1
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|
2
|
Ojima A, Iida T, Sekiryu T, Maruko I, Sugano Y. Photopigments in central serous chorioretinopathy. Am J Ophthalmol 2011; 151:940-952.e1. [PMID: 21457927 DOI: 10.1016/j.ajo.2010.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate functional abnormalities in eyes with central serous chorioretinopathy (CSC). DESIGN Observational case series. METHODS Sixteen eyes with CSC were enrolled. Autofluorescence densitometry was performed to measure the optical density of the photopigments. Serial fundus autofluorescence (FAF) images were obtained by Heidelberg Retina Angiogram 2. We calculated the autofluorescence optical density difference from the FAF images. To compare the distribution pattern of autofluorescence optical density difference to the findings of outer retina, spectral-domain optical coherence tomography (SD-OCT) was performed in the acute phase and after resolution of CSC. RESULTS The autofluorescence optical density difference decreased at the serous retinal detachment (SRD) in all 16 eyes. After resolution, the photoreceptor inner and outer segment junction (IS/OS) was irregular in 13 eyes and defective in 3 eyes on SD-OCT. The autofluorescence optical density difference did not improve in any eyes. Five eyes were reexamined 3 month after resolution. In 4 of the 5 eyes, SD-OCT showed that the IS/OS was well delineated and 1 eye defective. The autofluorescence optical density difference improved in 2 of the 4 eyes, but not in the other 2 eyes. In the 1 eye without well-delineated IS/OS, the autofluorescence optical density difference did not improve. CONCLUSION In eyes with CSC, the photopigment density decreased at the SRD. The density remained decreased immediately after resolution and showed delayed recovery. The photopigments decreased even in eyes with morphologic recovery of the outer retina.
Collapse
|
3
|
Solessio E, Umino Y, Cameron DA, Loew E, Engbretson GA, Knox BE, Barlow RB. Light responses in rods of vitamin A-deprived Xenopus. Invest Ophthalmol Vis Sci 2009; 50:4477-86. [PMID: 19407019 DOI: 10.1167/iovs.08-3186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Accumulation of free opsin by mutations in rhodopsin or insufficiencies in the visual cycle can lead to retinal degeneration. Free opsin activates phototransduction; however, the link between constitutive activation and retinal degeneration is unclear. In this study, the photoresponses of Xenopus rods rendered constitutively active by vitamin A deprivation were examined. Unlike their mammalian counterparts, Xenopus rods do not degenerate. Contrasting phototransduction in vitamin A-deprived Xenopus rods with phototransduction in constitutively active mammalian rods may provide new understanding of the mechanisms that lead to retinal degeneration. METHODS The photocurrents of Xenopus tadpole rods were measured with suction electrode recordings, and guanylate cyclase activity was measured with the IBMX (3-isobutyl-1-methylxanthine) jump technique. The amount of rhodopsin in rods was determined by microspectrophotometry. RESULTS The vitamin A-deprived rod outer segments were 60% to 70% the length and diameter of the rods in age-matched animals. Approximately 90% of its opsin content was in the free or unbound form. Analogous to bleaching adaptation, the photoresponses were desensitized (10- to 20-fold) and faster. Unlike bleaching adaptation, the vitamin A-deprived rods maintained near normal saturating (dark) current densities by developing abnormally high rates of cGMP synthesis. Their rate of cGMP synthesis in the dark (15 seconds(-1)) was twofold greater than the maximum levels attainable by control rods ( approximately 7 seconds(-1)). CONCLUSIONS Preserving circulating current density and response range appears to be an important goal for rod homeostasis. However, the compensatory changes associated with vitamin A deprivation in Xenopus rods come at the high metabolic cost of a 15-fold increase in basal ATP consumption.
