1
|
Ciborowski K, Szczecińska M, Maździarz M, Sawicki J, Paukszto Ł. Decoding Evolution of Rubioideae: Plastomes Reveal Sweet Secrets of Codon Usage, Diagnostides, and Superbarcoding. Genes (Basel) 2024; 15:562. [PMID: 38790191 PMCID: PMC11121115 DOI: 10.3390/genes15050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Galium genus belongs to the Rubiaceae family, which consists of approximately 14,000 species. In comparison to its well-known relatives, the plastomes of the Galium genus have not been explored so far. The plastomes of this genus have a typical, quadripartite structure, but differ in gene content, since the infA gene is missing in Galium palustre and Galium trfidum. An evaluation of the effectiveness of using entire chloroplast genome sequences as superbarcodes for accurate plant species identification revealed the high potential of this method for molecular delimitation within the genus and tribe. The trnE-UUC-psbD region showed the biggest number of diagnostides (diagnostic nucleotides) which might be new potential barcodes, not only in Galium, but also in other closely related genera. Relative synonymous codon usage (RSCU) appeared to be connected with the phylogeny of the Rubiaceae family, showing that during evolution, plants started preferring specific codons over others.
Collapse
Affiliation(s)
| | | | | | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.C.); (M.S.); (M.M.); (Ł.P.)
| | | |
Collapse
|
2
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
3
|
Minelli A. A refreshed approach to homology-Prioritizing epistemology over metaphysics. J Morphol 2023; 284:e21533. [PMID: 36342140 DOI: 10.1002/jmor.21533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Unease with the inclusion of "sameness" in Owen's definition of homology characterizes a substantial part of the literature on this subject, where this term has acquired an increasingly strict metaphysical flavor. Taken for granted the existence of body features that are "the same," their existence has been explained by appealing to universal laws of form, as the product of common ancestry, or in terms of proximal causes responsible for the emergence of conserved developmental modules. However, a fundamentally different approach is possible, if we shift attention from metaphysics to epistemology. We may reword Owen's statement as follows: organs of different animals, in so far as they can be described as the same despite any difference in form and function, are called homologues. The proposed framework provides an umbrella for both the traditional, all-or-nothing concept of homology, and the less fashionable alternatives of factorial or partial homology, as well as for an extension of homology from form to function. No less attractive is the prospect to handle also ghost homologues, the body parts or organs of which there is non-objective evidence in a given clade, but can nevertheless be represented, in a description that encapsulates some of the traits observable in their extant homologue in the sister clade. Stripped of its different and constraining metaphysical explanations, homology survives as an anchor concept to which different nomadic disciplines and research agendas can be associated.
Collapse
|
4
|
Minelli A. Two-way exchanges between animal and plant biology, with focus on evo-devo. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1057355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
By definition, biology is the science of all living beings. However, horizons restricted to either plants or animals have characterized the development of life sciences well beyond the emergence of unified perspectives applying to all forms of life, such as the cell theory or the theory of evolution. Separation between botanical and zoological traditions is not destined to go extinct easily, or shortly. Disciplinary isolation is emphasized by institutional contexts such as scientific societies and their congresses, specialist journals, disciplines recognized as teaching subjects and legitimate and fundable research fields. By shaping the personal agendas of individual scientists, this has a strong impact on the development of biology. In some fields, botanical and zoological contributions have long being effectively intertwined, but in many others plant and animal biology have failed to progress beyond a marginal dialogue. Characteristically, the so-called “general biology” and the philosophy of biology are still zoocentric (and often vertebrato- or even anthropocentric). In this article, I discuss legitimacy and fruitfulness of some old lexical and conceptual exchanges between the two traditions (cell, tissue, and embryo). Finally, moving to recent developments, I compare the contributions of plant vs. animal biology to the establishment of evolutionary developmental biology. We cannot expect that stronger integration between the different strands of life sciences will soon emerge by self-organization, but highlighting this persisting imbalance between plant and animal biology will arguably foster progress.
