1
|
Lee YS, Lee GH, Kwon YS. Update on benign convulsions with mild gastroenteritis. Clin Exp Pediatr 2022; 65:469-475. [PMID: 34961297 PMCID: PMC9561189 DOI: 10.3345/cep.2021.00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Benign convulsions with mild gastroenteritis (CwG) are characterized by afebrile convulsions associated with viral gastroenteritis in previously healthy infants and children. The main causative pathogens are rotavirus and norovirus. CwG occurs frequently in both East Asian and Western countries. The prevalence of CwG was reportedly not decreased by the introduction of rotavirus vaccines, and the prevalence of norovirus-associated CwG has been increasing annually. Convulsions in CwG are usually clustered, do not last longer than 5 minutes, and are mostly generalized. Laboratory diagnostics, electroencephalography (EEG), and imaging findings are usually normal. There is a probability of mild, transient abnormal findings on EEG or imaging limited to the acute disease phase. Although several reports have suggested that pathogens that affect the central nervous system through direct or indirect mechanisms could be related to the pathophysiology of CwG, its mechanism is not fully understood. Several antiepileptic drugs are effective during convulsions; however, long-term antiepileptic treatment is not required as CwG usually has a good prognosis.
Collapse
Affiliation(s)
- Yeong Seok Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Ga Hee Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Young Se Kwon
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
2
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
3
|
A Novel PRRT2 Variant in Chinese Patients Suffering from Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsion. Behav Neurol 2020; 2020:2097059. [PMID: 32509037 PMCID: PMC7251426 DOI: 10.1155/2020/2097059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PRRT2 mutations are the major causative agent of paroxysmal kinesigenic dyskinesia with infantile convulsion (PKD/IC). The study is aimed at screening PRRT2 gene mutations in patients who suffered from PKD/IC in Chinese population. Thirteen Chinese patients with PKD/IC were screened randomly for coding exons of the PRRT2 gene mutation along with 50 ethnically coordinated control people. Nine (2 unaffected) and 4 of the patients showed familial PKD/IC and apparently sporadic cases, respectively. We identified 5 different PRRT2 mutations in 10 individuals, including 8 familial and 2 apparently sporadic cases. However, no mutations were found in the 50 ethnically matched controls. Unknown (novel) NM_145239.2:c.686G>A and previously reported NM_145239.2:c.743G>C variants were identified in two familial and sporadic patients. All affected members of family A showed mutation NM_145239.2:c.650_670delinsCAATGGTGCCACCACTGGGTTA. The previously identified NM_145239.2:c.412 C>G and NM_145239.2:c.709G>A variants are seen in two individuals assessed in family B. Other than the previously identified variants, some of the patients with PRRT2-PKD/IC showed a new PRRT2 substitution variant. Thus, the spectrum of PRRT2 variants is expanded. The possible role and probability of PRRT2 variants involved in PKD/IC are highlighted.
Collapse
|
4
|
Zhao G, Liu X, Zhang Q, Wang K. PRRT2 mutations in a cohort of Chinese families with paroxysmal kinesigenic dyskinesia and genotype-phenotype correlation reanalysis in literatures. Int J Neurosci 2018; 128:751-760. [PMID: 29285950 DOI: 10.1080/00207454.2017.1418345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE STUDY Though rare, children are susceptible to paroxysmal dyskinesias such as paroxysmal kinesigenic dyskinesia, and infantile convulsions and choreoathetosis. Recent studies showed that the cause of paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis could be proline-rich transmembrane protein 2 (PRRT2) gene mutations. MATERIAL AND METHODS This study analysed PRRT2 gene mutations in 51 families with paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis by direct sequencing. In particular, we characterize the genotype-phenotype correlation between age at onset and the types of PRRT2 mutations in all published cases. RESULTS Direct sequencing showed that 12 out of the 51 families had three different pathogenic mutations (c.649dupC, c.776dupG, c.649C>T) in the PRRT2 gene. No significant difference of age at onset between the patients with and without PRRT2 mutations was found in this cohort of patients. A total of 97 different PRRT2 mutations have been reported in 87 studies till now. The PRRT2 mutation classes are wide, and most mutations are frameshift mutations but the most common mutation remains c.649dupC. Comparisons of the age at onset in paroxysmal kinesigenic dyskinesia or infantile convulsions patients with different types of mutations showed no significant difference. CONCLUSIONS This study expands the clinical and genetic spectrums of Chinese patients with paroxysmal kinesigenic dyskinesia and infantile convulsions and choreoathetosis. No clear genotype-phenotype correlation between the age at onset and the types of mutations has been determined.
