1
|
Collin R, Dugas V, Pelletier AN, Chabot-Roy G, Lesage S. Evidence of genetic epistasis in autoimmune diabetes susceptibility revealed by mouse congenic sublines. Immunogenetics 2021; 73:307-319. [PMID: 33755757 DOI: 10.1007/s00251-021-01214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Susceptibility to autoimmune diabetes is a complex genetic trait. Linkage analyses exploiting the NOD mouse, which spontaneously develops autoimmune diabetes, have proved to be a useful tool for the characterization of some of these traits. In a linkage analysis using 3A9 TCR transgenic mice on both B10.BR and NOD.H2k backgrounds, we previously determined that both the Idd2 and Idd13 loci were linked to the proportion of immunoregulatory CD4-CD8- double negative (DN) T cells. In addition to Idd2 and Idd13, five other loci showed weak linkage to the proportion of DN T cells. Of interest, in an interim analysis, a locus on chromosome 12 is linked to DN T cell proportion in both the spleen and the lymph nodes. To determine the impact of this locus on DN T cells, we generated two congenic sublines, which we named Chr12P and Chr12D for proximal and distal, respectively. While 3A9 TCR:insHEL NOD.H2k-Chr12D mice were protected from diabetes, 3A9 TCR:insHEL NOD.H2k-Chr12P showed an increase in diabetes incidence. Yet, the proportion of DN T cells was similar to the parental 3A9 TCR NOD.H2k strain for both of these congenic sublines. A genome-wide two dimensional LOD score analysis reveals genetic epistasis between chromosome 12 and the Idd13 locus. Altogether, this study identified further complex genetic interactions in defining the proportion of DN T cells, along with evidence of genetic epistasis within a locus on chromosome 12 influencing autoimmune susceptibility.
Collapse
Affiliation(s)
- Roxanne Collin
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- CellCarta, 201 President Kennedy Avenue, Suite 3900, Montreal, Quebec, H2X 3Y7, Canada
| | - Véronique Dugas
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | | | - Geneviève Chabot-Roy
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
| | - Sylvie Lesage
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
2
|
Baena-Nieto G, Lomas-Romero IM, Mateos RM, Leal-Cosme N, Perez-Arana G, Aguilar-Diosdado M, Segundo C, Lechuga-Sancho AM. Ghrelin mitigates β-cell mass loss during insulitis in an animal model of autoimmune diabetes mellitus, the BioBreeding/Worcester rat. Diabetes Metab Res Rev 2017; 33. [PMID: 27103341 DOI: 10.1002/dmrr.2813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/06/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ghrelin is a peptide hormone with pleiotropic effects. It stimulates cell proliferation and inhibits apoptosis-mediated cell death. It prevents diabetes mellitus in several models of chemical, surgical and biological toxic insults to pancreas in both in vivo and in vitro models and promotes glucose-stimulated insulin secretion under cytotoxic conditions. It has not yet been tested in vivo in an autoimmune model of diabetes with a persistent insult to the β-cell. Given the immunomodulating effects of ghrelin and its trophic effects on β-cells, we hypothesized that ghrelin treatment during the early stages of insulitis would delay diabetes onset. METHODS BioBreeding/Worcester male rats received ghrelin (10 ng/kg/day) before insulitis development. Glucose metabolism was characterized by glucose and insulin tolerance tests. β-cell mass, islet area, islet number, β-cell clusters, proliferation and apoptosis and degree of insulitis were analysed by histomorphometry. A Kaplan-Meier survival curve was plotted and analysed applying the log-rank (Mantel-Cox) test. RESULTS Ghrelin treatment significantly reduced the probability of developing diabetes in our model (p < 0.0001). It decreased islet infiltration and partially prevented β-cell mass loss, enabling the maintenance of β-cell neogenesis and proliferation rates. Furthermore, ghrelin treatment did not induce any metabolic perturbations. CONCLUSIONS These findings support the hypothesis that ghrelin delays the development of autoimmune diabetes by attenuating insulitis and supporting β-cell mass. GENERAL SIGNIFICANCE Ghrelin promotes β-cell viability and function through diverse mechanisms that may have significant implications for diabetes prevention, therapy and also transplant success of both islets and complete pancreas. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gloria Baena-Nieto
- Department of Endocrinology and Nutrition, Puerta del Mar University Hospital, Cadiz, Spain
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Isabel M Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, Sevilla, Spain
| | - Rosa M Mateos
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Department of Biotechnology, Biomedicine and Public Health, Cadiz University Medical School, Cadiz, Spain
| | - Noelia Leal-Cosme
- Department of Child and Mother Health and Radiology, Cadiz University Medical School, Cadiz, Spain
| | | | | | - Carmen Segundo
- "Salus Infirmorum" Faculty of Nursing, Cadiz University, Cadiz, Spain
| | - Alfonso M Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Department of Child and Mother Health and Radiology, Cadiz University Medical School, Cadiz, Spain
| |
Collapse
|
3
|
Motta VN, Markle JGM, Gulban O, Mortin-Toth S, Liao KC, Mogridge J, Steward CA, Danska JS. Identification of the inflammasome Nlrp1b as the candidate gene conferring diabetes risk at the Idd4.1 locus in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2015; 194:5663-73. [PMID: 25964492 DOI: 10.4049/jimmunol.1400913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes in the NOD mouse model has been linked to >30 insulin-dependent diabetes (Idd) susceptibility loci. Idd4 on chromosome 11 consists of two subloci, Idd4.1 and Idd4.2. Using congenic analysis of alleles in NOD and NOD-resistant (NOR) mice, we previously defined Idd4.1 as an interval containing >50 genes that controlled expression of genes in the type 1 IFN pathway. In this study, we report refined mapping of Idd4.1 to a 1.1-Mb chromosomal region and provide genomic sequence analysis and mechanistic evidence supporting its role in innate immune regulation of islet-directed autoimmunity. Genetic variation at Idd4.1 was mediated by radiation-sensitive hematopoietic cells, and type 1 diabetes protection conferred by the NOR allele was abrogated in mice treated with exogenous type 1 IFN-β. Next generation sequence analysis of the full Idd4.1 genomic interval in NOD and NOR strains supported Nlrp1b as a strong candidate gene for Idd4.1. Nlrp1b belongs to the Nod-like receptor (NLR) gene family and contributes to inflammasome assembly, caspase-1 recruitment, and release of IL-1β. The Nlrp1b of NOR was expressed as an alternative spliced isoform that skips exon 9, resulting in a premature stop codon predicted to encode a truncated protein. Functional analysis of the truncated NOR Nlrp1b protein demonstrated that it was unable to recruit caspase-1 and process IL-1β. Our data suggest that Idd4.1-dependent protection from islet autoimmunity is mediated by differences in type 1 IFN- and IL-1β-dependent immune responses resulting from genetic variation in Nlrp1b.
Collapse
Affiliation(s)
- Vinicius N Motta
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Janet G M Markle
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Omid Gulban
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Steven Mortin-Toth
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kuo-Chien Liao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles A Steward
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; and
| | - Jayne S Danska
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
4
|
Wong ASL, Mortin-Toth S, Sung M, Canty AJ, Gulban O, Greaves DR, Danska JS. Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2014; 193:4833-44. [PMID: 25305319 DOI: 10.4049/jimmunol.1401984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPα displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dose-dependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPα sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progression.
