1
|
Sibille J, Dao Duc K, Holcman D, Rouach N. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comput Biol 2015; 11:e1004137. [PMID: 25826753 PMCID: PMC4380507 DOI: 10.1371/journal.pcbi.1004137] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 01/18/2015] [Indexed: 12/14/2022] Open
Abstract
Neuronal excitability relies on inward sodium and outward potassium fluxes during action potentials. To prevent neuronal hyperexcitability, potassium ions have to be taken up quickly. However, the dynamics of the activity-dependent potassium fluxes and the molecular pathways underlying extracellular potassium homeostasis remain elusive. To decipher the specific and acute contribution of astroglial Kir4.1 channels in controlling potassium homeostasis and the moment to moment neurotransmission, we built a tri-compartment model accounting for potassium dynamics between neurons, astrocytes and the extracellular space. We here demonstrate that astroglial Kir4.1 channels are sufficient to account for the slow membrane depolarization of hippocampal astrocytes and crucially contribute to extracellular potassium clearance during basal and high activity. By quantifying the dynamics of potassium levels in neuron-glia-extracellular space compartments, we show that astrocytes buffer within 6 to 9 seconds more than 80% of the potassium released by neurons in response to basal, repetitive and tetanic stimulations. Astroglial Kir4.1 channels directly lead to recovery of basal extracellular potassium levels and neuronal excitability, especially during repetitive stimulation, thereby preventing the generation of epileptiform activity. Remarkably, we also show that Kir4.1 channels strongly regulate neuronal excitability for slow 3 to 10 Hz rhythmic activity resulting from probabilistic firing activity induced by sub-firing stimulation coupled to Brownian noise. Altogether, these data suggest that astroglial Kir4.1 channels are crucially involved in extracellular potassium homeostasis regulating theta rhythmic activity.
Collapse
Affiliation(s)
- Jérémie Sibille
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, PSL Research University, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Khanh Dao Duc
- IBENS, Ecole Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
- Université Paris 6, Paris, France
| | - David Holcman
- IBENS, Ecole Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
- * E-mail: (DH); (NR)
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, PSL Research University, Paris, France
- * E-mail: (DH); (NR)
| |
Collapse
|
2
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Boudko DY. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:433-49. [PMID: 22230793 PMCID: PMC3397479 DOI: 10.1016/j.jinsphys.2011.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 05/03/2023]
Abstract
Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B(0) transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B(0)-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- Department of Physiology and Biophysics of Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
4
|
|
5
|
|
6
|
Discala F, Belachgar F, Planelles G, Hulin P, Anagnostopoulos T. Barium- or quinine-induced depolarization activates K+, Na+ and cationic conductances in frog proximal tubular cells. J Physiol 1992; 448:525-37. [PMID: 1317443 PMCID: PMC1176213 DOI: 10.1113/jphysiol.1992.sp019055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. Frog proximal tubular cells were fused into giant cells. We measured membrane potential (Vm), its changes (delta Vm), and current-induced voltage changes (delta psi) in single cells, during control and experimental states. Each cell served as its own control. 2. In the presence of a physiological Ringer solution, the transference number for potassium (tK) was 0.50. Barium (3 mM) reduced membrane conductance (Gm) by 50%; low-Cl- solutions and low-Na+ solutions also diminished Gm, by 52 and 30%, respectively. The association of barium and low-NaCl solutions decreased Gm to approximately 38% of control, indicating that the impermeant substitute of a physiological ion may interact with other pathways; alternatively, blockade of steady-state conductances may activate physiologically silent processes. 3. In an attempt to enhance the contribution of the partial K+ conductance (GK) to Gm, fused cells were exposed to low-Cl- solutions, containing in addition 0.1 mM-methazolamide, to inhibit the rheogenic Na(+)-HCO3-symport, and 1 microM-amiloride, to block Na+ conductance (GNa). tK went up to 0.83. 4. The high tK preparation was challenged with barium (3 mM) or quinine (Quin, 1 mM). These blockers produced large depolarizations (approximately 60 mV), however, although Gm decreased along early- and mid-depolarization, Gm plateaued and eventually it increased with larger and larger depolarization. 5. Depolarization-associated increase in Gm reflects activation of other conductances. These are Na+, cationic, and K+ conductance(s) poorly sensitive to quinine or barium. In the presence of Ba(2+)- or Quin-induced depolarization, injection of depolarizing current produces delayed increase in conductance. 6. Depolarization-induced activation of cationic conductance (Gcat) and GNa results in enlargement of the K+ electrochemical potential difference, to about 70 mV; this difference allows recycling of K+ ions outwards, since a GK is still detected and may contribute up to 38% of the total conductance.