Collapse
Affiliation(s)
- Guohua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| | - Xiaomin Liu
- b Department of Neurology, Qianfoshan Hospital , Shandong University, Jinan, China
| | - Qiong Zhang
- c Department of Psychology and Behavioral Sciences , Zhejiang University, Hangzhou, China
| | - Kang Wang
- d Department of Neurology, First Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Usluer S, Kayserili MA, Eken AG, Yiş U, Leu C, Altmüller J, Thiele H, Nürnberg P, Sander T, Çağlayan SH. Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE). Eur J Paediatr Neurol 2017; 21:773-782. [PMID: 28566192 DOI: 10.1016/j.ejpn.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/26/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
Benign Familial Infantile Epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses. Genome-wide linkage analysis revealed significant evidence for linkage in the chromosomal region 19p12-q13 (LOD score 3.48). Mutation screening of positional candidate genes identified a synonymous SCN1B variant (c.492T>C, p.Tyr164Tyr) affecting splicing by the removal of a splicing silencer sequence, shown by in silico analysis, as the most likely causative mutation. In addition, the PRRT2 frameshift mutation (c.649dupC/p.Arg217Profs*8) was observed, showing incomplete, but high segregation with the phenotype. In vitro splicing assay of SCN1B expression confirmed the in silico findings showing a splicing imbalance between wild type and mutant exons. Herein, the involvement of the SCN1B gene in the etiology of BFIE, contributing to the disease phenotype as a modifier or part of an oligogenic predisposition, is shown for the first time.
Collapse
Affiliation(s)
- Sunay Usluer
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Melek Aslı Kayserili
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslı Gündoğdu Eken
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Uluc Yiş
- Department of Pediatrics, Division of Child Neurology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Costin Leu
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - S Hande Çağlayan
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
6
|
Kishk NA, Sharaf-Eldin WE, Saher H, Essawi M. Case report: Homozygous PRRT2 mutation in ICCA Egyptian family with reduced penetrance. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Novel Locus for Paroxysmal Kinesigenic Dyskinesia Mapped to Chromosome 3q28-29. Sci Rep 2016; 6:25790. [PMID: 27173777 PMCID: PMC4865737 DOI: 10.1038/srep25790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is characterized by recurrent and brief attacks of dystonia or chorea precipitated by sudden movements. It can be sporadic or familial. Proline-Rich Transmembrane Protein 2 (PRRT2) has been shown to be a common causative gene of PKD. However, less than 50% of patients with primary PKD harbor mutations in PRRT2. The aim of this study is to use eight families with PKD to identify the pathogenic PRRT2 mutations, or possible novel genetic cause of PKD phenotypes. After extensive clinical investigation, direct sequencing and mutation analysis of PRRT2 were performed on patients from eight PKD families. A genome-wide STR and SNP based linkage analysis was performed in one large family that is negative for pathogenic PRRT2 mutations. Using additional polymorphic markers, we identified a novel gene locus on chromosome 3q in this PRRT2-mutation-negative PKD family. The LOD score for the region between markers D3S1314 and D3S1256 is 3.02 and we proposed to designate this locus as Episodic Kinesigenic Dyskinesia (EKD3). Further studies are needed to identify the causative gene within this locus.
