 DOI: 10.1101/cshperspect.a041395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Several groups have recently reported evidence for the emergence of domains in cell plasma membranes when membrane proteins are organized by ligand binding or assembly of membrane proximal scaffolds. These domains recruit and retain components that favor the liquid-ordered phase, adding to a decades-old literature interrogating the contribution of membrane phase separation in plasma membrane organization and function. Here we propose that both past and present observations are consistent with a model in which membranes have a high compositional susceptibility, arising from their thermodynamic state in a single phase that is close to a miscibility phase transition. This rigorous framework naturally allows for both transient structure in the form of composition fluctuations and long-lived structure in the form of induced domains. In this way, the biological tuning of plasma membrane composition enables a responsive compositional landscape that facilitates and augments cellular biochemistry vital to plasma membrane functions.
Collapse
Affiliation(s)
- Sarah A Shelby
- Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Santiago JA, Monroy F. Inhomogeneous Canham-Helfrich Abscission in Catenoid Necks under Critical Membrane Mosaicity. MEMBRANES 2023; 13:796. [PMID: 37755218 PMCID: PMC10534449 DOI: 10.3390/membranes13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The mechanical effects of membrane compositional inhomogeneities are analyzed in a process analogous to neck formation in cellular membranes. We cast on the Canham-Helfrich model of fluid membranes with both the spontaneous curvature and the surface tension being non-homogeneous functions along the cell membrane. The inhomogeneous distribution of necking forces is determined by the equilibrium mechanical equations and the boundary conditions as considered in the axisymmetric setting compatible with the necking process. To establish the role played by mechanical inhomogeneity, we focus on the catenoid, a surface of zero mean curvature. Analytic solutions are shown to exist for the spontaneous curvature and the constrictive forces in terms of the border radii. Our theoretical analysis shows that the inhomogeneous distribution of spontaneous curvature in a mosaic-like neck constrictional forces potentially contributes to the membrane scission under minimized work in living cells.
Collapse
Affiliation(s)
- José Antonio Santiago
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, Ciudad de México 05384, Mexico
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
- Translational Biophysics, Institute for Biomedical Research, Hospital Doce de Octubre (imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
- Translational Biophysics, Institute for Biomedical Research, Hospital Doce de Octubre (imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| |
Collapse
|
9
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
10
|
Veatch SL, Rogers N, Decker A, Shelby SA. The plasma membrane as an adaptable fluid mosaic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184114. [PMID: 36581017 PMCID: PMC9922517 DOI: 10.1016/j.bbamem.2022.184114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The fluid mosaic model proposed by Singer and Nicolson established a powerful framework to interrogate biological membranes that has stood the test of time. They proposed that the membrane is a simple fluid, meaning that proteins and lipids are randomly distributed over distances larger than those dictated by direct interactions. Here we present an update to this model that describes a spatially adaptable fluid membrane capable of tuning local composition in response to forces originating outside the membrane plane. This revision is rooted in the thermodynamics of lipid mixtures, draws from recent experimental results, and suggests new modes of membrane function.
Collapse
Affiliation(s)
- Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | - Nat Rogers
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Adam Decker
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Ho PS, Kao TY, Li CC, Lan YJ, Lai YC, Chiang YW. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15372-15383. [PMID: 36454955 DOI: 10.1021/acs.langmuir.2c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodiscs are broadly used for characterization of membrane proteins as they are generally assumed to provide a near-native environment. In fact, it is an open question whether the physical properties of lipids in nanodiscs and membrane vesicles of the same lipid composition are identical. Here, we investigate the properties of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and their mixtures) in two different sample types, nanodiscs and multilamellar vesicles, by means of spin-label electron spin resonance techniques. Our results provide a quantitative description of lipid dynamics and ordering, elucidating the molecular details of how lipids in the two sample types behave differently in response to temperature and lipid composition. We show that the properties of lipids are altered in nanodiscs such that the dissimilarity of the fluid and gel lipid phases is reduced, and the first-order phase transitions are largely abolished in nanodiscs. We unveil that the ensemble of lipids in the middle of a nanodisc bilayer, as probed by the end-chain spin-label 16-PC, is promoted to a state close to a miscibility critical point, thereby rendering the phase transitions continuous. Critical phenomena have recently been proposed to explain features of the heterogeneity in native cell membranes. Our results lay the groundwork for how to establish a near-native environment in nanodiscs with simple organization of lipid components.