Collapse
|
5
|
Shoot Development in Members of an Ancient Aquatic Angiosperm Lineage, Ceratophyllaceae: A New Interpretation Facilitates Comparisons with Chloranthaceae. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ceratophyllum is an ancient and phylogenetically isolated angiosperm lineage. Comparisons between Ceratophyllum and other angiosperms are hampered by uncertainty in inferring organ homologies in this genus of specialized aquatics. Interpretation of shoot morphology is especially problematic in Ceratophyllum. Each node has several leaf-like appendages interpreted as verticillate leaves, modified parts of one and the same leaf or parts of two leaves under decussate phyllotaxis. Vegetative branches are axillary, but reproductive units (interpreted as flowers or inflorescences) are commonly viewed as developing from collateral accessory buds. We studied shoot development in Ceratophyllum submersum, C. tanaiticum, and C. demersum using scanning electron microscopy to clarify shoot morphology and branching patterns. Our data support the idea that the phyllotaxis is essentially decussate with appendages of stipular origin resembling leaf blades. We conclude that a leaf axil of Ceratophyllum possesses a complex of two serial buds, the lower one producing a vegetative branch and the upper one developing a reproductive unit. The reproductive unit is congenitally displaced to the subsequent node, a phenomenon known as concaulescence. Either member of the serial bud complex may be absent. There is a theory based on a synthesis of molecular and morphological data that Chloranthaceae are the closest extant relatives of Ceratophyllum. Serial buds and concaulescence are known in Hedyosmum (Chloranthaceae). Our new interpretation facilitates morphological comparisons between Hedyosmum and Ceratophyllum.
Collapse
|
6
|
Sokoloff DD, El ES, Pechenyuk EV, Carrive L, Nadot S, Rudall PJ, Remizowa MV. Refined Interpretation of the Pistillate Flower in Ceratophyllum Sheds Fresh Light on Gynoecium Evolution in Angiosperms. Front Cell Dev Biol 2022; 10:868352. [PMID: 35573671 PMCID: PMC9098228 DOI: 10.3389/fcell.2022.868352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular phylogenetic analyses have revealed a superclade of mesangiosperms with five extant lineages: monocots, eudicots, magnoliids, Ceratophyllum and Chloranthaceae. Both Ceratophyllum and Chloranthaceae are ancient lineages with a long fossil record; their precise placement within mesangiosperms is uncertain. Morphological studies have suggested that they form a clade together with some Cretaceous fossils, including Canrightia, Montsechia and Pseudoasterophyllites. Apart from Canrightia, members of this clade share unilocular gynoecia commonly interpreted as monomerous with ascidiate carpels. Alternatively, the gynoecium of Ceratophyllum has also been interpreted as syncarpous with a single fertile carpel (pseudomonomerous). We investigate patterns of morphological, anatomical and developmental variation in gynoecia of three Ceratophyllum species to explore the controversial interpretation of its gynoecium as either monomerous or pseudomonomerous. We use an angiosperm-wide morphological data set and contrasting tree topologies to estimate the ancestral gynoecium type in both Ceratophyllum and mesangiosperms. Gynoecia of all three Ceratophyllum species possess a small (sometimes vestigial) glandular appendage on the abaxial side and an occasionally bifurcating apex. The ovary is usually unilocular with two procambium strands, but sometimes bilocular and/or with three strands in C. demersum. None of the possible phylogenetic placements strongly suggest apocarpy in the stem lineage of Ceratophyllum. Rescoring Ceratophyllum as having two united carpels affects broader-scale reconstructions of the ancestral gynoecium in mesangiosperms. Our interpretation of the glandular appendage as a tepal or staminode homologue makes the Ceratophyllum ovary inferior, thus resembling (semi)inferior ovaries of most Chloranthaceae and potentially related fossils Canrightia and Zlatkocarpus. The entire structure of the flower of Ceratophyllum suggests strong reduction following a long and complex evolutionary history. The widely accepted notion that apocarpy is ancestral in mesangiosperms (and angiosperms) lacks robust support, regardless of which modes of carpel fusion are considered. Our study highlights the crucial importance of incorporating fossils into large-scale analyses to understand character evolution.
Collapse
Affiliation(s)
- Dmitry D Sokoloff
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Elena S El
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Laetitia Carrive
- Université Paris-Saclay, CNRS, AgroParisTech, Écologie, Systématique et Évolution, Orsay, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Écologie, Systématique et Évolution, Orsay, France
| | | | | |
Collapse
|
7
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
8
|
Abstract
Plants and animals are both important for studies in evolutionary developmental biology (EvoDevo). Plant morphology as a valuable discipline of EvoDevo is set for a paradigm shift. Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as combinations of developmental processes rather than as assemblages of structural units (“organs”) such as roots, stems, leaves, and flowers. These dynamic philosophical perspectives were already favored by botanists and philosophers such as Agnes Arber (1879–1960) and Rolf Sattler (*1936). The acceptance of growing plants as dynamic continua inspires EvoDevo scientists such as developmental geneticists and evolutionary biologists to move towards a more holistic understanding of plants in time and space. This review will appeal to many young scientists in the plant development research fields. It covers a wide range of relevant publications from the past to present.