Collapse
|
8
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
9
|
Huang XJ, Wang T, Wang JL, Liu XL, Che XQ, Li J, Mao X, Zhang M, Bi GH, Wu L, Zhang Y, Wang JY, Shen JY, Tang BS, Cao L, Chen SD. Paroxysmal kinesigenic dyskinesia: Clinical and genetic analyses of 110 patients. Neurology 2015; 85:1546-53. [PMID: 26446061 DOI: 10.1212/wnl.0000000000002079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/01/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We aimed to investigate the clinical and genetic features of paroxysmal kinesigenic dyskinesia (PKD) in a large population and to analyze the genotype-phenotype correlation of PKD. METHODS We analyzed clinical manifestations and conducted PRRT2 screening in 110 patients with PKD. Clinical data were compared between 91 probands with and without PRRT2 mutations. RESULTS Among the enrolled participants (45 from 26 families, 65 sporadic cases), 8 PRRT2 mutations were detected in 20 PKD families (76.9%) and 14 sporadic cases (21.5%), accounting for 37.4% (34/91) of the study population. Five mutations (c.649dupC, c.649delC, c.487C>T, c.573dupT, c.796C>T) were already reported, while 3 mutations (c.787C>T, c.797G>A, c.931C>T) were undocumented. A patient harboring a homozygous c.931C>T mutation was shown to have inherited the mutation via uniparental disomy. Compared with non-PRRT2 mutation carriers, the PRRT2 mutation carriers were younger at onset, experienced longer attacks, and tended to present with complicated PKD, combined phenotypes of dystonia and chorea, and a positive family history. A good response was shown in 98.4% of the patients prescribed with carbamazepine. CONCLUSIONS PRRT2 mutations are common in patients with PKD and are significantly associated with an earlier age at onset, longer duration of attacks, a complicated form of PKD, combined phenotypes of dystonia and chorea, and a tendency for a family history of PKD. A patient with uniparental disomy resulting in a homozygous c.931C>T mutation is identified in the present study. Carbamazepine is the first-choice drug for patients with PKD, but an individualized treatment regimen should be developed.
Collapse
Affiliation(s)
- Xiao-Jun Huang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Tian Wang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Jun-Ling Wang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Xiao-Li Liu
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Xiang-Qian Che
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Jin Li
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Xiao Mao
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Mei Zhang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Guang-Hui Bi
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Li Wu
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Yu Zhang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Jing-Yi Wang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Jun-Yi Shen
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China
| | - Bei-Sha Tang
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China.
| | - Li Cao
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China.
| | - Sheng-Di Chen
- From the Department of Neurology and Institute of Neurology (X.-J.H., T.W., X.-L.L., L.W., Y.Z., J.-Y.W., J.-Y.S., L.C., S.-D.C.), Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine; Department of Neurology (J.-L.W., X.-Q.C., J.L., X.M., B.-S.T.), Xiangya Hospital, Central South University, Changsha, Hunan Province; Department of Neurology (M.Z.), Huainan First People's Hospital affiliated to Bengbu Medical College, Huainan, Anhui Province; and Department of Neurology (G.-H.B.), Dongying People's Hospital, Dongying, Shandong Province, China.
| |
Collapse
|
10
|
Ream MA, Patel AD. Obtaining genetic testing in pediatric epilepsy. Epilepsia 2015; 56:1505-14. [DOI: 10.1111/epi.13122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Margie A. Ream
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| | - Anup D. Patel
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| |
Collapse
|
11
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-57. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
12
|
Kim JH, Kim D, Kim JB, Suh S, Koh S. Thalamic involvement in paroxysmal kinesigenic dyskinesia: a combined structural and diffusion tensor MRI analysis. Hum Brain Mapp 2015; 36:1429-41. [PMID: 25504906 PMCID: PMC6869556 DOI: 10.1002/hbm.22713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/14/2014] [Accepted: 11/30/2014] [Indexed: 11/08/2022] Open
Abstract
Alteration of basal ganglia-thalamocortical circuit has been hypothesized to play a role in the pathophysiology underlying paroxysmal kinesigenic dyskinesia (PKD). We investigated macrostructural and microstructural changes in PKD patients using structural and diffusion tensor magnetic resonance imaging (MRI) analyses. Twenty-five patients with idiopathic PKD and 25 control subjects were prospectively studied on a 3T magnetic resonance (MR) scanner. Cortical thickness analysis was used to evaluate cortical gray matter (GM) changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical GM structures, respectively. Tract-based spatial statistics (TBSS) was used to evaluate white matter integrity changes in a whole-brain manner, and region-of-interest (ROI) analysis of diffusion tensor metrics was performed in subcortical GM structures. Compared to controls, PKD patients exhibited a reduction in volume of bilateral thalami and regional shape deformation mainly localized to the anterior and medial aspects of bilateral thalami. TBSS revealed an increase in fractional anisotropy (FA) of bilateral thalami and right anterior thalamic radiation in patients relative to controls. ROI analysis also showed an increase in FA of bilateral thalami in patients compared to controls. We have shown evidence for thalamic abnormalities of volume reduction, regional shape deformation, and increased FA in patients with PKD. Our novel findings of concomitant macrostructural and microstructural abnormalities in the thalamus lend further support to previous observations indicating causal relationship between a preferential lesion in the thalamus and development of PKD, thus providing neuroanatomical basis for the involvement of thalamus within the basal ganglia-thalamocortical pathway in PKD.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of NeurologyKorea University Guro Hospital, Korea University College of MedicineSeoulKorea