Collapse
Affiliation(s)
- Pei-Shan Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402-002, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
12
|
Levental I, Lyman E. Author Correction: Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2022; 24:79. [DOI: 10.1038/s41580-022-00560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Abou Karam P, Rosenhek‐Goldian I, Ziv T, Ben Ami Pilo H, Azuri I, Rivkin A, Kiper E, Rotkopf R, Cohen SR, Torrecilhas AC, Avinoam O, Rojas A, Morandi MI, Regev‐Rudzki N. Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Rep 2022; 23:e54755. [PMID: 35642585 PMCID: PMC9253735 DOI: 10.15252/embr.202254755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Collapse
Affiliation(s)
- Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | | | - Tamar Ziv
- Smoler Proteomics CenterDepartment of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Hila Ben Ami Pilo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ido Azuri
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Sidney R Cohen
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | | | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alicia Rojas
- Laboratory of HelminthologyFaculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica
| | - Mattia I Morandi
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
14
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Novinger Q, Suma A, Sigg D, Gonnella G, Carnevale V. Particle-based Ising model. Phys Rev E 2021; 103:012125. [PMID: 33601607 DOI: 10.1103/physreve.103.012125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023]
Abstract
We characterize equilibrium properties and relaxation dynamics of a two-dimensional lattice containing, at each site, two particles connected by a double-well potential (dumbbell). Dumbbells are oriented in the orthogonal direction with respect to the lattice plane and interact with each other through a Lennard-Jones potential truncated at the nearest neighbor distance. We show that the system's equilibrium properties are accurately described by a two-dimensional Ising model with an appropriate coupling constant. Moreover, we characterize the coarsening kinetics by calculating the cluster size as a function of time and compare the results with Monte Carlo simulations based on Glauber or reactive dynamics rate constants.
Collapse
Affiliation(s)
- Quentin Novinger
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Antonio Suma
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA.,Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari, Italy
| | | | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari, Italy
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
16
|
Miller EJ, Ratajczak AM, Anthony AA, Mottau M, Rivera Gonzalez XI, Honerkamp-Smith AR. Divide and conquer: How phase separation contributes to lateral transport and organization of membrane proteins and lipids. Chem Phys Lipids 2020; 233:104985. [DOI: 10.1016/j.chemphyslip.2020.104985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
|
17
|
Duncan AL, Corey RA, Sansom MSP. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci U S A 2020. [PMID: 32213593 DOI: 10.5281/zenodo.3634884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Protein-lipid interactions are a key element of the function of many integral membrane proteins. These potential interactions should be considered alongside the complexity and diversity of membrane lipid composition. Inward rectifier potassium channel (Kir) Kir2.2 has multiple interactions with plasma membrane lipids: Phosphatidylinositol (4, 5)-bisphosphate (PIP2) activates the channel; a secondary anionic lipid site has been identified, which augments the activation by PIP2; and cholesterol inhibits the channel. Molecular dynamics simulations are used to characterize in molecular detail the protein-lipid interactions of Kir2.2 in a model of the complex plasma membrane. Kir2.2 has been simulated with multiple, functionally important lipid species. From our simulations we show that PIP2 interacts most tightly at the crystallographic interaction sites, outcompeting other lipid species at this site. Phosphatidylserine (PS) interacts at the previously identified secondary anionic lipid interaction site, in a PIP2 concentration-dependent manner. There is interplay between these anionic lipids: PS interactions are diminished when PIP2 is not present in the membrane, underlining the need to consider multiple lipid species when investigating protein-lipid interactions.