Collapse
|
9
|
El ES, Remizowa MV, Sokoloff DD. Developmental Flower and Rhizome Morphology in Nuphar (Nymphaeales): An Interplay of Chaos and Stability. Front Cell Dev Biol 2020; 8:303. [PMID: 32509775 PMCID: PMC7248231 DOI: 10.3389/fcell.2020.00303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
European species of Nuphar are amongthe most accessible members of the basal angiosperm grade, but detailed studies using scanning electron microscopy are lacking. We provide such data and discuss them in the evolutionary context. Dorsiventral monopodial rhizomes of Nuphar bear foliage leaves and non-axillary reproductive units (RUs) arranged in a Fibonacci spiral. The direction of the phyllotaxis spiral is established in seedlings apparently environmentally and maintained through all rhizome branching events. The RUs can be located on dorsal, ventral or lateral side of the rhizome. There is no seasonality in timing of their initiation. The RUs usually form pairs in positions N and N + 2 along the ontogenetic spiral. New rhizomes appear on lateral sides of the mother rhizome. A lateral rhizome is subtended by a foliage leaf (N) and is accompanied by a RU in the position N + 2. We hypothesize a two-step process of regulation of RU/branch initiation, with the second step possibly involving environmental factors such as gravitropism. Each RU has a short stalk, 1-2 scale-like phyllomes and a long-pedicellate flower. We support a theory that the flower is lateral to the RU axis. The five sepals initiate successively and form two whorls as 3 + 2. The sepal arrangement is not 'intermediate' between whorled and spiral. Mechanisms of phyllotaxis establishment differ between flowers and lateral rhizomes. Petal, stamen and carpel numbers are not precisely fixed. Petals are smaller than sepals and form a whorl. They appear first in the sectors of the outer whorl sepals. The stamen arrangement is whorled to chaotic. The merism of the androecium tends to be the same as in the corolla. Flowers with odd numbers of stamen orthostichies are found. These are interpreted as having a non-integer merism of the androecium (e.g., 14.5). Carpels form a whorl in N. lutea and normally alternate with inner whorl stamens. Sterile second whorl carpel(s) are found in some flowers of N. pumila.
Collapse
Affiliation(s)
- Elena S. El
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Margarita V. Remizowa
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitry D. Sokoloff
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Reut MS, Płachno BJ. Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotoma-leaf, shoot and root dynamics. PROTOPLASMA 2020; 257:371-390. [PMID: 31659470 PMCID: PMC7039851 DOI: 10.1007/s00709-019-01443-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
The terrestrial carnivorous species Utricularia dichotoma is known for a great phenotypic plasticity and unusual vegetative organs. Our investigation on 22 sources/populations revealed that after initiation of a leaf and two bladders on a stolon, a bud was formed in the proximal axil of the leaf, developing into a rosette with up to seven organs. The first two primordia of the bud grew into almost every possible combination of organs, but often into two anchor stolons. The patterns were generally not population specific. The interchangeability of organs increased with increasing rank in the succession of organs on stolon nodes. A high potential of switching developmental programs may be successful in a fluctuating environment. In this respect, we were able to show that bladders developed from anchor stolons experimentally when raising the water table. Anatomical structures were simple, lacunate and largely homogenous throughout all organs. They showed similarities with many hydrophytes, reflecting the plant's adaptation to (temporarily) submerged conditions. The principal component analysis was used in the context of dynamic morphology to illustrate correlations between organ types in the morphospace of U. dichotoma, revealing an organ specific patchwork of developmental processes for typical leaves and shoots, and less pronounced for a typical root. The concept and methods we applied may prove beneficial for future studies on the evolution of Lentibulariaceae, and on developmental morphology and genetics of unusual structures in plants.