Collapse
Affiliation(s)
- F Discala
- INSERM U.323, Faculté de Médecine Necker Enfants-Malades, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Cox TC, Grieme M, Woods R. Effects of isoproterenol on Na+ and K+ transport in frog skin epithelium. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1022:41-8. [PMID: 2302401 DOI: 10.1016/0005-2736(90)90398-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acute effects of isoproterenol on Na+ extrusion and K+ uptake across the basolateral membrane of the isolated epithelium of the frog skin were examined. A chloride-free sulfate Ringer was used in all experiments. Isoproterenol caused an approximate doubling of the short-circuit current (Isc) and the transepithelial Na+ flux (J13Na). Isc remained equal to J13Na. After isoproterenol treatment, ouabain inhibited Isc and J13Na in a manner similar to control tissues. Ouabain-sensitive K+ uptake was also measured under comparable conditions. In two sets of experiments, K+ uptake was increased on average by only 5 and 17 percent after isoproterenol treatment. Thus, isoproterenol caused Na+ flux to more than double while K+ uptake increased by only 5-17%. These data cannot be readily accounted for by a pump with a fixed Na+/K+ exchange ratio.
Collapse
Affiliation(s)
- T C Cox
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901
| | | | | |
Collapse
|
8
|
Lambert IH, Hoffmann EK, Jørgensen F. Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells. J Membr Biol 1989; 111:113-31. [PMID: 2482360 DOI: 10.1007/bf01871776] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fluorescence intensity of the dye 1,1'-dipropylox-adicarbocyanine (DiOC3-(5] has been measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potential (Vm) under different ionic conditions, after treatment with cation ionophores and after hypotonic cell swelling. Calibration is performed with gramicidin in Na+-free K-/choline-media, i.e., standard medium in which NaCl is replaced by KCl and cholineCl and where the sum of potassium and choline is kept constant at 155 mM. Calibration by the valinomycin "null point" procedure described by Laris et al. (Laris, P.C., Pershadsingh, A., Johnstone, R.M., 1976, Biochim, Biophys. Acta 436:475-488) is shown to be valid only in the presence of the Cl- -channel blocker indacrinone (MK196). Distribution of the lipophilic anion SCN- as an indirect estimation of the membrane potential is found not to be applicable for the fast changes in Vm reported in this paper. Incubation with DiOC3-(5) for 5 min is demonstrated to reduce the Cl permeability by 26 +/- 5% and the NO3- permeability by 15 +/- 2%, while no significant effect of the probe could be demonstrated on the K+ permeability. Values for Vm, corrected for the inhibitory effect of the dye on the anion conductance, are estimated at -61 +/- 1 mV in isotonic standard NaCl medium, -78 +/- 3 mV in isotonic Na+-free choline medium and -46 +/- 1 mV in isotonic NaNO3 medium. The cell membrane is depolarized by addition of the K+ channel inhibitor quinine and it is hyperpolarized when the cells are suspended in Na+-free choline medium, indicating that Vm is generated partly by potassium and partly by sodium diffusion. Ehrlich cells have previously been shown to be more permeable to nitrate than to chloride. Substituting NO3- for all cellular and extracellular Cl- leads to a depolarization of the membrane, demonstrating that Vm is also generated by the anions and that anions are above equilibrium. Taking the previously demonstrated single-file behavior of the K+ channels into consideration, the membrane conductances in Ehrlich cells are estimated at 10.4 microS/cm2 for K+, 3.0 microS/cm2 for Na+, 0.6 microS/cm2 for Cl- and 8.7 microS/cm2 for NO3-. Addition of the Ca2+-ionophore A23187 results in net loss of KCl and a hyperpolarization of the membrane, indicating that the K+ permeability exceeds the Cl- permeability also after the addition of A23187. The K+ and Cl- conductances in A23187-treated Ehrlich cells are estimated at 134 and 30 microS/cm2, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- I H Lambert