Collapse
Affiliation(s)
- Andrea Sut Ling Wong
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Michael Sung
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Omid Gulban
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, United Kingdom; and
| | - Jayne S Danska
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| |
Collapse
|
5
|
Markle JGM, Frank DN, Adeli K, von Bergen M, Danska JS. Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes 2014; 5:485-93. [PMID: 25007153 DOI: 10.4161/gmic.29795] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite growing evidence for a causal role of environmental factors in autoimmune diseases including the rise in disease frequencies over the past several decades we lack an understanding of how particular environmental exposures modify disease risk. In addition, many autoimmune diseases display sex-biased incidence, with females being disproportionately affected but the mechanisms underlying this sex bias remain elusive. Emerging evidence suggests that both host metabolism and immune function is crucially regulated by the intestinal microbiome. Recently, we showed that in the non-obese diabetic (NOD) mouse model of Type 1 Diabetes (T1D), the gut commensal microbial community strongly impacts the pronounced sex bias in T1D risk by controlling serum testosterone and metabolic phenotypes (1). Here we present new data in the NOD model that explores the correlations between microbial phylogeny, testosterone levels, and metabolic phenotypes, and discuss the future of microbiome-centered analysis and microbe-based therapeutic approaches in autoimmune diseases.
Collapse
Affiliation(s)
- Janet G M Markle
- Department of Immunology; University of Toronto; Toronto, ON Canada; Program in Genetics and Genomic Biology; The Hospital for Sick Children; Toronto, ON Canada
| | - Daniel N Frank
- Division of Infectious Diseases; University of Colorado; Aurora, CO USA
| | - Khosrow Adeli
- Department of Laboratory Medicine; The Hospital for Sick Children; Toronto, ON Canada; Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Martin von Bergen
- Department of Metabolomics and Department of Proteomics; Helmholtz Center for Environmental Research; Leipzig, Germany; Department of Biotechnology, Chemistry, and Environmental Engineering; Aalborg University; Aalborg, Denmark
| | - Jayne S Danska
- Department of Immunology; University of Toronto; Toronto, ON Canada; Program in Genetics and Genomic Biology; The Hospital for Sick Children; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
6
|
Kakoola DN, Curcio-Brint A, Lenchik NI, Gerling IC. Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes. RESULTS IN IMMUNOLOGY 2014; 4:30-45. [PMID: 24918037 PMCID: PMC4050318 DOI: 10.1016/j.rinim.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) is a multigenic disease caused by T-cell mediated destruction of the insulin producing pancreatic islet ß-cells. The earliest sign of islet autoimmunity in NOD mice, islet leukocytic infiltration or insulitis, is obvious at around 5 weeks of age. The molecular alterations that occur in T cells prior to insulitis and that may contribute to T1D development are poorly understood. Since CD4 T-cells are essential to T1D development, we tested the hypothesis that multiple genes/molecular pathways are altered in these cells prior to insulitis. We performed a genome-wide transcriptome and pathway analysis of whole, untreated CD4 T-cells from 2, 3, and 4 week-old NOD mice in comparison to two control strains (NOR and C57BL/6). We identified many differentially expressed genes in the NOD mice at each time point. Many of these genes (herein referred to as NOD altered genes) lie within known diabetes susceptibility (insulin-dependent diabetes, Idd) regions, e.g. two diabetes resistant loci, Idd27 (tripartite motif-containing family genes) and Idd13 (several genes), and the CD4 T-cell diabetogenic activity locus, Idd9/11 (2 genes, KH domain containing, RNA binding, signal transduction associated 1 and protein tyrosine phosphatase 4a2). The biological processes associated with these altered genes included, apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks); inflammation and cell signaling/activation (predominant at 3 weeks); and innate and adaptive immune responses (predominant at 4 weeks). Pathway analysis identified several factors that may regulate these abnormalities: eight, common to all 3 ages (interferon regulatory factor 1, hepatic nuclear factor 4, alpha, transformation related protein 53, BCL2-like 1 (lies within Idd13), interferon gamma, interleukin 4, interleukin 15, and prostaglandin E2); and two each, common to 2 and 4 weeks (androgen receptor and interleukin 6); and to 3 and 4 weeks (interferon alpha and interferon regulatory factor 7). Others were unique to the various ages, e.g. myelocytomatosis oncogene, jun oncogene, and amyloid beta (A4) to 2 weeks; tumor necrosis factor, transforming growth factor, beta 1, NF?B, ERK, and p38MAPK to 3 weeks; and interleukin 12 and signal transducer and activator of transcription 4 to 4 weeks. Thus, our study demonstrated that expression of many genes that lie within several Idds (e.g. Idd27, Idd13 and Idd9/11) was altered in CD4 T-cells in the early induction phase of autoimmune diabetes and identified their associated molecular pathways. These data offer the opportunity to test hypotheses on the roles played by the altered genes/molecular pathways, to understand better the mechanisms of CD4 T-cell diabetogenesis, and to develop new therapeutic strategies for T1D.
Collapse
Affiliation(s)
- Dorothy N Kakoola
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Anita Curcio-Brint
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Nataliya I Lenchik
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Ivan C Gerling
- Department of Medicine, Division of Endocrinology, University of Tennessee Health Science Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA ; Research Service, Veterans Affairs Medical Center, VAMC Research 151, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| |
Collapse
|
7
|
Chao GYC, Wallis RH, Marandi L, Ning T, Sarmiento J, Paterson AD, Poussier P. Iddm30 controls pancreatic expression of Ccl11 (Eotaxin) and the Th1/Th2 balance within the insulitic lesions. THE JOURNAL OF IMMUNOLOGY 2014; 192:3645-53. [PMID: 24646746 DOI: 10.4049/jimmunol.1302383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The autoimmune diabetic syndrome of the BioBreeding diabetes-prone (BBDP) rat is a polygenic disease that resembles in many aspects human type 1 diabetes (T1D). A successful approach to gain insight into the mechanisms underlying genetic associations in autoimmune diseases has been to identify and map disease-related subphenotypes that are under simpler genetic control than the full-blown disease. In this study, we focused on the β cell overexpression of Ccl11 (Eotaxin), previously postulated to be diabetogenic in BBDR rats, a BBDP-related strain. We tested the hypothesis that this trait is genetically determined and contributes to the regulation of diabetes in BBDP rats. Similar to the BBDR strain, we observed a time-dependent, insulitis-independent pancreatic upregulation of Ccl11 in BBDP rats when compared with T1D-resistant ACI.1u.lyp animals. Through linkage analysis of a cross-intercross of these two parental strains, this trait was mapped to a region on chromosome 12 that overlaps Iddm30. Linkage results were confirmed by phenotypic assessment of a novel inbred BBDP.ACI-Iddm30 congenic line. As expected, the Iddm30 BBDP allele is associated with a significantly higher pancreatic expression of Ccl11; however, the same allele confers resistance to T1D. Analysis of islet-infiltrating T cells in Iddm30 congenic BBDP animals revealed that overexpression of pancreatic Ccl11, a prototypical Th2 chemokine, is associated with an enrichment in Th2 CD4+ T cells within the insulitic lesions. These results indicate that, in the BBDP rat, Iddm30 controls T1D susceptibility through both the regulation of Ccl11 expression in β cells and the subsequent Th1/Th2 balance within islet-infiltrating T lymphocytes.