Collapse
Affiliation(s)
- Markus S Reut
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland
| |
Collapse
|
11
|
Ehrendorfer F, Barfuss MHJ, Manen JF, Schneeweiss GM. Phylogeny, character evolution and spatiotemporal diversification of the species-rich and world-wide distributed tribe Rubieae (Rubiaceae). PLoS One 2018; 13:e0207615. [PMID: 30517138 PMCID: PMC6281350 DOI: 10.1371/journal.pone.0207615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
The Rubiaceae tribe Rubieae has a world-wide distribution with up to 1,000 species. These collectively exhibit an enormous ecological and morphological diversity, making Rubieae an excellent group for macro- and microevolutionary studies. Previous molecular phylogenetic analyses used only a limited sampling within the tribe or missed lineages crucial for understanding character evolution in this group. Here, we analyze sequences from two plastid spacer regions as well as morphological and biogeographic data from an extensive and evenly distributed sampling to establish a sound phylogenetic framework. This framework serves as a basis for our investigation of the evolution of important morphological characters and the biogeographic history of the Rubieae. The tribe includes three major clades, the Kelloggiinae Clade (Kelloggia), the Rubiinae Clade (Didymaea, Rubia) and the most species-rich Galiinae Clade (Asperula, Callipeltis, Crucianella, Cruciata, Galium, Mericarpaea, Phuopsis, Sherardia, Valantia). Within the Galiinae Clade, the largest genera Galium and Asperula are para- and polyphyletic, respectively. Smaller clades, however, usually correspond to currently recognized taxa (small genera or sections within genera), which may be used as starting points for a refined classification in this clade. Life-form (perennial versus annual), flower shape (long versus short corolla tube) and fruit characters (dry versus fleshy, with or without uncinate hairs) are highly homoplasious and have changed multiple times independently. Inference on the evolution of leaf whorls, a characteristic feature of the tribe, is sensitive to model choice. Multi-parted leaf whorls appear to have originated from opposite leaves with two small interpetiolar stipules that are subsequently enlarged and increased in number. Early diversification of Rubieae probably started during the Miocene in western Eurasia. Disjunctions between the Old and the New World possibly are due to connections via a North Atlantic land bridge. Diversification of the Galiineae Clade started later in the Miocene, probably in the Mediterranean, from where lineages reached, often multiple times, Africa, eastern Asia and further on the Americas and Australia.
Collapse
Affiliation(s)
- Friedrich Ehrendorfer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- * E-mail: (FE); (GMS)
| | - Michael H. J. Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jean-Francois Manen
- Laboratoire de Systématique Végétale et Biodiversité, University of Geneva, Geneva, Switzerland
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- * E-mail: (FE); (GMS)
| |
Collapse
|
12
|
Pellegrini MOO, Horn CN, Almeida RF. Total evidence phylogeny of Pontederiaceae (Commelinales) sheds light on the necessity of its recircumscription and synopsis of Pontederia L. PHYTOKEYS 2018; 108:25-83. [PMID: 30275733 PMCID: PMC6160854 DOI: 10.3897/phytokeys.108.27652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 05/06/2023]
Abstract
A total evidence phylogeny for Pontederiaceae is herein presented based on new morphological and previously published molecular data. Our results led us to re-circumscribe Pontederia to include Monochoria, Pontederia s.s. and the polyphyletic Eichhornia. We provide the needed ten new combinations and 16 typifications, arrange a total of 25 accepted species (six representing re-established names) in 5 new subgenera. Furthermore, we provide an identification key for the two genera accepted by us in Pontederiaceae, an identification key to the subgenera, identification keys to the species of each subgenus and commentaries on Pontederia s.l., as well as for each subgenus and each species.
Collapse
Affiliation(s)
- Marco O. O. Pellegrini
- Universidade de São Paulo, Departamento de Botânica, Rua do Matão 277, CEP 05508-900, São Paulo, SP, BrazilUniversidade de São PauloSão PauloBrazil
| | - Charles N. Horn
- Newberry College, Department of Sciences and Mathematics, 2100 College Street, Newberry, SC 29108, USANewberry CollegeNewberryUnited States of America
| | - Rafael F. Almeida
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Biologia Vegetal, Avenida Antonio Carlos 6627, CEP 31270-901, Belo Horizonte, MG, BrazilUniversidade Federal de Minas GeraisFeira de SantanaBrazil
| |
Collapse
|
13
|
Silva SR, Gibson R, Adamec L, Domínguez Y, Miranda VF. Molecular phylogeny of bladderworts: A wide approach of Utricularia (Lentibulariaceae) species relationships based on six plastidial and nuclear DNA sequences. Mol Phylogenet Evol 2018; 118:244-264. [DOI: 10.1016/j.ympev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
14
|
Basso-Alves JP, Goldenberg R, Teixeira SP. The ontogenetic bases for variation in ovary position in Melastomataceae. AMERICAN JOURNAL OF BOTANY 2017; 104:1142-1156. [PMID: 28827452 DOI: 10.3732/ajb.1700114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Although the ovary position is considered a stable character in angiosperms, Melastomataceae species have perigynous flowers in which the ovary varies from superior to inferior. Thus, we investigated the ontogenetic process involved in variation of the ovary position in Melastomataceae. We focused on histogenesis of the floral apex in search of developmental patterns for each type of ovary position. METHODS Six species in which the ovary varies from superior to inferior were chosen: Henriettea saldanhae, Leandra melastomoides, Miconia dodecandra, Microlicia euphorbioides, Rhynchanthera grandiflora, and Tibouchina clinopodifolia. Buds and flowers were processed for surface and histological examinations. KEY RESULTS The floral apex changes from convex to concave, resulting in a perigynous hypanthium. Cell divisions in the margins of the floral apex form an annular intercalary meristem that elevates the base of the primordia of almost all whorls. The joint growth of the carpel base with the gynoecial hypanthium originates semi-inferior ovaries in Leandra melastomoides, Miconia dodecandra, and Tibouchina clinopodifolia and inferior ovaries in Henriettea saldanhae. In Microlicia euphorbioides and Rhynchanthera grandiflora, the carpels are not affected by this hypanthial growth; flowers have a superior ovary. CONCLUSIONS Changes in ovary position of Melastomataceae are due to intercalary meristematic activity, which is one of the main mechanisms for the origin of morphological innovations among plants. Our data illustrate the importance of the intercalary meristems in floral development, and we discuss the implications of this ontogenetic model for understanding the evolution of ovary position in Melastomataceae.