Collapse
Affiliation(s)
- Eduardo Solessio
- Department of Ophthalmology, SUNY Upstate Medical University, Center for Vision Research, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
5
|
Witkovsky P. Photoreceptor classes and transmission at the photoreceptor synapse in the retina of the clawed frog, Xenopus laevis. Microsc Res Tech 2000; 50:338-46. [PMID: 10941170 DOI: 10.1002/1097-0029(20000901)50:5<338::aid-jemt3>3.0.co;2-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The photoreceptor population in Xenopus consists of a green-sensitive rod (lambda(max) = 523 nm), a blue-sensitive rod (lambda(max) = 445 nm) and three classes of cone. The largest cone is red-sensitive (lambda(max) = 611 nm). The intermediate cone is presumed to be blue-sensitive based on physiological criteria, whereas the miniature cone may be UV-sensitive. Horizontal cells (HC) are of two sorts: axon-bearing and axonless. The axon-bearing HC is of the luminosity type and probably contacts all types of photoreceptor. The axonless HC is of the chromaticity type and contacts only intermediate (blue) cones and at least one type of rod. During development dendrites of HCs and bipolar neurons penetrate photoreceptor bases. A progressive maturation of HC and bipolar synapses with rods and cones occurs between tadpoles stages 37/8 and 46. Neighboring rods and cones are joined by gap junctions. During this same period, the outer segments are laid down and photopigments synthesized. A linear relation was found between the quantum capturing ability of the rod and its absolute threshold. Mature rods of the Xenopus retina release glutamate in a calcium-dependent manner. Glutamate release was found to be a linear function of calcium influx through L-type calcium channels. Both types of HC possess ionotropic glutamate receptors of the AMPA subtype.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
6
|
|
7
|
KRIZAJ DAVID, GÁBRIEL ROBERT, OWEN WGEOFFREY, WITKOVSKY PAUL. Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 1998; 398:529-38. [PMID: 9717707 PMCID: PMC2947334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied the responses of rod photoreceptors that were elicited with light flashes or sinusoidally modulated light by using intracellular recording. Dark-adapted Xenopus rod photoreceptors responded to sinusoidally modulated green lights at temporal frequencies between 1 Hz and 4 Hz. In normal Ringer's solution, 57% of the rods tested could follow red lights that were matched for equal rod absorbance to frequencies >5 Hz, indicating an input from red-sensitive cones. Quinpirole (10 microM), a D2 dopamine agonist, increased rod-cone coupling, whereas spiperone (5 microM), a selective D2 antagonist, completely suppressed it. D1 dopamine ligands were without effect. Neurobiotin that was injected into single rods diffused into neighboring rods and cones in quinpirole-treated retinas but only diffused into rods in spiperone-treated retinas. A subpopulation of rods (ca. 10% total rods) received a very strong cone input, which quickened the kinetics of their responses to red flashes and greatly increased the bandpass of their responses to sinusoidally modulated light. Based on electron microscopic examination, which showed that rod-rod and cone-cone gap junctions are common, whereas rod-cone junctions are relatively rare, we postulate that cone signals enter the rod network through a minority of rods with strong cone connections, from which the cone signal is further distributed in the rod network. A semiquantitative model of coupling, based on measures of gap-junction size and distribution and estimates of their conductance and open times, provides support for this assumption. The same network would permit rod signals to reach cones.
Collapse
Affiliation(s)
- DAVID KRIZAJ
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
| | - ROBERT GÁBRIEL
- Department of General Zoology and Neurobiology, Janus Pannonius University, Pecs, H-7604 Hungary
| | - W. GEOFFREY OWEN
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - PAUL WITKOVSKY
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
- Department of Ophthalmology, New York University Medical Center, New York, New York 10016
| |
Collapse
|
8
|
Abstract
Morphology of the central retina and scotopic visual sensitivity were compared in juvenile albino and normally pigmented rainbow trout living under natural and reduced daylight. Outdoor albinos avoided exposing their eyes to direct sunlight, whereas normals were indifferent to it. After 4 months outdoors (approximately 10,000 lux in albinos, approximately 100,000 lux in normals), albinos had severely truncated or missing rod outer segments (ROS) and some missing rod ellipsoids, but normal numbers of photoreceptor nuclei and fully intact cones. Albino estimated ROS volume was only 7.1% of normal in July, but increased to 20% by the following February, mainly via an increase in numbers of ROS. However, in albinos moved indoors October 7 and exposed to 10-30 lux ambient daylight, both the number and length of ROS increased significantly, with estimated ROS volume reaching 95% of normal by 34 days. Albinos generally had more phagosomes (approximately 3 x normal) and more macrophages (approximately 2 x normal) in their outer retina. An optomotor reflex was used to define the effect of ROS volume on the ability to respond visually during dark adaptation. In July, albinos and normals from outdoor raceways (3 months) or indoor raceways (35 days) showed equal sensitivity after first being placed in darkness, but after 1 h in darkness, outdoor albinos with 6% of normal ROS volume were 2.0 log units less sensitive than indoor or outdoor normals, whereas indoor albinos with 53% of normal ROS volume were only 0.7 log units less sensitive. This verifies that most rod cell bodies of albino trout can persist without functional ROS in indirect sunlight, and can regrow functional outer segments in dim daylight. This finding is distinct from the extensive retinal light damage observed in albino rats exposed to more moderate cyclic light, in which entire rod cells degenerate early on.