- Institute of Biological Chemistry A, August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
9
|
Kone BC, Brady HR, Gullans SR. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down-regulates the Na+,K+-ATPase and up-regulates two K+ permeability pathways. Proc Natl Acad Sci U S A 1989; 86:6431-5. [PMID: 2548216 PMCID: PMC297854 DOI: 10.1073/pnas.86.16.6431] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To avoid large changes in cell K+ content and volume during variations in Na+,K+-ATPase activity, Na+-transporting epithelia must adjust the rate of K+ exit through passive permeability pathways. Recent studies have shown that a variety of passive K+ transport mechanisms may coexist within a cell and may be functionally linked to the activity of the Na+,K+-ATPase. In this study, we have identified three distinct pathways for passive K+ transport that act in concert with the Na+,K+-ATPase to maintain intracellular K+ homeostasis in the proximal tubule. Under control conditions, the total K+ leak of the tubules consisted of discrete Ba2+-sensitive (approximately 65%), quinine-sensitive (approximately 20%), and furosemide-sensitive (approximately 10%) pathways. Following inhibition of the principal K+ leak pathway with Ba2+, the tubules adaptively restored cell K+ content to normal levels. This recovery of cell K+ content was inhibited, in an additive manner, by quinine and furosemide. Following adaptation to Ba2+, the tubules exhibited a 30% reduction in Na+-K+ pump rate coupled with an increase in K+ leak by means of the quinine-sensitive (approximately 70%) and furosemide-sensitive (approximately 280%) pathways. Thus, the proximal tubule maintains intracellular K+ homeostasis by the coordinated modulation of multiple K+ transport pathways. Furthermore, these results suggest that, like Ba2+, other inhibitors of K+ conductance will cause compensatory changes in both the Na+-K+ pump and alternative pathways for passive K+ transport.
Collapse
Affiliation(s)
- B C Kone
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | | | |
Collapse
|
10
|
Villalobo A. Energy efficiency of different mechanistic models for potassium ion uptake in lower eukaryotic cells. Folia Microbiol (Praha) 1988; 33:407-24. [PMID: 2904920 DOI: 10.1007/bf02925852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different mechanistic models for potassium ion uptake are analyzed by an equilibrium-thermodynamic formalism in terms of their comparative efficiency in setting chemical potential differences of the potassium ion of different magnitudes across the plasma membrane of lower eukaryotic cells. The possible adaptive advantages for a multimode mechanism(s) operating in alternative modes depending on the physiological and/or environmental conditions of the cells are discussed.
Collapse
Affiliation(s)
- A Villalobo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Abstract
22Na+ and 42K+ fluxes across the basolateral membrane of the isolated epithelium of frog skin were investigated with regard to dependence on K+ in the basolateral solution. When K+ was removed from the basolateral solution (K+-free Ringer), there was a transient rise in short circuit current (Isc) that could be eliminated by pretreatment with ouabain. Concurrently, the apparent sodium efflux across the basolateral membrane (JNa*13) showed either no change or an immediate (1-2 min) small decrease (approximately equal to 10%) that was followed by a small transient increase. K+ fluxes showed either no change or a small decrease under these conditions. JNa*13 was partially ouabain sensitive during all of the above treatments. Furosemide partially inhibited both sodium and potassium flux after K+-free treatment. The pump, as defined by ouabain sensitivity of Na+ flux, continued to work even after 20 minutes of K+-free treatment. Pump activity may be maintained by potassium leaking from the cells that is recycled by the pump. However, the ouabain-sensitive transient rise in Isc after K+-free treatment cannot readily be explained by changes in either Na+ or K+ flux. A change in pump coupling ratio provides one explanation for these data.