Collapse
Affiliation(s)
- Gary Y C Chao
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Idd13 is involved in determining immunoregulatory DN T-cell number in NOD mice. Genes Immun 2014; 15:82-7. [PMID: 24335706 DOI: 10.1038/gene.2013.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022]
Abstract
Immunoregulatory T cells have been identified as key modulators of peripheral tolerance and participate in preventing autoimmune diseases. CD4(-)CD8(-) (double negative, DN) T cells compose one of these immunoregulatory T-cell subsets, where the injection of DN T cells confers protection from autoimmune diabetes progression. Interestingly, genetic loci defining the function and number of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) coincide with at least some autoimmune disease susceptibility loci. Herein, we investigate the impact of major insulin-dependent diabetes (Idd) loci in defining the number of DN T cells. We demonstrate that although Idd3, Idd5 and Idd9 loci do not regulate DN T-cell number, NOD mice congenic for diabetes resistance alleles at the Idd13 locus show a partial restoration in DN T-cell number. Moreover, competitive and non-competitive bone marrow chimera experiments reveal that DN T-cell number is defined by a bone marrow-intrinsic, but DN T-cell-extrinsic, factor. This suggests that non-autonomous candidate genes define DN T-cell number in secondary lymphoid organs. Together, our results show that the regulation of DN T-cell number in NOD mice is at least partially conferred by alleles at the Idd13 locus.
Collapse
|
9
|
Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5392-401. [PMID: 23626013 PMCID: PMC3836168 DOI: 10.4049/jimmunol.1203502] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γδ T cells, a lineage of innate-like lymphocytes, are distinguished from conventional αβ T cells in their Ag recognition, cell activation requirements, and effector functions. γδ T cells have been implicated in the pathology of several human autoimmune and inflammatory diseases and their corresponding mouse models, but their specific roles in these diseases have not been elucidated. We report that γδ TCR(+) cells, including both the CD27(-)CD44(hi) and CD27(+)CD44(lo) subsets, infiltrate islets of prediabetic NOD mice. Moreover, NOD CD27(-)CD44(hi) and CD27(+)CD44(lo) γδ T cells were preprogrammed to secrete IL-17, or IFN-γ upon activation. Adoptive transfer of type 1 diabetes (T1D) to T and B lymphocyte-deficient NOD recipients was greatly potentiated when γδ T cells, and specifically the CD27(-) γδ T cell subset, were included compared with transfer of αβ T cells alone. Ab-mediated blockade of IL-17 prevented T1D transfer in this setting. Moreover, introgression of genetic Tcrd deficiency onto the NOD background provided robust T1D protection, supporting a nonredundant, pathogenic role of γδ T cells in this model. The potent contributions of CD27(-) γδ T cells and IL-17 to islet inflammation and diabetes reported in this study suggest that these mechanisms may also underlie human T1D.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Dosage
- Genotype
- Humans
- Hyaluronan Receptors/metabolism
- Interleukin-17/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- Janet G.M. Markle
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Steve Mortin-Toth
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
| | - Andrea S.L. Wong
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Liping Geng
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
- Immune Surveillance Laboratory; London Research Institute, Cancer Research UK, London, WC2, UK
| | - Jayne S. Danska
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
- Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
10
|
Pelletier AN, Lesage S. The Idd13 congenic interval defines the number of merocytic dendritic cells, a novel trait associated with autoimmune diabetes susceptibility. J Autoimmun 2013; 43:70-7. [PMID: 23623717 DOI: 10.1016/j.jaut.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
When antigens derived from apoptotic cells are presented by conventional dendritic cells (cDC), T cell tolerance is induced. Surprisingly, the presentation of apoptotic cell antigens by an unconventional DC subset, termed merocytic dendritic cells (mcDC), can reverse T cell anergy. The potency of mcDC at breaking T cell tolerance has been demonstrated in the context of tumors and autoimmunity, suggesting that modulating the number of mcDC in vivo may be of clinical interest. To identify the genetic determinants that define the number of mcDC, we performed a linkage analysis between NOD and C57BL/6 mouse strains, where autoimmune-prone NOD mice show an increased proportion of mcDC relative to the non-autoimmune-prone C57BL/6 mice. We identified a locus on chromosome 2 significantly linked to both the proportion and the absolute number of mcDC in the spleen. Interestingly, the dominant interval on chromosome 2 overlaps with a locus previously associated with diabetes protection, namely Idd13. Using NOD.Idd13 congenic mice, we validate the impact of the Idd13 congenic interval in defining the proportion and number of mcDC in the spleen. These results show that the decreased number of mcDC is conferred by C57BL/6 alleles at the Idd13 locus, which is linked to diabetes resistance.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.
| | | |
Collapse
|
11
|
Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013; 339:1084-8. [PMID: 23328391 DOI: 10.1126/science.1233521] [Citation(s) in RCA: 1402] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.
Collapse
Affiliation(s)
- Janet G M Markle
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Driver JP, Chen YG, Mathews CE. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev Diabet Stud 2012; 9:169-87. [PMID: 23804259 DOI: 10.1900/rds.2012.9.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
13
|
Theocharides APA, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JCY. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. ACTA ACUST UNITED AC 2012; 209:1883-99. [PMID: 22945919 PMCID: PMC3457732 DOI: 10.1084/jem.20120502] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of macrophage SIRPα–CD47 interactions mediates phagocytosis and clearance of acute myeloid leukemia stem cells. Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα–CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Collapse
Affiliation(s)
- Alexandre P A Theocharides
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marietta EV, Murray JA. Animal models to study gluten sensitivity. Semin Immunopathol 2012; 34:497-511. [PMID: 22572887 PMCID: PMC3410984 DOI: 10.1007/s00281-012-0315-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/19/2012] [Indexed: 12/13/2022]
Abstract
The initial development and maintenance of tolerance to dietary antigens is a complex process that, when prevented or interrupted, can lead to human disease. Understanding the mechanisms by which tolerance to specific dietary antigens is attained and maintained is crucial to our understanding of the pathogenesis of diseases related to intolerance of specific dietary antigens. Two diseases that are the result of intolerance to a dietary antigen are celiac disease (CD) and dermatitis herpetiformis (DH). Both of these diseases are dependent upon the ingestion of gluten (the protein fraction of wheat, rye, and barley) and manifest in the gastrointestinal tract and skin, respectively. These gluten-sensitive diseases are two examples of how devastating abnormal immune responses to a ubiquitous food can be. The well-recognized risk genotype for both is conferred by either of the HLA class II molecules DQ2 or DQ8. However, only a minority of individuals who carry these molecules will develop either disease. Also of interest is that the age at diagnosis can range from infancy to 70-80 years of age. This would indicate that intolerance to gluten may potentially be the result of two different phenomena. The first would be that, for various reasons, tolerance to gluten never developed in certain individuals, but that for other individuals, prior tolerance to gluten was lost at some point after childhood. Of recent interest is the concept of non-celiac gluten sensitivity, which manifests as chronic digestive or neurologic symptoms due to gluten, but through mechanisms that remain to be elucidated. This review will address how animal models of gluten-sensitive disorders have substantially contributed to a better understanding of how gluten intolerance can arise and cause disease.