Collapse
Affiliation(s)
- D M Allen
- Department of Science and Mathematics, University of Texas of the Permian Basin, Odessa 79762, USA
| | | |
Collapse
|
9
|
Schmitz Y, Witkovsky P. Glutamate release by the intact light-responsive photoreceptor layer of the Xenopus retina. J Neurosci Methods 1996; 68:55-60. [PMID: 8884613 DOI: 10.1016/0165-0270(96)00070-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to study glutamate release from light responsive photoreceptors, we used an eyecup preparation treated with detergent and distilled water, which permitted removal of the inner retina. The remaining 'reduced' retina consists mainly of photoreceptors attached to the pigment epithelium. The viability of the preparation was established by exclusion of trypan blue, light and electron microscopic examination of the photoreceptor layer and by intracellular recordings from rods. The 'reduced' retina was superfused at 1 ml/h and overflow samples were analyzed for their glutamate content by a fluorimetric enzyme assay. We tested the response to dark and light adaptation and to treatment with 100 microM CdCl2. We found a baseline glutamate level in light-adapted preparation which was not affected by cadmium. Dark adaptation induced a 2-fold increase of glutamate release, which was completely blocked by cadmium.
Collapse
Affiliation(s)
- Y Schmitz
- Dept. of Ophthalmology, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|
10
|
Besharse JC, Witkovsky P. Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Vis Neurosci 1992; 8:243-9. [PMID: 1547160 DOI: 10.1017/s0952523800002893] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To test the hypothesis that light-evoked cone contraction in eye cups from Xenopus laevis is controlled through a direct mechanism initiated by the cone's own photopigment, we conducted spectral-sensitivity experiments. We estimate that initiation of contraction of red absorbing cones (611 nm) is 1.5 log units more sensitive to green (533 nm) than red (650 nm) light stimuli. The difference is comparable to that predicted from the spectral-sensitivity function of the green absorbing, principal rod (523 nm). Furthermore, 480-nm and 580-nm stimuli which are absorbed nearly equally by the principal rod have indistinguishable effects on cone contraction. We also found that light blockade of nighttime cone elongation is much more sensitive to green than to red light stimuli. Our observations are inconsistent with the hypothesis tested, and suggest that light-regulated cone motility is controlled through an indirect mechanism initiated primarily by the green absorbing, principal rod.
Collapse
Affiliation(s)
- J C Besharse
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City
| | | |
Collapse
|
11
|
Abstract
Larvae of the tobacco hornworm moth Manduca sexta were reared on either a carotenoid-supplemented or a carotenoid-deficient diet. The former yields fortified adults with normal visual function, whereas visual sensitivity and rhodopsin content are reduced by 2-4 log units in the compound eyes of the deprived moths reared on the latter. We characterized the retinoids of fortified retinas and investigated the recovery of visual function in deprived moths that were provided with retinaldehyde as a source of photopigment chromophore. Retinoids were identified and measured by high-performance liquid chromatography (HPLC). Fortified retinas contained mainly 3-hydroxyretinaldehyde (R3); 11-cis R3 predominated in dark-adaptation, all-trans in light-adaptation, indicating that R3 is the photopigment chromophore. No retinoids could be measured in deprived eyes. Retinaldehyde (R1) was delivered to the retinas of deprived moths by "painting" solutions of 11-cis or all-trans R1 in dimethylsulfoxide (DMSO) on the corneal surfaces of the compound eyes or on the head capsule between the eyes. 11-cis R1 induced rapid recovery: during 3 days, sensitivity rose to within a log unit of that measured from fortified animals. By 7 days, sensitivity was close to normal. Although rhodopsin and P-face particle densities of photoreceptor membranes increased, neither rose to the levels found in fortified animals. All-trans R1 induced only a slight increase in sensitivity that could have resulted from some nonspecific isomerization of the all-trans to the 11-cis isomer; we found no evidence for a retinal isomerase that functions in darkness. Small amounts of R3 were measured in recovering retinas, indicating some conversion of R1 to R3.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R R Bennett