| | - Dong‐Wook Kim
- Department of NeurologyKonkuk University Hospital, Konkuk University College of MedicineSeoulKorea
| | - Jung Bin Kim
- Department of NeurologyKorea University Guro Hospital, Korea University College of MedicineSeoulKorea
| | - Sang‐il Suh
- Department of RadiologyKorea University Guro Hospital, Korea University College of MedicineSeoulKorea
| | - Seong‐Beom Koh
- Department of NeurologyKorea University Guro Hospital, Korea University College of MedicineSeoulKorea
| |
Collapse
|
13
|
Bozaykut A, Aksoy HU, Sezer RG, Polat M. Evaluation of clinical course and neurocognition in children with self-limited infantile epilepsy in a Turkish cohort study. J Child Neurol 2015; 30:314-9. [PMID: 24958006 DOI: 10.1177/0883073814538502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The outcome of children with self-limited infantile epilepsy was reported to be normal psychosocial and cognitive development as a characteristic criterion. We aimed to investigate the clinical course and neurocognitive outcome in children with self-limited infantile epilepsy in a Turkish cohort. The clinical course, electroencephalographic (EEG) characteristics, neuroimaging, treatment, and outcome of children with self-limited infantile epilepsy were retrospectively analyzed. All infants were reevaluated with the Denver Developmental Screening Test in addition to neurologic examination. Of 44 patients, self-limited familial infantile epilepsy was diagnosed in 8 infants (18.2%) and self-limited nonfamilial infantile epilepsy in 28 (63.6%). Interictal EEGs and neurologic examinations were normal in all cases. Fine motor and gross motor skills, language, adaptive personal/social skills were near-normal in all patients with self-limited familial infantile epilepsy. Delay in language parameters was observed in 2 infants with self-limited nonfamilial infantile epilepsy. Language skills should be thoroughly evaluated with detailed neurocognitive screening tests in patients with self-limited infantile epilepsy.
Collapse
Affiliation(s)
- Abdulkadir Bozaykut
- Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Halil Ural Aksoy
- Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Rabia Gönül Sezer
- Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Muzaffer Polat
- Celal Bayar University School of Medicine, Department of Pediatric Neurology, Manisa, Turkey
| |
Collapse
|
14
|
Abstract
Dystonia, a common and genetically heterogeneous neurological disorder, was recently defined as "a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both." Via the application of whole-exome sequencing, the genetic landscape of dystonia and closely related movement disorders is becoming exposed. In particular, several "novel" genetic causes have been causally associated with dystonia or dystonia-related disorders over the past 2 years. These genes include PRRT2 (DYT10), CIZ1 (DYT23), ANO3 (DYT24), GNAL (DYT25), and TUBB4A (DYT4). Despite these advances, major gaps remain in identifying the genetic origins for most cases of adult-onset isolated dystonia. Furthermore, model systems are needed to study the biology of PRRT2, CIZ1, ANO3, Gαolf, and TUBB4A in the context of dystonia. This review focuses on these recent additions to the family of dystonia genes, genotype-phenotype correlations, and possible cellular contributions of the encoded proteins to the development of dystonia.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Link Building Suite 415, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
15
|
Kang B, Kwon YS. Benign convulsion with mild gastroenteritis. KOREAN JOURNAL OF PEDIATRICS 2014; 57:304-9. [PMID: 25114690 PMCID: PMC4127392 DOI: 10.3345/kjp.2014.57.7.304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 12/29/2022]
Abstract
Benign convulsion with mild gastroenteritis (CwG) is a type of afebrile seizure that occurs in children. CwG is defined as a convulsion in a previously healthy child with no known central nervous system infection or encephalopathy, accompanying mild diarrhea without fever, electrolyte imbalance, or moderate to severe dehydration. Convulsions in CwG are characterized by multiple brief episodes of generalized or focal seizures. Although the etiology and pathophysiology have yet to be fully explained, many pathogenic mechanisms have been proposed including the possibility of direct invasion of the central nervous system by a gastrointestinal virus such as rotavirus or the possibility of indirect influence by the production and effects of certain mediators. The electroencephalogram findings are benign and long-term antiepileptic treatment is typically not required. Long-term prognosis has been favorable with normal psychomotor development. This review provides a general overview of CwG with the goal of allowing physicians practicing in the field of pediatrics to better recognize this unique entity and, ultimately, to minimize unnecessary evaluation and treatment.