Collapse
Affiliation(s)
- João Paulo Basso-Alves
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Departamento de Biologia Vegetal, CP 6109, Campinas, SP 13083-970, Brazil
| | - Renato Goldenberg
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Departamento de Biologia Vegetal, CP 6109, Campinas, SP 13083-970, Brazil
- Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Botânica, Caixa Postal 19031 Curitiba, PR 81531-970, Brazil
| | - Simone Pádua Teixeira
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Departamento de Biologia Vegetal, CP 6109, Campinas, SP 13083-970, Brazil
| |
Collapse
|
15
|
Jakubska-Busse A, Żołubak E, Łobas Z, Gola EM. Leaf arrangements are invalid in the taxonomy of orchid species. PeerJ 2017; 5:e3609. [PMID: 28740760 PMCID: PMC5522722 DOI: 10.7717/peerj.3609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
The selection and validation of proper distinguishing characters are of crucial importance in taxonomic revisions. The modern classifications of orchids utilize the molecular tools, but still the selection and identification of the material used in these studies is for the most part related to general species morphology. One of the vegetative characters quoted in orchid manuals is leaf arrangement. However, phyllotactic diversity and ontogenetic changeability have not been analysed in detail in reference to particular taxonomic groups. Therefore, we evaluated the usefulness of leaf arrangements in the taxonomy of the genus Epipactis Zinn, 1757. Typical leaf arrangements in shoots of this genus are described as distichous or spiral. However, in the course of field research and screening of herbarium materials, we indisputably disproved the presence of distichous phyllotaxis in the species Epipactis purpurata Sm. and confirmed the spiral Fibonacci pattern as the dominant leaf arrangement. In addition, detailed analyses revealed the presence of atypical decussate phyllotaxis in this species, as well as demonstrated the ontogenetic formation of pseudowhorls. These findings confirm ontogenetic variability and plasticity in E. purpurata. Our results are discussed in the context of their significance in delimitations of complex taxa within the genus Epipactis.
Collapse
Affiliation(s)
- Anna Jakubska-Busse
- Department of Botany, Institute of Environmental Biology, University of Wrocław, Wrocław, Poland
| | - Elżbieta Żołubak
- Department of Botany, Institute of Environmental Biology, University of Wrocław, Wrocław, Poland
| | - Zbigniew Łobas
- Department of Botany, Institute of Environmental Biology, University of Wrocław, Wrocław, Poland
| | - Edyta Magdalena Gola
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
16
|
Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. ANNALS OF BOTANY 2016; 117:811-32. [PMID: 26589968 PMCID: PMC4845801 DOI: 10.1093/aob/mcv172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Various groups of flowering plants reveal profound ('saltational') changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps 'hopeful monsters') that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. SCOPE This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. CONCLUSIONS Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves - as still distinguishable in related flowering plants - are blurred ('fuzzy'). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these atypical plants. Future molecular genetic work on morphological misfits such as bladderworts and river-weeds will provide insight into developmental and evolutionary aspects of more typical vascular plants.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Sousa DJLD, Giulietti AM. Flora das cangas da Serra dos Carajás, Pará, Brasil: Pontederiaceae. RODRIGUÉSIA 2016. [DOI: 10.1590/2175-7860201667548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo Este estudo apresenta a descrição detalhada, ilustração e comentários morfológicos das duas espécies de Pontederiaceae registradas para as cangas da Serra dos Carajás, no estado do Pará: Heteranthera oblongifolia e Heteranthera reniformis. Esse é o primeiro registro de H. oblongifolia para a região Norte do Brasil.