- Department of Biology, University of Massachusetts, Boston 02125
| | | |
Collapse
|
12
|
Kemp CM, Jacobson SG, Borruat FX, Chaitin MH. Rhodopsin levels and retinal function in cats during recovery from vitamin A deficiency. Exp Eye Res 1989; 49:49-65. [PMID: 2759191 DOI: 10.1016/0014-4835(89)90075-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extended vitamin A deficiency in the cat led to an abnormal appearance in the tapetal fundus with the formation of a dark brown streak centered on the area centralis. At this time rod sensitivity, as measured by the b-wave of the electroretinogram, was reduced by more than two log units; the level of rod visual pigment was reduced by about 90% throughout the paracentral retinal region and was essentially absent from the area centralis. Following oral supplementation with vitamin A there was a rapid partial recovery of both rhodopsin levels and rod sensitivity. Further recovery continued over more than 18 days to levels that were not substantially below normal. This recovery was absent from the area centralis, in which measured visual pigment levels remained very low. In supplemented cats, the brown color in the fundus faded but there remained a small hyper-reflective zone at the area centralis. Morphological examination of the central retina in a supplemented cat showed an outer nuclear layer reduced to one or two rows in the small zone with low rhodopsin levels. Cone but not rod photoreceptors were present in this zone and they appeared to lack outer segments. During recovery, the increase in rod sensitivity was approximately linearly related to the recovery of rhodopsin levels. Thus, in these conditions reduction in sensitivity resulting from previous vitamin A deficiency was limited by the ability of the photoreceptors to absorb incident quanta. The time course of the recovery of rhodopsin and sensitivity suggests that at least two processes were involved. The faster of these may be the regeneration of rhodopsin from existing opsin molecules in the outer segments, while the slower may depend on the renewal of the outer segments themselves.
Collapse
Affiliation(s)
- C M Kemp
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, School of Medicine, FL 33101
| | | | | | | |
Collapse
|
13
|
Pepperberg DR. Rhodopsin and visual adaptation: analysis of photoreceptor thresholds in the isolated skate retina. Vision Res 1984; 24:357-66. [PMID: 6740956 DOI: 10.1016/0042-6989(84)90061-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Photoreceptor thresholds in the isolated retina of the skate, determined by extracellular measurement of the photoreceptor potential during periods of light and dark adaptation, were analyzed in relationship to prevailing states of the visual pigment. The starting assumption of the analysis is that relative levels of three forms of the pigment molecule [native rhodopsin (R), a photoactivated intermediate (R*), and bleached pigment (B)] govern (quasi-) stable levels of threshold measured (a) during exposure of the retina to background light of fixed incident intensity (Ib), and (b) after irradiation that bleaches a defined fraction (B) of the rhodopsin. It is shown that experimental data are described well by the equation It/ It0 = (1 - B)-1 X F X (1 + 0(3)B), where F = [1 + 0(1)Ib(1 - B) + 0(2)B]. In this equation, It/ It0 is the relative threshold for detection of a test flash; (1 - B) approximates the relative efficiency of quantum capture; and 0(1) - 0(3) are constants. For values of 0(1) - 0(3) yielding an optimal fit to experimental data, log (It/ It0 ) approximately log F over a broad range of values of Ib and B. It is further shown that the algebraic form of the term F in the above equation is consistent with the predictions of a (steady-state) model for the role of the pigment molecule in photoreceptor adaptation. The model proposes that R* and B desensitize the photoreceptor by acting (in qualitatively similar fashion) to reduce the availability of E, an intracellular substance whose activation supports generation of the flash response. Results of the analysis are discussed in relation to the Dowling- Rushton equation (Dowling, 1960, 1963; Rushton , 1961), and to the results of more recent studies examining light and dark adaptation.