Collapse
Affiliation(s)
- Ben Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Se Kwon
- Department of Pediatrics, Inha University Hospital, Incheon, Korea
| |
Collapse
|
16
|
|
17
|
Nobile C, Striano P. PRRT2: A major cause of infantile epilepsy and other paroxysmal disorders of childhood. PROGRESS IN BRAIN RESEARCH 2014; 213:141-58. [DOI: 10.1016/b978-0-444-63326-2.00008-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Wang JL, Mao X, Hu ZM, Li JD, Li N, Guo JF, Jiang H, Shen L, Li J, Shi YT, Xia K, Liu JY, Liao WP, Tang BS. Mutation analysis of PRRT2 in two Chinese BFIS families and nomenclature of PRRT2 related paroxysmal diseases. Neurosci Lett 2013; 552:40-5. [PMID: 23896529 DOI: 10.1016/j.neulet.2013.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 11/26/2022]
Abstract
Benign familial infantile seizure (BFIS) and paroxysmal kinesigenic dyskinesia (PKD) are autosomal-dominant inherited self-limited neurological disorders. BFIS is characterized by clusters of epileptic seizures in infancy while, in some cases, infantile seizures and adolescent-onset paroxysmal kinesigenic choreoathetosis co-occurred, which is called infantile convulsions and choreoathetosis (ICCA) syndrome. We and other researchers have reported the proline-rich transmembrane protein 2 (PRRT2) as the causative gene of PKD. We and our collaborators also identified PRRT2 mutations in ICCA and other phenotypes. Here we collected two BFIS families of Chinese Han origin. The linkage analysis has mapped the BFIS-causing locus to 16p12.1-q12.2, where PRRT2 is located. We then performed mutation analysis of PRRT2 by direct sequencing and identified c.649-650insC mutation in all BFIS patients. We also noticed that paroxysmal diseases (such as BFIS, PKD and ICCA) with PRRT2 mutations, instead of other forms, share some characteristics like being responded well to anti-epiletic treatment, we thus suggest to name them as PRRT2-related paroxysmal diseases (PRPDs) in order to assist clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ishii A, Yasumoto S, Ihara Y, Inoue T, Fujita T, Nakamura N, Ohfu M, Yamashita Y, Takatsuka H, Taga T, Miyata R, Ito M, Tsuchiya H, Matsuoka T, Kitao T, Murakami K, Lee WT, Kaneko S, Hirose S. Genetic analysis of PRRT2 for benign infantile epilepsy, infantile convulsions with choreoathetosis syndrome, and benign convulsions with mild gastroenteritis. Brain Dev 2013; 35:524-30. [PMID: 23073245 DOI: 10.1016/j.braindev.2012.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022]
Abstract
PURPOSE PRRT2 mutations were recently identified in benign familial infantile epilepsy (BFIE) and infantile convulsions with paroxysmal choreoathetosis (ICCA) but no abnormalities have so far been identified in their phenotypically similar seizure disorder of benign convulsions with mild gastroenteritis (CwG), while mutations in KCNQ2 and KCNQ3 have been recognized in benign familial neonatal epilepsy (BFNE). The aim of this study was to identify PRRT2 mutations in infantile convulsions in Asian families with BFIE and ICCA, CwG and BFNE. METHODS We recruited 26 unrelated Japanese affected with either BFIE or non-familial benign infantile seizures and their families, including three families with ICCA. A total of 17 Japanese and Taiwanese with CwG, 50 Japanese with BFNE and 96 healthy volunteers were also recruited. Mutations of PRRT2 were sought using direct sequencing. RESULTS Heterozygous truncation mutation (c.649dupC) was identified in 15 of 26 individuals with benign infantile epilepsy (52.1%). All three families of ICCA harbored the same mutation (100%). Another novel mutation (c.1012+2dupT) was found in the proband of a family with BFIE. However, no PRRT2 mutation was found in either CwG or BFNE. CONCLUSIONS The results confirm that c.649dupC, a truncating mutation of PRRT2, is a hotspot mutation resulting in BFIE or ICCA regardless of the ethnic background. In contrast, PRRT2 mutations do not seem to be associated with CwG or BFNE. Screening for PRRT2 mutation might be useful in early-stage differentiation of BFIE from CwG.