Collapse
|
15
|
Leung PSC, Yang GX, Dhirapong A, Tsuneyama K, Ridgway WM, Gershwin ME. Animal models of primary biliary cirrhosis: materials and methods. Methods Mol Biol 2012; 900:291-316. [PMID: 22933075 DOI: 10.1007/978-1-60761-720-4_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Primary biliary cirrhosis (PBC) is a female-predominant autoimmune disease of the liver characterized by immune-mediated destruction of the intrahepatic bile ducts and the presence of antimitochondrial antibodies (AMAs). There have been limited advances in understanding the molecular pathogenesis of the disease because of the difficulty in accessing human tissues and the absence of appropriate animal models. Recently, several unique murine models that manifest the serological, biochemical, and histological features similar to human PBC have been described. In this article, we discuss the current data on three spontaneous and two induced murine models of PBC. The spontaneous models are: (a) NOD.c3c4, (b) dominant negative TGF-β receptor II (dnTGFβRII), and (c) IL-2Rα(-/-) mouse line models. The two induced models are: (a) xenobiotic and (b) Novosphingobium aromaticivorans immunized mice. These animal models provide various important platforms to further investigate the etiology and mechanisms of pathogenesis in PBC. Laboratory methodologies and the protocols that are used in evaluating these animal models are described. Finally, we stress the importance of realizing the strengths and limitations of the animal models are essential in data analysis and their application in therapeutic studies.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Pathological features of new animal models for primary biliary cirrhosis. Int J Hepatol 2012; 2012:403954. [PMID: 21994883 PMCID: PMC3169354 DOI: 10.1155/2012/403954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/11/2011] [Indexed: 12/15/2022] Open
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by immune mediated biliary damage and frequent appearance of autoantibodies against mitochondrial enzymes. There is almost no useful animal model that is globally recognized and routinely used, however, several unique animal models manifested the characteristic clinical and pathological features of human PBC within the last 5 years. Herein, we compare the pathological features of previously reported and newly introduced novel animal models of PBC. Knowledge and understanding of the strengths and the limitations of each animal model have led to the development of promising therapies and novel tools to characterize these clinical conditions. Moreover, suitability of the model for the intended purpose should be confirmed by further research and analysis.
Collapse
|
17
|
Al-Suhaimi EA, Al-Riziza NA, Al-Essa RA. Physiological and therapeutical roles of ginger and turmeric on endocrine functions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:215-31. [PMID: 21476200 DOI: 10.1142/s0192415x11008762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The natural product ginger (Zingiber officinale) has active constituents gingerol, Shogaol and Zerumbone, while turmeric (Curcuma longa) contains three active major curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. They have the same scientific classification and are reported to have anti-inflammatory and many therapeutic effects. This article reviews the physiological and therapeutic effects of ginger and turmeric on some endocrine gland functions, and signal pathways involved to mediate their actions. With some systems and adipose tissue, ginger and turmeric exert their actions through some/all of the following signals or molecular mechanisms: (1) through reduction of high levels of some hormones (as: T4, leptin) or interaction with hormone receptors; (2) by inhibition of cytokines/adipokine expression; (3) acting as a potent inhibitor of reactive oxygen species (ROS)-generating enzymes, which play an essential role between inflammation and progression of diseases; (4) mediation of their effects through the inhibition of signaling transcription factors; and/or (5) decrease the proliferative potent by down-regulation of antiapoptotic genes, which may suppress tumor promotion by blocking signal transduction pathways in the target cells. These multiple mechanisms of protection against inflammation and oxidative damage make ginger and curcumin particularly promising natural agents in fighting the ravages of aging and degenerative diseases, and need to be paid more attention by studies.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Department of Biology, Sciences College, Dammam University, Dammam, Saudi Arabia.
| | | | | |
Collapse
|
18
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
19
|
Rajagopalan G, Mangalam AK, Sen MM, Cheng S, Kudva YC, David CS. Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans. Autoimmunity 2009; 40:169-79. [PMID: 17453715 DOI: 10.1080/08916930701201083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease with a strong HLA association particularly, HLA-DQ8. We investigated whether islet-specific expression of granulocyte/macrophage colony-stimulating factor (Ins.GM-CSF) in A Beta degrees.NOD.DQ8 mice (HLA-DQ8 transgenic mice on a NOD background lacking endogenous mouse MHC class II molecules) would predispose to development of spontaneous autoimmune diabetes. A Beta degrees.NOD.DQ8 mice expressing GM-CSF in the pancreatic ss cells (8+ G+) as well as litter mates lacking either HLA-DQ8 (8 - G+) or GM-CSF (8+ G -) or both (8 - G -) exhibited insulitis and sialadenitis of varying degrees. But none of the mice progressed to develop T1D. Other than the marked mononuclear cell infiltration in livers of mice expressing GM-CSF irrespective of HLA-DQ8 expression (8+ G+ or 8 - G+), no other changes were observed in the animals. Thus, we have shown for the first time that expression of HLA-DQ8 in the diabetes-predisposing mileu of NOD genetic background is not sufficient to predispose to development of autoimmune diabetes even when the potent immunostimulatory cytokine, GM-CSF is expressed in the pancreatic islets.
Collapse
|
20
|
Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV. Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 2008; 57:3273-80. [PMID: 18776136 PMCID: PMC2584133 DOI: 10.2337/db08-0767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Although the H2(g7) major histocompatibility complex (MHC) provides the primary pathogenic component, the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice also requires contributions from other susceptibility (Idd) genes. Despite sharing the H2(g7) MHC, the closely NOD-related NOR strain remains type 1 diabetes resistant because of contributions of protective Idd5.2, Idd9/11, and Idd13 region alleles. To aid their eventual identification, we evaluated cell types in which non-MHC Idd resistance genes in NOR mice exert disease-protective effects. RESEARCH DESIGN AND METHODS Adoptive transfer and bone marrow chimerism approaches tested the diabetogenic activity of CD4 and CD8 T-cells from NOR mice and NOD stocks congenic for NOR-derived Idd resistance loci. Tetramer staining and mimotope stimulation tested the frequency and proliferative capacity of CD4 BDC2.5-like cells. Regulatory T-cells (Tregs) were identified by Foxp3 staining and functionally assessed by in vitro suppression assays. RESULTS NOR CD4 T-cells were less diabetogenic than those from NOD mice. The failure of NOR CD4 T-cells to induce type 1 diabetes was not due to decreased proliferative capacity of BDC2.5 clonotypic-like cells. The frequency and function of Tregs in NOD and NOR mice were also equivalent. However, bone marrow chimerism experiments demonstrated that intrinsic factors inhibited the pathogenic activity of NOR CD4 T-cells. The NOR Idd9/11 resistance region on chromosome 4 was found to diminish the diabetogenic activity of CD4 but not CD8 T-cells. CONCLUSIONS In conclusion, we demonstrated that a gene(s) within the Idd9/11 region regulates the diabetogenic activity of CD4 T-cells.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Chromosome Mapping
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Genetic Predisposition to Disease
- Major Histocompatibility Complex
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD/genetics
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
|
21
|
Fletcher JM, Jordan MA, Snelgrove SL, Slattery RM, Dufour FD, Kyparissoudis K, Besra GS, Godfrey DI, Baxter AG. Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. THE JOURNAL OF IMMUNOLOGY 2008; 181:3400-12. [PMID: 18714012 DOI: 10.4049/jimmunol.181.5.3400] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 1 NKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. Herein, we report the production and characterization of a NOD.Nkrp1(b).Nkt2b(b) congenic mouse strain, which has increased thymic and peripheral NKT cells, a decreased incidence of type 1 diabetes, and enhanced cytokine responses in vivo and increased proliferative responses in vitro following challenge with alpha-galactosylceramide. The 19 highly differentially expressed candidate genes within the congenic region identified by microarray expression analyses included Pxmp4. This gene encodes a peroxisome-associated integral membrane protein whose only known binding partner is Pex19, an intracellular chaperone and component of the peroxisomal membrane insertion machinery encoded by a candidate for the NKT cell control gene Nkt1. These findings raise the possibility that peroxisomes play a role in modulating glycolipid availability for CD1d presentation, thereby influencing NKT cell function.