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci U S A 2020; 117:7803-7813. [PMID: 32213593 PMCID: PMC7149479 DOI: 10.1073/pnas.1918387117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ion channels form pores that allow for the selective transport of ions across cell membranes, generating electrical signals in response to a variety of signals. Inward rectifier potassium (Kir) channels in particular are regulated by direct interactions with the complex mixture of lipids that are present in eukaryotic cell membranes. However, the molecular details of these concurrent lipid interactions with Kir channels are not clear and difficult to access via experimental methods. Here, we simulate the Kir2.2 channel in a complex lipid mixture to explore how anionic phospholipids and cholesterol dynamically organize around the membrane protein. In particular we demonstrate a synergy between binding interactions of different anionic phospholipid species which are known to activate Kir channels. Protein–lipid interactions are a key element of the function of many integral membrane proteins. These potential interactions should be considered alongside the complexity and diversity of membrane lipid composition. Inward rectifier potassium channel (Kir) Kir2.2 has multiple interactions with plasma membrane lipids: Phosphatidylinositol (4, 5)-bisphosphate (PIP2) activates the channel; a secondary anionic lipid site has been identified, which augments the activation by PIP2; and cholesterol inhibits the channel. Molecular dynamics simulations are used to characterize in molecular detail the protein–lipid interactions of Kir2.2 in a model of the complex plasma membrane. Kir2.2 has been simulated with multiple, functionally important lipid species. From our simulations we show that PIP2 interacts most tightly at the crystallographic interaction sites, outcompeting other lipid species at this site. Phosphatidylserine (PS) interacts at the previously identified secondary anionic lipid interaction site, in a PIP2 concentration-dependent manner. There is interplay between these anionic lipids: PS interactions are diminished when PIP2 is not present in the membrane, underlining the need to consider multiple lipid species when investigating protein–lipid interactions.
Collapse
|
19
|
Cammarota E, Soriani C, Taub R, Morgan F, Sakai J, Veatch SL, Bryant CE, Cicuta P. Criticality of plasma membrane lipids reflects activation state of macrophage cells. J R Soc Interface 2020; 17:20190803. [PMID: 32019470 PMCID: PMC7061703 DOI: 10.1098/rsif.2019.0803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signalling is of particular importance in immune cells, and upstream in the signalling pathway many membrane receptors are functional only as complexes, co-locating with particular lipid species. Work over the last 15 years has shown that plasma membrane lipid composition is close to a critical point of phase separation, with evidence that cells adapt their composition in ways that alter the proximity to this thermodynamic point. Macrophage cells are a key component of the innate immune system, are responsive to infections and regulate the local state of inflammation. We investigate changes in the plasma membrane’s proximity to the critical point as a response to stimulation by various pro- and anti-inflammatory agents. Pro-inflammatory (interferon γ, Kdo 2-Lipid A, lipopolysaccharide) perturbations induce an increase in the transition temperature of giant plasma membrane vesicles; anti-inflammatory interleukin 4 has the opposite effect. These changes recapitulate complex plasma membrane composition changes, and are consistent with lipid criticality playing a master regulatory role: being closer to critical conditions increases membrane protein activity.
Collapse
Affiliation(s)
- Eugenia Cammarota
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Alembic, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Soriani
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Raphaelle Taub
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Fiona Morgan
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jiro Sakai
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Sarah L Veatch
- Biophysics Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
20
|
Duncan AL, Song W, Sansom MSP. Lipid-Dependent Regulation of Ion Channels and G Protein-Coupled Receptors: Insights from Structures and Simulations. Annu Rev Pharmacol Toxicol 2019; 60:31-50. [PMID: 31506010 DOI: 10.1146/annurev-pharmtox-010919-023411] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ion channels and G protein-coupled receptors (GPCRs) are regulated by lipids in their membrane environment. Structural studies combined with biophysical and molecular simulation investigations reveal interaction sites for specific lipids on membrane protein structures. For K channels, PIP2 plays a key role in regulating Kv and Kir channels. Likewise, several recent cryo-EM structures of TRP channels have revealed bound lipids, including PIP2 and cholesterol. Among the pentameric ligand-gated ion channel family, structural and biophysical studies suggest the M4 TM helix may act as a lipid sensor, e.g., forming part of the binding sites for neurosteroids on the GABAA receptor. Structures of GPCRs have revealed multiple cholesterol sites, which may modulate both receptor dynamics and receptor oligomerization. PIP2 also interacts with GPCRs and may modulate their interactions with G proteins. Overall, it is evident that multiple lipid binding sites exist on channels and receptors that modulate their function allosterically and are potential druggable sites.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| |
Collapse
|