Collapse
Affiliation(s)
- T C Cox
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale 62901
| |
Collapse
|
12
|
Cox TC, Woods RE. Dihydroouabain, a reversible inhibitor of the sodium pump in frog skin. Pflugers Arch 1987; 409:323-7. [PMID: 2442703 DOI: 10.1007/bf00583484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many studies of the sodium pump in epithelia, a readily reversible analog of ouabain would be most useful. This would enable studies of pump activity to be made under control and experimental conditions on the same tissue. Of three compounds examined on the basolateral membrane of the isolated epithelia of frog skin, dihydroouabain (DHO) had characteristics very similar to ouabain except that it was apparently much more reversible. DHO (1 mmol/l) inhibited short circuit current (Isc) and transepithelial Na flux (JNa13) in a fashion similar to ouabain. Isc was inhibited from 17.0 +/- 2.5 to 10.2 +/- 1.0 microA/cm2 in 2-4 min while JNa13 was decreased from 16.8 +/- 1.9 to 4.7 +/- 0.8 microA/cm2 in the same time interval. After 60 min of washout, Isc and JNa13 recovered to about 70% of control values and were nearly equal. In another set of experiments, the washout of DHO and ouabain were compared directly on the same tissue. Sodium flux recovered four times faster after removal of DHO when compared to ouabain. Pretreatment of tissues with DHO prior to ouabain greatly increased the rate of Na flux recovery after washout of both drugs suggesting that DHO competes for ouabain sites. These data suggest that DHO can be used as a reversible analog for ouabain in studies of the Na pump in frog skin.
Collapse
|
13
|
|
14
|
Villalobo A, Roufogalis BD. Proton countertransport by the reconstituted erythrocyte Ca2+-translocating ATPase: evidence using ionophoretic compounds. J Membr Biol 1986; 93:249-58. [PMID: 3029378 DOI: 10.1007/bf01871179] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human erythrocyte Ca2+-translocating ATPase was solubilized from calmodulin-depleted membranes using the detergent Triton X-100, and subsequently purified by calmodulin-affinity chromatography. The purified enzyme was reconstituted in artificial phospholipid vesicles using a cholate-dialysis method and various phospholipids. The reconstituted enzyme was able to translocate Ca2+ inside the vesicles, both in the absence and in the presence of the Ca2+-chelating agent, oxalate, inside the vesicles. The tightness of coupling between ATP hydrolysis and cation translocation was investigated by the use of different ionophoretic compounds. The efficiency of Ca2+ translocation was measured by the ability of the ionophores to stimulate ATP hydrolytic activity of the reconstituted enzyme. It was found that the maximum stimulation of the ATP hydrolytic activity was induced by the electroneutral Ca2+/2H+ ionophore A23187 (9 to 10-fold). A Ca2+ ionophore unable to translocate H+, CYCLEX-2E, was less efficient in stimulating the activity of the reconstituted enzyme (two- to threefold). However, the combined addition of CYCLEX-2E plus protonophores further increased the ATP hydrolytic activity (around fourfold), whereas, the protonophores did not further stimulate ATP hydrolysis in the presence of A23187. Furthermore, in the absence of Ca2+ ionophore, the electroneutral K+(Na+)/H+ ionophoretic exchanger, monensin, stimulated the rate of ATP hydrolysis in the reconstituted enzyme two- or threefold, respectively. These results suggest that the Ca2+-ATPase not only translocates Ca2+ but also H+ in the opposite direction.
Collapse
|
15
|
Cox TC, Helman SI. Na+ and K+ transport at basolateral membranes of epithelial cells. III. Voltage independence of basolateral membrane Na+ efflux. J Gen Physiol 1986; 87:503-9. [PMID: 2420921 PMCID: PMC2217612 DOI: 10.1085/jgp.87.3.503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Na+ efflux across basolateral membranes of isolated epithelia of frog skin was tested for voltage sensitivity. The intracellular Na+ transport pool was loaded with 24Na from the apical solution and the rate of isotope appearance in the basolateral solution (JNa23) was measured at timed intervals of 30 s. Basolateral membrane voltage was depolarized by either 50 mM K+, 5 mM Ba++, or 80 mM NH+4. Whereas within 30 s ouabain caused inhibition of JNa23, depolarization of Vb by 30-60 mV caused no significant change of JNa23. Thus, both pump-mediated and leak Na+ effluxes were voltage independent. Although the pumps are electrogenic, pump-mediated Na+ efflux is voltage independent, perhaps because of a nonlinear relationship between pump current and transmembrane voltage. Voltage independence of the leak Na+ efflux confirms a previous suggestion (Cox and Helman, 1983. American Journal of Physiology. 245:F312-F321) that basolateral membrane Na+ leak fluxes are electroneutral.
Collapse
|
16
|
Cox TC, Helman SI. Na+ and K+ transport at basolateral membranes of epithelial cells. I. Stoichiometry of the Na,K-ATPase. J Gen Physiol 1986; 87:467-83. [PMID: 2420919 PMCID: PMC2217610 DOI: 10.1085/jgp.87.3.467] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.
Collapse
|