Collapse
Affiliation(s)
- Julie M Fletcher
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dai YD, Jensen KP, Marrero I, Li N, Quinn A, Sercarz EE. N-terminal flanking residues of a diabetes-associated GAD65 determinant are necessary for activation of antigen-specific T cells in diabetes-resistant mice. Eur J Immunol 2008; 38:968-76. [PMID: 18395850 DOI: 10.1002/eji.200737703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A diabetes-associated peptide in the glutamic acid decarboxylase 65 (GAD65) molecule, p524-543, activates two distinct populations of T cells, which apparently play opposite roles in the development of diabetes in NOD mice. By comparing the fine specificity of these two T cell repertoires using a nested set of truncated peptides that cover the p524-543 region, we found, surprisingly, that all clones recognized the same core within this peptide, p530-539. The core itself was non-immunogenic, but the residues flanking this shared sequence played the crucial role in selecting T cells to activate. A peptide missing N-terminal flanking residues at position 528 and 529 was stimulatory in NOD but not in MHC-matched, NOD-resistant (NOR) mice, suggesting that a protective response in the resistant mice may require T cell recognition of one or more of the N-terminal flanking residues. T cell repertoire studies demonstrated selective clonal expansions within the BV4 TCR family that dominates the p524-543 response in NOD but not in NOR mice. These data suggest that processing or trimming events affecting T cell recognition of very few flanking residues of diabetes-associated determinants might be involved in the protective response in NOR mice.
Collapse
Affiliation(s)
- Yang D Dai
- Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 2008; 149:1338-49. [PMID: 18063685 PMCID: PMC2275367 DOI: 10.1210/en.2007-1137] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activation of the glucagon-like peptide-1 receptor (GLP-1R) is associated with expansion of beta-cell mass due to stimulation of cell proliferation and induction of antiapoptotic pathways coupled to beta-cell survival. Although the GLP-1R agonist Exenatide (exendin-4) is currently being evaluated in subjects with type 1 diabetes, there is little information available about the efficacy of GLP-1R activation for prevention of experimental type 1 diabetes. We examined the consequences of exendin-4 (Ex-4) administration (100 ng once daily and 2 microg twice daily) on diabetes onset in nonobese diabetic mice beginning at either 4 or 9 wk of age prior to the onset of diabetes. Ex-4 treatment for 26 wk (2 microg twice daily) initiated at 4 wk of age delayed the onset of diabetes (P = 0.007). Ex-4-treated mice also exhibited a significant reduction in insulitis scores, enhanced beta-cell mass, and improved glucose tolerance. Although GLP-1R mRNA transcripts were detected in spleen, thymus, and lymph nodes from nonobese diabetic mice, Ex-4 treatment was not associated with significant changes in the numbers of CD4+ or CD8+ T cells or B cells in the spleen. However, Ex-4 treatment resulted in an increase in the number of CD4+ and CD8+ T cells in the lymph nodes and a reduction in the numbers of CD4+CD25+Foxp3+ regulatory T cells in the thymus but not in lymph nodes. These findings demonstrate that sustained GLP-1R activation in the absence of concomitant immune intervention may be associated with modest but significant delay in diabetes onset in a murine model of type 1 diabetes.
Collapse
Affiliation(s)
- Irene Hadjiyanni
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
24
|
Ivakine EA, Mortin-Toth SM, Gulban OM, Valova A, Canty A, Scott C, Danska JS. The idd4 locus displays sex-specific epistatic effects on type 1 diabetes susceptibility in nonobese diabetic mice. Diabetes 2006; 55:3611-9. [PMID: 17130511 DOI: 10.2337/db06-0758] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nonobese diabetic (NOD) mouse recapitulates many aspects of the pathogenesis of type 1 diabetes in humans, including inheritance as a complex trait. More than 20 Idd loci have been linked to type 1 diabetes susceptibility in NOD mice. Previously, we used linkage analysis of NOD crossed to the nonobese diabetes-resistant (NOR) strain and NOD congenic strains to map susceptibility to both spontaneous and cyclophosphamide-accelerated type 1 diabetes to the Idd4 locus on chromosome 11 that displayed a sex-specific effect on diabetes susceptibility. Here, we elucidate the complex genetic architecture of Idd4 by analysis of congenic strains on the NOD and NOR backgrounds. We previously refined Idd4.1 to 1.4 Mb and demonstrated an impact of this interval on type 1 interferon pathways in antigen-presenting cells. Here, we identify a second subregion, the 0.92 Mb Idd4.2 locus located telomeric to Idd4.1. Strikingly, Idd4.2 displayed a sex-specific, epistatic interaction with Idd4.1 in NOR.NOD congenic females that was not observed in syngenic males. Idd4.2 contains 29 genes, and promising candidates for the Idd4.2 effect on type 1 diabetes are described. These data demonstrate sex-dependent interaction effects on type 1 diabetes susceptibility and provide a framework for functional analysis of Idd4.2 candidate genes.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Holm TL, Lundsgaard D, Markholst H. Characteristics of Rat CD4+CD25+ T Cells and Their Ability to Prevent Not Only Diabetes But Also Insulitis in an Adoptive Transfer Model in BB Rats. Scand J Immunol 2006; 64:17-29. [PMID: 16784487 DOI: 10.1111/j.1365-3083.2006.01760.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and mouse CD4(+)CD25(+) T cells have been intensively studied through the last decade. However, little is known about this subset in other species. This study describes the phenotype of rat CD4(+)CD25(+) Foxp3(+) T cells and the site in which they exert regulation in a transfer-induced autoimmune diabetes model. Several proteins and mRNAs are up-regulated in unstimulated rat CD4(+)CD25(+) T cells compared with CD4(+)CD25(-) T cells, including Foxp3, Lag-3, CD80, interleukin 10 (IL-10) and CTLA-4. To investigate CD4(+)CD25(+) T cells in vivo, we transferred three million diabetogenic T cells either alone or in combination with two million CD4(+)CD25(+) T cells to 30-day-old BB rats. The pancreas and the pancreatic lymph nodes were examined as two potential regulatory sites. Time-course analysis of pancreatic histology following diabetogenic T-cell transfers revealed insulitis from about 14 days after transfer. By contrast, rats receiving both diabetogenic T cells and CD4(+)CD25(+) T cells had no insulitis at any time. Moreover, the frequency of diabetogenic T cells in the pancreatic lymph nodes 2 days after transfer was significantly reduced in rats receiving both subsets. These data indicate that the primary site of T-cell regulation is in the draining lymph nodes and not the pancreas in our model.