Collapse
Affiliation(s)
| | - Ana Maria Giulietti
- Universidade Estadual de Feira de Santana, Brazil; Instituto Tecnológico Vale, Brasil
| |
Collapse
|
18
|
Iwamoto A, Izumidate R, Ronse De Craene LP. Floral anatomy and vegetative development in Ceratophyllum demersum: a morphological picture of an "unsolved" plant. AMERICAN JOURNAL OF BOTANY 2015; 102:1578-89. [PMID: 26419811 DOI: 10.3732/ajb.1500124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/31/2015] [Indexed: 05/26/2023]
Abstract
PREMISE OF THE STUDY The phylogenetic position of Ceratophyllum is still controversial in recent molecular analyses of angiosperms, with various suggestions of a sister group relation to all other angiosperms, eudicots, monocots, eudicots + monocots, and magnoliids. Therefore, the morphological characters of Ceratophyllum are important for resolving the phylogeny of angiosperms. In this study, we observed the detailed developmental anatomy of all lateral organs and their configurations to elucidate the floral development and phyllotactic pattern of Ceratophyllum demersum. METHODS We observed fixed shoots of C. demersum with scanning electron microscopy and serial sections of the samples with light microscopy. KEY RESULTS Bract primordia arise first, followed by the stamen primordia in staminate flowers. Both bracts and stamens initiate unidirectionally, first on the abaxial side of the floral apex and later on the adaxial side, most likely due to the contact pressure imposed by the leaf primordium at the superior node. In pistillate flowers, bract primordia on the abaxial side were also initiated first. The configuration of buds at one node showed six patterns and each pattern included at least one vegetative bud, and flower buds were always accompanied by vegetative buds at the same node. CONCLUSIONS The initiation pattern of organs in the outer whorls of C. demersum flowers is distorted by mechanical pressure, resulting in the phyllotactic variation of staminate flowers. Vegetative buds are the main axillary buds with floral buds as accessory buds, which suggests that the shoot of C. demersum has been modified from a decussate phyllotaxis.
Collapse
Affiliation(s)
- Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui Kita-machi, Koganei-shi, Tokyo 184-8501, Japan
| | - Ryoko Izumidate
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui Kita-machi, Koganei-shi, Tokyo 184-8501, Japan
| | | |
Collapse
|
19
|
Gao YD, Harris AJ, He XJ. Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evol Biol 2015; 15:147. [PMID: 26219287 PMCID: PMC4518642 DOI: 10.1186/s12862-015-0405-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is Nomocharis Franchet. Nomocharis comprises 7-15 species bearing showy-flowers that are endemic to the H-D Mountains. Nomocharis has long been treated as sister to Lilium L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although Nomocharis appears morphologically distinctive, recent molecular studies have shown that it is nested within Lilium, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in Lilium-Nomocharis and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers. RESULTS Our phylogenetic reconstruction revealed several Lilium species nested within a clade of Nomocharis, which evolved ca. 12 million years ago and is itself nested within the rest of Lilium. Flat/open and horizon oriented flowers are ancestral in Nomocharis. Species of Lilium nested within Nomocharis diverged from Nomocharis ca. 6.5 million years ago. These Lilium evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago. Nomocharis and the nested Lilium species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively. CONCLUSIONS The timing of speciation and ecological and morphological evolutionary events in Nomocharis are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3-4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in Nomocharis and the nested Lilium along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in Lilium-Nomocharis. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between Lilium and Nomocharis.
Collapse
Affiliation(s)
- Yun-Dong Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - A J Harris
- Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK, 74078-3013, USA.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. THE NEW PHYTOLOGIST 2013; 198:983-1000. [PMID: 23600478 DOI: 10.1111/nph.12253] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
The design and function of leaf venation are important to plant performance, with key implications for the distribution and productivity of ecosystems, and applications in paleobiology, agriculture and technology. We synthesize classical concepts and the recent literature on a wide range of aspects of leaf venation. We describe 10 major structural features that contribute to multiple key functions, and scale up to leaf and plant performance. We describe the development and plasticity of leaf venation and its adaptation across environments globally, and a new global data compilation indicating trends relating vein length per unit area to climate, growth form and habitat worldwide. We synthesize the evolution of vein traits in the major plant lineages throughout paleohistory, highlighting the multiple origins of individual traits. We summarize the strikingly diverse current applications of leaf vein research in multiple fields of science and industry. A unified core understanding will enable an increasing range of plant biologists to incorporate leaf venation into their research.