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Silveira-Moriyama L, Gardiner AR, Meyer E, King MD, Smith M, Rakshi K, Parker A, Mallick AA, Brown R, Vassallo G, Jardine PE, Guerreiro MM, Lees AJ, Houlden H, Kurian MA. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia with PRRT2 gene mutations. Dev Med Child Neurol 2013; 55:327-34. [PMID: 23363396 DOI: 10.1111/dmcn.12056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/27/2022]
Abstract
AIM To define better the phenotype and genotype of familial and sporadic cases of paroxysmal kinesigenic dyskinesia (PKD) caused by mutations in the PRRT2 gene presenting in the paediatric age group. METHOD We report the detailed clinical and molecular genetic features of 11 patients (six females, five males) with childhood-onset PRRT2-mutation-positive PKD. RESULTS Mean age at disease onset was 8 years 7.5 months (range 5-11y), and clinical presentation was characterized by daily short paroxysmal episodes of dystonia/dyskinesia. Most patients also had non-kinesigenic attacks in addition to the classical movement-induced paroxysmal episodes. One family demonstrated great phenotypic variability with PKD, infantile convulsions, and/or hemiplegic migraine affecting different family members with the same mutation. All patients in whom antiepileptics (carbamazepine/phenytoin) were tried showed a dramatic improvement with complete abolition of dyskinetic episodes. INTERPRETATION Our case series provides a detailed clinical description of patients with PRRT2-PKD, and reports a spectrum of disease-causing mutations, thereby expanding both the clinical phenotype and mutation spectrum of disease.
Collapse
|
21
|
|
22
|
Abstract
In this chapter we include a series of epilepsies with onset in pediatric age characterized by focal seizures, idiopathic etiology, normal psychomotor development, and a benign course related to the spontaneous remission of seizures without sequelae. These entities are age-dependent and seizures tend to disappear spontaneously. For these reasons often the drug treatment is not necessary. On the basis of genetic assessment idiopathic focal epilepsies can be divided into two groups: nonautosomal dominant and autosomal dominant. In the group of nonautosomal entities we include benign epilepsy with centro-temporal spikes, Panayiotopoulos syndrome, idiopathic childhood occipital epilepsy described by Gastaut, and benign idiopathic midline spikes epilepsy. Seizures are rare, sometimes prolonged, as autonomic status in Panayiotopoulos syndrome. A common feature is the presence of peculiar EEG interictal paroxysmal abnormalities. In the group with an autosomal dominant mode of inheritance we include benign familial infantile seizures and benign familial neonatal-infantile seizures. These entities are characterized by partial seizures in cluster, self-limited in a brief period during the first months of life. There are no typical interictal EEG abnormalities. In some families a mutation in SCN2A, the gene coding for the 2α subunit of the voltage-gated sodium channel, has been described.
Collapse
Affiliation(s)
- Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | |
Collapse
|
23
|
Liu XR, Wu M, He N, Meng H, Wen L, Wang JL, Zhang MP, Li WB, Mao X, Qin JM, Li BM, Tang B, Deng YH, Shi YW, Su T, Yi YH, Tang BS, Liao WP. Novel PRRT2 mutations in paroxysmal dyskinesia patients with variant inheritance and phenotypes. GENES BRAIN AND BEHAVIOR 2012. [PMID: 23190448 DOI: 10.1111/gbb.12008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs-related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non-convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between ICCA/PKD and epilepsy.