Collapse
Affiliation(s)
- T L Holm
- Hagedorn Research Institute, Gentofte, Denmark
| | | | | |
Collapse
|
26
|
O'Brien BA, Geng X, Orteu CH, Huang Y, Ghoreishi M, Zhang Y, Bush JA, Li G, Finegood DT, Dutz JP. A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse. J Autoimmun 2006; 26:104-15. [PMID: 16431079 DOI: 10.1016/j.jaut.2005.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/09/2005] [Accepted: 11/25/2005] [Indexed: 11/24/2022]
Abstract
Deficiencies in apoptotic cell clearance have been linked to autoimmunity. Here we examined the time-course of peritoneal macrophage phagocytosis of dying cells following the direct injection of apoptotic thymocytes into the peritoneum of NOD mice and BALB/c controls. Macrophages from NOD mice demonstrated a profound defect in the phagocytosis of apoptotic thymocytes as compared to control macrophages. Nonobese diabetic mice also demonstrated a decrease in the clearance of apoptotic cell loads following an apoptotic stimulus to thymocytes (dexamethasone) when compared to BALB/c or NOR controls. Further, NOD mice demonstrated an increase in apoptotic cell load following an apoptotic stimulus to keratinocytes (ultraviolet light, UVB) when compared to control strains. Animals deficient in macrophage phagocytosis of apoptotic debris often manifest an autoimmune phenotype characterized by the production of antinuclear autoantibodies (ANA). We determined whether increased apoptotic cell loads (through repeated exposure to UVB irradiation) could accelerate such autoimmune phenomena in young NOD mice. Following repeated UVB irradiation, NOD mice, but not BALB/c or NOR controls, developed ANA. We propose that abnormalities in apoptotic cell clearance by macrophages predispose NOD mice to autoimmunity.
Collapse
|
27
|
Ivakine EA, Gulban OM, Mortin-Toth SM, Wankiewicz E, Scott C, Spurrell D, Canty A, Danska JS. Molecular Genetic Analysis of the Idd4 Locus Implicates the IFN Response in Type 1 Diabetes Susceptibility in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2976-90. [PMID: 16493056 DOI: 10.4049/jimmunol.176.5.2976] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Leiter EH, Lee CH. Mouse models and the genetics of diabetes: is there evidence for genetic overlap between type 1 and type 2 diabetes? Diabetes 2005; 54 Suppl 2:S151-8. [PMID: 16306333 DOI: 10.2337/diabetes.54.suppl_2.s151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, both type 1 and type 2 diabetes exemplify genetically heterogeneous complex diseases in which epigenetic factors contribute to underlying genetic susceptibility. Extended human pedigrees often show inheritance of both diabetes types. A common pathophysiological denominator in both disease forms is pancreatic beta-cell exposure to proinflammatory cytokines. Hence, it is intuitive that systemically expressed genes regulating beta-cell ability to withstand chronic diabetogenic stress may represent a component of shared susceptibility to both major disease forms. In this review, the authors assemble evidence from genetic experiments using animal models developing clearly distinct diabetes syndromes to inquire whether some degree of overlap in genes contributing susceptibility can be demonstrated. The conclusion is that although overlap exists in the pathophysiological insults leading to beta-cell destruction in the currently studied rodent models, the genetic bases seem quite distinct.
Collapse
Affiliation(s)
- Edward H Leiter
- The Jackson Laboratory, 600 Main St., Bar Harbor, Maine 04609, USA.
| | | |
Collapse
|
29
|
Reifsnyder PC, Li R, Silveira PA, Churchill G, Serreze DV, Leiter EH. Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice. Genes Immun 2005; 6:528-38. [PMID: 16015371 DOI: 10.1038/sj.gene.6364241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While sharing the H2g7 MHC and many other important Type I diabetes susceptibility (Idd) genes with NOD mice, the NOR strain remains disease free due to resistance alleles within the approximately 12% portion of their genome that is of C57BLKS/J origin. Previous F2 segregation analyses indicated multiple genes within the 'Idd13' locus on Chromosome 2 provide the primary component of NOR diabetes resistance. However, it was clear other genes also contribute to NOR diabetes resistance, but were difficult to detect in the original segregation analyses because they were relatively weak compared to the strong Idd13 protection component. To identify these further genetic components of diabetes resistance, we performed a new F2 segregation analyses in which NOD mice were outcrossed to a 'genome-conditioned' NOR stock in which a large component of Idd13-mediated resistance was replaced with NOD alleles. These F2 segregation studies combined with subsequent congenic analyses confirmed the presence of additional NOR resistance genes on Chr. 1 and Chr. 4, and also potentially on Chr. 11. These findings emphasize the value for diabetes gene discovery of stratifying not only MHC loci conferring the highest relative risk but also as many as possible of the non-MHC loci presumed to contribute significantly.
Collapse
|
30
|
Ivakine EA, Fox CJ, Paterson AD, Mortin-Toth SM, Canty A, Walton DS, Aleksa K, Ito S, Danska JS. Sex-Specific Effect of Insulin-Dependent Diabetes 4 on Regulation of Diabetes Pathogenesis in the Nonobese Diabetic Mouse. THE JOURNAL OF IMMUNOLOGY 2005; 174:7129-40. [PMID: 15905556 DOI: 10.4049/jimmunol.174.11.7129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many human autoimmune diseases are more frequent in females than males, and their clinical severity is affected by sex hormone levels. A strong female bias is also observed in the NOD mouse model of type I diabetes (T1D). In both NOD mice and humans, T1D displays complex polygenic inheritance and T cell-mediated autoimmune pathogenesis. The identities of many of the insulin-dependent diabetes (Idd) loci, their influence on specific stages of autoimmune pathogenesis, and sex-specific effects of Idd loci in the NOD model are not well understood. To address these questions, we analyzed cyclophosphamide-accelerated T1D (CY-T1D) that causes disease with high and similar frequencies in male and female NOD mice, but not in diabetes-resistant animals, including the nonobese diabetes-resistant (NOR) strain. In this study we show by genetic linkage analysis of (NOD x NOR) x NOD backcross mice that progression to severe islet inflammation after CY treatment was controlled by the Idd4 and Idd9 loci. Congenic strains on both the NOD and NOR backgrounds confirmed the roles of Idd4 and Idd9 in CY-T1D susceptibility and revealed the contribution of a third locus, Idd5. Importantly, we show that the three loci acted at distinct stages of islet inflammation and disease progression. Among these three loci, Idd4 alleles alone displayed striking sex-specific behavior in CY-accelerated disease. Additional studies will be required to address the question of whether a sex-specific effect of Idd4, observed in this study, is also present in the spontaneous model of the disease with striking female bias.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The nonobese diabetic mouse spontaneously develops an autoimmune, T-cell-mediated type 1 diabetes (T1D). Common and rare alleles both within a diabetogenic major histocompatibility complex (MHC) and multiple non-MHC genes combine to impair normal communication between the innate and acquired immune system, leading to loss of immune tolerance. An understanding of how variable collections of genes interact with each other and with environmental cues offers important insights as to the complexities of T1D inheritance in humans.
Collapse
Affiliation(s)
- Edward H Leiter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
32
|
Chilton PM, Rezzoug F, Ratajczak MZ, Fugier-Vivier I, Ratajczak J, Kucia M, Huang Y, Tanner MK, Ildstad ST. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients. Blood 2005; 105:2189-97. [PMID: 15522953 DOI: 10.1182/blood-2004-07-2757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractType 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage–colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell–derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.