Collapse
Affiliation(s)
- Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Christine Scoffoni
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Kumar A, Sharma V, Khan M, Hindala MR, Kumar S. Auxin transport inhibitor induced low complexity petiolated leaves and sessile leaf-like stipules and architectures of heritable leaf and stipule mutants in Pisum sativum suggest that its simple lobed stipules and compound leaf represent ancestral forms in angiosperms. J Genet 2013; 92:25-61. [PMID: 23640405 DOI: 10.1007/s12041-013-0217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In angiosperms, leaf and stipule architectures are inherited species-specific traits. Variation in leaf and stipule sizes, and forms result from the interaction between abiotic and biotic stimuli, and gene regulatory network(s) that underlie the leaf and stipule developmental programme(s). Here, correspondence between variation in leaf and stipule architectures described for extant angiosperms and that induced mutationally and by imposition of stress in model angiosperm species, especially in Pisum sativum, was detected. Following inferences were drawn from the observations. (i) Several leaf forms in P. sativum have origin in fusion of stipule and leaf primordia. Perfoliate (and amplexicaul and connate) simple sessile leaves and sessile adnate leaves are the result of such primordial fusions. Reversal of changes in the gene regulatory network responsible for fusion products are thought to restore original stipule and leaf conditions. (ii) Compound leaf formation in several different model plants, is a result of promotion of pathways for such condition by gene regulatory networks directed by KNOx1 and LEAFY transcription factors or intercalation of the gene networks directed by them. (iii) Gene regulatory network for compound leaves in P. sativum when mutated generates highly complex compound leaves on one hand and simple leaves on other hand. These altered conditions are mutationally reversible. (vi) Simple leaves in model plants such as Arabidopsis thaliana despite overexpression of KNOx1 orthologues do not become compound. (v) All forms of leaves, including simple leaf, probably have origins in a gene regulatory network of the kind present in P. sativum.
Collapse
Affiliation(s)
- Arvind Kumar
- Genetical Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | |
Collapse
|
22
|
Sharma V, Chaudhary S, Kumar A, Kumar S. COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum. J Biosci 2012; 37:1041-59. [PMID: 23151794 DOI: 10.1007/s12038-012-9263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNIFOLIATA [(UNI) or UNIFOLIATA-TENDRILLED ACACIA (UNI-TAC)] expression is known to be negatively regulated by COCHLEATA (COCH) in the differentiating stipules and flowers of Pisum sativum. In this study, additional roles of UNI and COCH in P. sativum were investigated. Comparative phenotyping revealed pleiotropic differences between COCH (UNI-TAC and uni-tac) and coch (UNI-TAC and uni-tac) genotypes of common genetic background. Secondary inflorescences were bracteole-less and bracteolated in COCH and coch genotypes, respectively. In comparison to the leaves and corresponding sub-organs and tissues produced on COCH plants, coch plants produced leaves of 1.5-fold higher biomass, 1.5-fold broader petioles and leaflets that were 1.8-fold larger in span and 1.2-fold dorso-ventrally thicker. coch leaflets possessed epidermal cells 1.3-fold larger in number and size, 1.4-fold larger spongy parenchyma cells and primary vascular bundles with 1.2-fold larger diameter. The transcript levels of UNI were at least 2-fold higher in coch leaves and secondary inflorescences than the corresponding COCH organs. It was concluded that COCH negatively regulated UNI in the differentiating leaves and secondary inflorescences and thereby controlled their sizes and/or structures. It was also surmised that COCH and UNI (LFY homolog) occur together widely in stipulate flowering plants.
Collapse
Affiliation(s)
- Vishakha Sharma
- Genetical Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
23
|
Bourque L, Lacroix C. Lobe-generating centres in the simple leaves of Myriophyllum aquaticum: evidence for KN1-like activity. ANNALS OF BOTANY 2011; 107:639-651. [PMID: 21330333 PMCID: PMC3064546 DOI: 10.1093/aob/mcr014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The mature morphology of most plants can usually be said to consist of three mutually exclusive organs: leaves, stems, and roots. The vast majority of mature morphologies may be easily grouped into one of these mutually exclusive categories. However, during very early stages of development and in many instances from inception, the division between organ categories becomes fuzzy due to the overlap in developmental processes that are shared between the aforementioned mutually exclusive categories. One such overlap has been described at the gene level where KNOXI homologues, transcription factors responsible for maintaining indeterminate cell fate, are expressed in the shoot apical meristem and during early stages of compound leaf development. This study characterizes the occurrence and spatial localization of mRNA of a KNOXI homologue, MaKN1, during the early stages of development in the simple leaves of Myriophyllum aquaticum, an aquatic angiosperm from the family Haloragaceae exhibiting pentamerous whorls of finely lobed leaves. METHODS A 300-bp KNOXI fragment was sequenced from M. aquaticum and used in an RNA localization study to determine the temporal and spatial expression of KNOXI during the early stages of leaf lobe development in M. aquaticum. The developmental sequence of leaves of M. aquaticum was also described using scanning electron microscopy. KEY RESULTS Lobe development of M. aquaticum occurs in two very distinct regions at the leaf base in an alternating fashion reminiscent of a distichous shoot system. It was discovered that MaKN1 expression is localized to both the shoot apical meristem and early stages of leaf primordia development (P1-P7). Initially, MaKN1 is expressed ubiquitously throughout primordia (P1-P3); however, as lobes develop, MaKN1 becomes localized to recently emerged lobe primordia, and disappears as lobes develop basipetally. CONCLUSIONS The pattern of gene expression is indicative of shared developmental processes during early development between shoots, compound leaves, highly lobed simple leaves and unifoliate simple leaves which lack KNOXI expression. These findings are supportive of Arber's less rigid 'partial shoot' theory, which conceptualizes compound leaves as having shoot-like elements.