Collapse
Affiliation(s)
- X-R Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li HF, Ni W, Xiong ZQ, Xu J, Wu ZY. PRRT2 c.649dupC mutation derived from de novo in paroxysmal kinesigenic dyskinesia. CNS Neurosci Ther 2012; 19:61-5. [PMID: 23176561 DOI: 10.1111/cns.12034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022] Open
Abstract
AIMS PRRT2 was recently identified as a causative gene for paroxysmal kinesigenic dyskinesia (PKD), and the c.649dupC mutation was shown to be a "high frequency" mutation. This mutation was also identified in many sporadic cases. This might be attributed to the incomplete penetrance of c.649dupC. Alternatively, c.649dupC might derive from de novo. The aim of this study is to elucidate the possibility concerning de novo mutagenesis of PRRT2 mutations in PKD. METHODS Nine sporadic Chinese PKD patients including one Mongolian patient were recruited. Direct sequencing of PRRT2 was performed in them and their parents. Haplotype analysis was conducted to confirm the biological relationship. RESULTS A novel mutation, c.133_136delCCAG, was identified in one Han patient and his unaffected mother. The c.649dupC mutation was detected in another Han patient and his unaffected father. To our interest, c.649dupC was detected in the Mongolian patient but not in his parents. Haplotype analysis confirmed the biological relationship among the trio. No mutations were identified in the remaining six patients. CONCLUSION These findings demonstrate the heterogeneity of PKD, and the de novo mutagenesis of PRRT2 gene might indicate the genetic instability of this region.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology, Huashan Hospital, Institutes of Brain Science, Shanghai Medical College, Fudan University, China
| | | | | | | | | |
Collapse
|
25
|
Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E, Bruccini G, Tortorella G, Guerrini R. PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology 2012; 79:2109-14. [PMID: 23077026 DOI: 10.1212/wnl.0b013e3182752ca2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform a clinical and genetic study of a family with benign familial infantile seizures (BFIS) and, upon finding a PRRT2 gene mutation, to study a cohort of probands with a similar phenotype. We extended the study to all available family members to find out whether PRRT2 mutations cosegregated with additional symptoms. METHODS We carried out a clinical and genealogic study of a 3-generation family and of 32 additional probands with BFIS (11 families), infantile convulsions and paroxysmal choreoathetosis (ICCA) (9 families), BFIS/generalized epilepsy with febrile seizures plus (5 families), and sporadic benign neonatal or infantile seizures (7 probands/families). We performed a genetic study consisting of linkage analysis and PRRT2 screening of the 33 probands/families. RESULTS We obtained a positive linkage in the 16p11.3-q23.1 chromosomal region in the large BFIS family. Mutation analysis of PRRT2 gene revealed a c.649dupC (p.Arg217Profs*8) in all affected individuals. PRRT2 analysis of the 32 additional probands showed mutations in 10, 8 familial and 2 sporadic, probands. Overall we found PRRT2 mutations in 11 probands with a mutation rate of 11 out of 33 (33%). BFIS co-occurred with migraine and febrile seizures in 2 families, with childhood absence epilepsy in one family and with hemiplegic migraine in one family. CONCLUSION Our results confirm the predominant role of PRRT2 mutations in BFIS and expand the spectrum of PRRT2-associated phenotypes to include febrile seizures, childhood absence seizures, migraine, and hemiplegic migraine.
Collapse
Affiliation(s)
- Carla Marini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital-University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, Wali GM, Counihan T, Schapira AH, Spacey SD, Valente EM, Silveira-Moriyama L, Teive HAG, Raskin S, Sander JW, Lees A, Warner T, Kullmann DM, Wood NW, Hanna M, Houlden H. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012; 79:2115-21. [PMID: 23077024 DOI: 10.1212/wnl.0b013e3182752c5a] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). METHODS The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. RESULTS PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. CONCLUSIONS This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders.
Collapse
Affiliation(s)
- Alice R Gardiner
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, MRC Centre for Neuromuscular Diseases, Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, Boulay C, Caraballo R, Fejerman N, Genton P, Hirsch E, Hunter A, Lesca G, Motte J, Roubertie A, Sanlaville D, Wong SW, Fu YH, Rochette J, Ptácek LJ, Szepetowski P. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology 2012; 79:2097-103. [PMID: 23077017 DOI: 10.1212/wnl.0b013e3182752c46] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported. In order to explore the mutational and clinical spectra, we analyzed 34 additional families with either typical PKD/IC or PKD/IC with migraine. METHODS We performed Sanger sequencing of all PRRT2 coding exons and of exon-intron boundaries in the probands and in their relatives whenever appropriate. RESULTS Two known and 2 novel PRRT2 mutations were detected in 18 families. The p.R217Pfs*8 recurrent mutation was found in ≈50% of typical PKD/IC, and the unreported p.R145Gfs*31 in one more typical family. PRRT2 mutations were also found in PKD/IC with migraine: p.R217Pfs*8 cosegregated with PKD associated with HM in one family, and was also detected in one IC patient having migraine with aura, in related PKD/IC familial patients having migraine without aura, and in one sporadic migraineur with abnormal MRI. Previously reported p.R240X was found in one patient with PKD with migraine without aura. The novel frameshift p.S248Afs*65 was identified in a PKD/IC family member with IC and migraine with aura. CONCLUSIONS We extend the spectrum of PRRT2 mutations and phenotypes to HM and to other types of migraine in the context of PKD/IC, and emphasize the phenotypic pleiotropy seen in patients with PRRT2 mutations.