Collapse
Affiliation(s)
- Paula M Chilton
- Institute for Cellular Therapeutics, University of Louisville, 570 South Preston St, Suite 404, Louisville, KY 40202-1760, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liston A, Lesage S, Gray DHD, O'Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC. Generalized resistance to thymic deletion in the NOD mouse; a polygenic trait characterized by defective induction of Bim. Immunity 2005; 21:817-30. [PMID: 15589170 DOI: 10.1016/j.immuni.2004.10.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/17/2004] [Accepted: 10/20/2004] [Indexed: 01/22/2023]
Abstract
The cause of common polygenic autoimmune diseases is not understood because of genetic and cellular complexity. Here, we pinpoint the action of a subset of autoimmune susceptibility loci in the NOD mouse strain linked to D1mit181, D2mit490, D7mit101, and D15mit229, which cause a generalized resistance to thymic deletion in vivo that applies equally to Aire-induced organ-specific gene products in the thymic medulla and to systemic antigens expressed at high levels throughout the thymus and affects CD4(+), CD4(+)8(+), and CD4(+)25(+) thymocytes. Resistance to thymic deletion does not reflect a general deficit in TCR signaling to calcineurin- or ERK-induced genes, imbalance in constitutive regulators of apoptosis, nor excessive signaling to prosurvival genes but is distinguished by failure to induce the proapoptotic gene and protein, Bim, during in vivo encounter with high-avidity autoantigen. These findings establish defects in thymic deletion and Bim induction as a key mechanism in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Adrian Liston
- Immunogenomics Laboratory, John Curtin School of Medical Research and The Australian Phenomics Facility, The Australian National University, Canberra, 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Type 1 diabetes is an autoimmune disease with a complex polygenic inheritance. Until recently, only three susceptibility genes had been reproducibly identified, namely HLA, INS-VNTR, and CTLA4. During the past 7 years, a number of new putative susceptibility genes have been isolated from both human and animal models of the disease. We present eight genes implicated in type 1 diabetes etiology and discuss them in relation to the pathogenesis of the disease: VDR, IL6, IL12B, AIRE, FOXP3, B2m, Cblb, and Lyp/Ian4l1.
Collapse
Affiliation(s)
- Lars Hornum
- Type 1 Pharmacology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | |
Collapse
|
35
|
Pauza ME, Dobbs CM, He J, Patterson T, Wagner S, Anobile BS, Bradley BJ, Lo D, Haskins K. T-cell receptor transgenic response to an endogenous polymorphic autoantigen determines susceptibility to diabetes. Diabetes 2004; 53:978-88. [PMID: 15047613 DOI: 10.2337/diabetes.53.4.978] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have produced a T-cell receptor (TCR) transgenic NOD mouse, 6.9TCR/NOD, in which the expression of both diabetogenic T-cells and naturally occurring autoantigen were simultaneously controlled. The parent T-cell clone, BDC-6.9, and T-cells from 6.9TCR/NOD mice recognize a currently unidentified antigen present in NOD but not in BALB/c islet cells. A gene that codes for the antigen, or a protein that regulates the antigen, was previously mapped to a locus on chromosome 6. We have developed transgenic mice bearing the TCR alpha- and beta-chains from the BDC-6.9 T-cell clone on a NOD congenic background in which the antigen locus on chromosome 6 of the NOD mouse is replaced by a segment from BALB/c. These NOD.C6 congenic mice lack the NOD islet cell antigen to which the BDC-6.9 T-cell clone responds. Diabetes in both male and female 6.9TCR/NOD mice is dramatically accelerated, but in 6.9TCR/NOD.C6 mice lacking the NOD islet cell autoantigen, we have not observed diabetes for up to 1 year of age. Thus, the generation of 6.9TCR transgenic mice provides a model of autoimmune diabetes whereby controlled expression of an endogenous polymorphic autoantigen effectively determines disease development.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Chromosome Mapping
- DNA Primers
- Diabetes Mellitus/genetics
- Diabetes Mellitus/immunology
- Disease Susceptibility
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Transgenic
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- Receptors, Antigen, T-Cell/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Mary E Pauza
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2873-8. [PMID: 12960309 DOI: 10.4049/jimmunol.171.6.2873] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1(b) mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/alpha-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.
Collapse
MESH Headings
- Alleles
- Animals
- Cells, Cultured
- Chromosome Mapping/methods
- Crosses, Genetic
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Genetic Linkage/immunology
- Genetic Markers/immunology
- Genetic Predisposition to Disease
- Genotype
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Phenotype
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Luis M Esteban
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ridgway WM. The non obese diabetic (NOD) mouse: a unique model for understanding the interaction between genetics and T cell responses. Rev Endocr Metab Disord 2003; 4:263-9. [PMID: 14501177 DOI: 10.1023/a:1025104429334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- William M Ridgway
- Division of Immunology and Rheumatology, University of Pittsburgh School of Medicine, S725 Biomedical Science Tower, 3500 Terrace Street, PGH, PA 15261, USA.
| |
Collapse
|
38
|
Pearson T, Markees TG, Serreze DV, Pierce MA, Marron MP, Wicker LS, Peterson LB, Shultz LD, Mordes JP, Rossini AA, Greiner DL. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:185-95. [PMID: 12816997 DOI: 10.4049/jimmunol.171.1.185] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Curing type 1 diabetes by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. Most islet allotransplant tolerance induction protocols have been tested in nonobese diabetic (NOD) mice, and most have failed. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Out of concern that NOD biology could be misleading in this regard, we tested the hypothesis that autoimmunity and resistance to transplantation tolerance in NOD mice are distinct phenotypes. Unexpectedly, we observed that (NOD x C57BL/6)F(1) mice, which have no diabetes, nonetheless resist prolongation of skin allografts by costimulation blockade. Further analyses revealed that the F(1) mice shared the dendritic cell maturation defects and abnormal CD4(+) T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice can be dissociated genetically. The outcomes of tolerance induction protocols tested in NOD mice may not accurately predict outcomes in human subjects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/biosynthesis
- Autoimmune Diseases/genetics
- Autoimmune Diseases/pathology
- B7-2 Antigen
- Bone Marrow Cells/immunology
- Bone Marrow Cells/pathology
- CD4-CD8 Ratio
- CD40 Antigens/immunology
- CD40 Ligand/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Count
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Crosses, Genetic
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Genetic Markers
- Genetic Predisposition to Disease
- Graft Survival/genetics
- Graft Survival/immunology
- Homozygote
- Immunity, Innate/genetics
- Injections, Intravenous
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymphocyte Activation/immunology
- Lymphocyte Transfusion
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Macrophages/cytology
- Macrophages/immunology
- Male
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, Interleukin-2/biosynthesis
- Skin Transplantation/immunology
- Transplantation Tolerance/genetics
Collapse
Affiliation(s)
- Todd Pearson
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alizadeh M, Babron MC, Birebent B, Matsuda F, Quelvennec E, Liblau R, Cournu-Rebeix I, Momigliano-Richiardi P, Sequeiros J, Yaouanq J, Genin E, Vasilescu A, Bougerie H, Trojano M, Martins Silva B, Maciel P, Clerget-Darpoux F, Clanet M, Edan G, Fontaine B, Semana G. Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients. Ann Neurol 2003; 54:119-22. [PMID: 12838528 DOI: 10.1002/ana.10617] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a genetic component. Until now, the more consistent association with the disease is found with the major histocompatibility complex, especially HLA-DRB1*1501-DQB1*0602 haplotype. In this report, we demonstrate the interaction of Cytotoxic T Lymphocyte-associated antigen 4 (CTLA-4 [CD152]) gene with DRB1*15 haplotype in multiple sclerosis genetic susceptibility. Our data were obtained from two European independent family-based studies including 610 multiple sclerosis family trios. Ann Neurol 2003;54:119-122
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Laboratoire Universitaire d'Immunologie (UPRES EA 1257, IFR 97) and Etablissement Français du Sang Bretagne, Faculté de Médecine, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Koarada S, Wu Y, Olshansky G, Ridgway WM. Increased nonobese diabetic Th1:Th2 (IFN-gamma:IL-4) ratio is CD4+ T cell intrinsic and independent of APC genetic background. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6580-7. [PMID: 12444170 DOI: 10.4049/jimmunol.169.11.6580] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.