Collapse
|
24
|
Leroy C, Heuret P. Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings. C R Biol 2008; 331:127-36. [PMID: 18241805 DOI: 10.1016/j.crvi.2007.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to characterise changes in leaf shape prior to phyllode acquisition along the axes of Acacia mangium seedlings. The study area was located in North Lampung (South Sumatra, Indonesia), where these trees belong to a naturally regenerated stand. A total of 173 seedlings, less than three months old, were described node by node. Leaf shape and leaf length were recorded and the way in which one leaf type succeeded another was modelled using a hidden semi-Markov chain composed of seven states. The phyllotactical pattern was studied using another sample of forty 6-month-old seedlings. The results indicate (i) the existence of successive zones characterised by one or a combination of leaf types, and (ii) that phyllode acquisition seems to be accompanied by a change in the phyllotactical pattern. The concepts of juvenility and heteroblasty, as well as potential applications for taxonomy are discussed.
Collapse
|
25
|
Müller KF, Borsch T, Legendre L, Porembski S, Barthlott W. Recent progress in understanding the evolution of carnivorous lentibulariaceae (lamiales). PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:748-57. [PMID: 17203430 DOI: 10.1055/s-2006-924706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carnivorous plants have emerged as model systems for addressing many ecological and evolutionary questions, and since Lentibulariaceae comprise more than half of all known carnivorous species (325 spp.), they are of particular interest. Studies using various molecular markers have established that Lentibulariaceae and their three genera are monophyletic with Pinguicula being sister to a Genlisea-Utricularia-clade, while the closest relatives of the family remain uncertain. Character states of the carnivorous syndrome in related proto-carnivorous lamialean families apparently emerged independently. In Utricularia, the terrestrial habit has been reconstructed as plesiomorphic, and an extension of subgenus Polypompholyx is warranted. In the protozoan-attracting Genlisea, subgenus Tayloria is revealed as basal lineage. In Pinguicula, the six major lineages found reflect radiations in clearly defined geographic regions, whereas most previously recognized subgeneric taxa are non-monophyletic. Genlisea and Utricularia exhibit substitutional rates that rank among the highest in angiosperms for the molecular markers analyzed. One possible explanation for this lies in selective constraints on a wide range of genomic regions that may have been lowered due to the use of an alternative mode of acquiring nutrients.
Collapse
Affiliation(s)
- K F Müller
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53111 Bonn, Germany.
| | | | | | | | | |
Collapse
|
26
|
Rutishauser R, Moline P. Evo-devo and the search for homology (“sameness”) in biological systems. Theory Biosci 2005; 124:213-41. [PMID: 17046357 DOI: 10.1007/bf02814485] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 09/08/2005] [Indexed: 11/28/2022]
Abstract
Developmental biology and evolutionary studies have merged into evolutionary developmental biology ("evo-devo"). This synthesis already influenced and still continues to change the conceptual framework of structural biology. One of the cornerstones of structural biology is the concept of homology. But the search for homology ("sameness") of biological structures depends on our favourite perspectives (axioms, paradigms). Five levels of homology ("sameness") can be identified in the literature, although they overlap to some degree: (i) serial homology (homonomy) within modular organisms, (ii) historical homology (synapomorphy), which is taken as the only acceptable homology by many biologists, (iii) underlying homology (i.e., parallelism) in closely related taxa, (iv) deep evolutionary homology due to the "same" master genes in distantly related phyla, and (v) molecular homology exclusively at gene level. The following essay gives emphasis on the heuristic advantages of seemingly opposing perspectives in structural biology, with examples mainly from comparative plant morphology. The organization of the plant body in the majority of angiosperms led to the recognition of the classical root-shoot model. In some lineages bauplan rules were transcended during evolution and development. This resulted in morphological misfits such as the Podostemaceae, peculiar eudicots adapted to submerged river rocks. Their transformed "roots" and "shoots" fit only to a limited degree into the classical model which is based on either-or thinking. It has to be widened into a continuum model by taking over elements of fuzzy logic and fractal geometry to accommodate for lineages such as the Podostemaceae.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institut für Systematische Botanik der Universität Zürich, Zollikerstr.107, CH-8008 Zürich, Switzerland.
| | | |
Collapse
|