Collapse
|
14
|
Witkovsky P, Yang CY. Transport and phosphorylation of 2-deoxy-D-glucose by amphibian retina. Effects of light and darkness. J Gen Physiol 1982; 80:173-90. [PMID: 6981682 PMCID: PMC2228677 DOI: 10.1085/jgp.80.2.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We studied the uptake of 2-deoxy-D-glucose (2DG) and the synthesis of its phosphorylated product 2DG-6-phosphate (2DG-6P) by the retinas of the clawed frog (Xenopus laevis) and the bullfrog (Rana catesbeiana). Autoradiographs showed that most of the retinal 2DG uptake is by the photoreceptor layer. The 2DG accumulation by isolated Xenopus retinas was time and concentration dependent. The Kt for transport was 5.05 mM; Vmax was 6.99 X 10(-10) mol . mg-1 tissue wet weight min-1. The Km for 2DG-6P formation was estimated to be 2-3 mM and Vmax to be approximately 4 x 10(-9) mol . mg-1 min-1. 2DG uptake was inhibited competitively by glucose with a Ki of 2.29 mM. Exposure to light reduced 2DG uptake by no more than 10% as compared with dark uptake. Low sodium or ouabain (10(-4)-10(-7) M) treatment did not significantly alter 2DG uptake as compared with control retinas. In experiments upon intact, anesthetized bullfrogs, light reduced both the total amount of radioactivity acquired by the retina and the fraction of 2DG-6P present. The results are discussed in terms of the fraction of energy consumed by the retina required to maintain the photoreceptor dark current.
Collapse
|
15
|
|
16
|
Abstract
1. The stimulus-response function of the red rods in the retina of the common frog (Rana temporaria) was determined in different adaptational states by measuring aspartate-isolated receptor responses. 2. Flash stimuli, background adaptations and bleaches were delivered through the same optical channel forming an oblique light-beam striking the receptor side of the isolated and flat-mounted retina at an angle of 10 degrees. 3. When the light was blue-green and optimally polarized the absorbance of the receptor layer was about 2, from which follows that 70-80% of the light was absorbed in the distal third of the rod outer segments, i.e. the exposure was local. Homogeneous exposures of the whole rod outer segments were obtained with orange and red lights. 4. Combinations of homogeneous and local stimuli with homogeneous and local adaptations were used to investigate the longitudinal spread of background, intermediate and opsin adaptation, i.e. the sensitivity-reducing effect of a background light, and the transient and permanent sensitivity losses following a bleach isomerizing 3.5-26% (usually 10%) of the rhodopsin in the retina. 5. The results obtained were related to predictions based both on the assumption that the adaptation effects spread longitudinally within the rod outer segments and the assumption that they are strictly confined to the disks absorbing the adapting lights. 6. These comparisons reveal that all three types of adaptation spread longitudinally. It is for instance clear that the sensitivity loss observed with homogeneous stimuli and local adaptation (as compared to homogeneous adaptation) is larger than that predicted by the non-spreading hypothesis. 7. The longitudinal spread of background adaptation is largely finished within 10 sec after turning on the background light, while an efficient spread of the intermediate adaptation effect may require minutes. 8. A background light decreasing the sensitivity by about one log unit decreases the time from flash to response maximum from 5 to 1 sec (small responses). Corresponding opsin adaptation effects are accompanied by less dramatic changes in response kinetics. 9. Independent of adaptation type - homogeneous or local, background, intermediate or opsin - it was found that local stimuli are less efficient that homogeneous stimuli in light-adapted retinae. This effect can be explained assuming that the sensitivity-reducing effects are pronounced in the distal than in the proximal parts of the rod outer segments. 10. The opsin adaptation effect following 10% local bleaches decreases the sensitivity to both homogeneous and local stimuli 2-3 times more than corresponding homogeneous bleaches. This means that the strength of the opsin effect is not related to the average percentage bleached but to the fraction bleached in the distal part of the rod, or generally to the fraction bleached in the most affected region. 11...
Collapse
|
17
|
Witkovsky P, Levine JS, Engbretson GA, Hassin G, MacNichol EF. A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vision Res 1981; 21:867-73. [PMID: 7314464 DOI: 10.1016/0042-6989(81)90187-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Pak WL, Conrad SK, Kremer NE, Larrivee DC, Schinz RH, Wong F. Photoreceptor function. BASIC LIFE SCIENCES 1980; 16:331-46. [PMID: 6779798 DOI: 10.1007/978-1-4684-7968-3_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
|