Collapse
Affiliation(s)
- Syuichi Koarada
- Division of Rheumatology and Immunology, Department of Medicine, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
41
|
Ramanathan S, Bihoreau MT, Paterson AD, Marandi L, Gauguier D, Poussier P. Thymectomy and radiation-induced type 1 diabetes in nonlymphopenic BB rats. Diabetes 2002; 51:2975-81. [PMID: 12351436 DOI: 10.2337/diabetes.51.10.2975] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spontaneous type 1 diabetes in BB rats is dependent on the RT1(u) MHC haplotype and homozygosity for an allele at the Lyp locus, which is responsible for a peripheral T-lymphopenia. Genetic studies have shown that there are other, as yet unidentified, genetic loci contributing to diabetes susceptibility in this strain. BB rats carrying wild-type Lyp alleles are not lymphopenic and are resistant to spontaneous diabetes (DR). Here we show that thymectomy and exposure to one sublethal dose of gamma-irradiation (TX-R) at 4 weeks of age result in the rapid development of insulitis followed by diabetes in 100% of DR rats. Administration of CD4(+)45RC(-) T-cells from unmanipulated, syngeneic donors immediately after irradiation prevents the disease. Splenic T-cells from TX-R-induced diabetic animals adoptively transfer type 1 diabetes to T-deficient recipients. ACI, WF, WAG, BN, LEW, PVG, and PVG.RT1(u) strains are resistant to TX-R-induced insulitis/diabetes. Genetic analyses revealed linkage between regions on chromosomes 1, 3, 4, 6, 9, and 16, and TX-R-induced type 1 diabetes in a cohort of nonlymphopenic F(2) (Wistar Furth x BBDP) animals. This novel model of TX-R-induced diabetes in nonlymphopenic BB rats can be used to identify environmental and cellular factors that are responsible for the initiation of antipancreatic autoimmunity.
Collapse
Affiliation(s)
- Sheela Ramanathan
- Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002; 51:2481-8. [PMID: 12145161 DOI: 10.2337/diabetes.51.8.2481] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages limit inflammatory responses by clearing apoptotic cells. Deficiencies in apoptotic cell phagocytosis have been linked to autoimmunity. In this study, we determined the efficiency with which macrophages from diabetes-prone NOD and diabetes-resistant NOR, Idd5, Balb/c, and C57BL/6 mice phagocytose apoptotic thymocytes and NIT-1 insulinoma cells. Peritoneal and bone marrow-derived macrophages from NOD mice engulfed fewer apoptotic thymocytes than macrophages from Balb/c mice (P < 0.05). Peritoneal macrophages from NOR and Idd5 NOD congenic mice were more proficient at engulfment than their NOD counterparts. Annexin V blockade diminished apoptotic thymocyte clearance and heat-labile serum factors augmented clearance. Binding of apoptotic thymocytes to NOD macrophages was also reduced, suggesting that the deficiency in phagocytosis may be partly attributable to a recognition defect. Peritoneal macrophages from female Balb/c and NOD mice were equally efficient in the engulfment of microspheres, suggesting that the phagocytic deficiency observed in NOD mice was specific for apoptotic cells. In summary, we have demonstrated a deficiency in phagocytic function of macrophages from NOD mice. Normal and diabetes-prone neonatal rodents have a wave of beta-cell apoptosis coincident with the onset of target organ inflammation. A constitutive defect in the clearance of apoptotic beta-cells may be contributory to the initiation of autoimmunity.
Collapse
Affiliation(s)
- Bronwyn A O'Brien
- Diabetes Research Laboratory, Department of Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
43
|
Cordell HJ, Todd JA, Hill NJ, Lord CJ, Lyons PA, Peterson LB, Wicker LS, Clayton DG. Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics 2001; 158:357-67. [PMID: 11333244 PMCID: PMC1461617 DOI: 10.1093/genetics/158.1.357] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In general, common diseases do not follow a Mendelian inheritance pattern. To identify disease mechanisms and etiology, their genetic dissection may be assisted by evaluation of linkage in mouse models of human disease. Statistical modeling of multiple-locus linkage data from the nonobese diabetic (NOD) mouse model of type 1 diabetes has previously provided evidence for epistasis between alleles of several Idd (insulin-dependent diabetes) loci. The construction of NOD congenic strains containing selected segments of the diabetes-resistant strain genome allows analysis of the joint effects of alleles of different loci in isolation, without the complication of other segregating Idd loci. In this article, we analyze data from congenic strains carrying two chromosome intervals (a double congenic strain) for two pairs of loci: Idd3 and Idd10 and Idd3 and Idd5. The joint action of both pairs is consistent with models of additivity on either the log odds of the penetrance, or the liability scale, rather than with the previously proposed multiplicative model of epistasis. For Idd3 and Idd5 we would also not reject a model of additivity on the penetrance scale, which might indicate a disease model mediated by more than one pathway leading to beta-cell destruction and development of diabetes. However, there has been confusion between different definitions of interaction or epistasis as used in the biological, statistical, epidemiological, and quantitative and human genetics fields. The degree to which statistical analyses can elucidate underlying biologic mechanisms may be limited and may require prior knowledge of the underlying etiology.
Collapse
Affiliation(s)
- H J Cordell
- Department of Medical Genetics, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- T Kamradt
- Deutsches Rheumaforschungszentrum Berlin and Universitätsklinikum Charité, Medizinische Klinik mit Schwerpunkt Rheumatologie and Klinische Immunologie, Germany.
| | | |
Collapse
|
45
|
Abstract
Over the past several years, intense effort has been made to map the chromosomal locations of genes involved in the susceptibility to autoimmune diseases. The first phase of this mapping effort-performed in most cases by using microsatellite markers to scan the genome for loci that are linked with disease-has generated first-draft maps for numerous autoimmune diseases in humans, mice and rats, pointing to as many as 20 different loci in some diseases. The second phase is now beginning, with efforts focused on narrowing the loci sufficiently to allow the positional cloning of disease-associated alleles. From these mapping data it is clear that some of these loci overlap between various autoimmune diseases and preliminary results suggest that indeed there is a sharing of 'autoimmunity genes' between various autoimmune diseases.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmunity/genetics
- Autoimmunity/immunology
- Chromosome Mapping
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Rats
Collapse
Affiliation(s)
- J A Encinas
- Bayer Yakuhin Limited, Research Center Kyoto, 6-5-1-3 Kunimidai, Kizu-cho, Soraku-gun, Kyoto 619-0216, Japan.
| | | |
Collapse
|