Collapse
Affiliation(s)
- Robin Cloarec
- Institut de Neurobiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schubert J, Paravidino R, Becker F, Berger A, Bebek N, Bianchi A, Brockmann K, Capovilla G, Dalla Bernardina B, Fukuyama Y, Hoffmann GF, Jurkat-Rott K, Anttonen AK, Kurlemann G, Lehesjoki AE, Lehmann-Horn F, Mastrangelo M, Mause U, Müller S, Neubauer B, Püst B, Rating D, Robbiano A, Ruf S, Schroeder C, Seidel A, Specchio N, Stephani U, Striano P, Teichler J, Turkdogan D, Vigevano F, Viri M, Bauer P, Zara F, Lerche H, Weber YG. PRRT2 mutations are the major cause of benign familial infantile seizures. Hum Mutat 2012; 33:1439-43. [PMID: 22623405 DOI: 10.1002/humu.22126] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/16/2012] [Indexed: 11/08/2022]
Abstract
Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large family with late-onset BFIS and febrile seizures. Our study further establishes PRRT2 as the major gene for BFIS alone.
Collapse
Affiliation(s)
- Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krebs CE, Paisán-Ruiz C. The use of next-generation sequencing in movement disorders. Front Genet 2012; 3:75. [PMID: 22593763 PMCID: PMC3351011 DOI: 10.3389/fgene.2012.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022] Open
Abstract
New advances in genomic technology are being introduced at a greater speed and are revolutionizing the field of genetics for both complex and Mendelian diseases. For instance, during the past few years, genome-wide association studies (GWAS) have identified a large number of significant associations between genomic loci and movement disorders such as Parkinson's disease and progressive supranuclear palsy. GWAS are carried out through the use of high-throughput SNP genotyping arrays, which are also used to perform linkage analyses in families previously considered statistically underpowered for genetic analyses. In inherited movement disorders, using this latter technology, it has repeatedly been shown that mutations in a single gene can lead to different phenotypes, while the same clinical entity can be caused by mutations in different genes. This is being highlighted with the use of next-generation sequencing technologies and leads to the search for genes or genetic modifiers that contribute to the phenotypic expression of movement disorders. Establishing an accurate genome-epigenome-phenotype relationship is becoming a major challenge in the post-genomic research that should be facilitated through the implementation of both functional and cellular analyses.
Collapse
Affiliation(s)
- Catharine E Krebs
- Department of Neurology, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
30
|
van Strien TW, van Rootselaar AF, Hilgevoord AAJ, Linssen WHJP, Groffen AJA, Tijssen MAJ. Paroxysmal kinesigenic dyskinesia: cortical or non-cortical origin. Parkinsonism Relat Disord 2012; 18:645-8. [PMID: 22464846 DOI: 10.1016/j.parkreldis.2012.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 03/04/2012] [Accepted: 03/08/2012] [Indexed: 11/29/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is characterized by involuntary dystonia and/or chorea triggered by a sudden movement. Cases are usually familial with an autosomal dominant inheritance. Hypotheses regarding the pathogenesis of PKD focus on the controversy whether PKD has a cortical or non-cortical origin. A combined familial trait of PKD and benign familial infantile seizures has been reported as the infantile convulsions and paroxysmal choreoathetosis (ICCA) syndrome. Here, we report a family diagnosed with ICCA syndrome with an Arg217STOP mutation. The index patient showed interictal EEG focal changes compatible with paroxysmal dystonic movements of his contralateral leg. This might support cortical involvement in PKD.
Collapse
Affiliation(s)
- Teun W van Strien
- Department of Neurology, Sint Lucas Andreas Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012; 57:338-41. [PMID: 22399141 DOI: 10.1038/jhg.2012.23] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD (MIM128000)) is a neurological disorder characterized by recurrent attacks of involuntary movements. Benign familial infantile convulsion (BFIC) is also one of a neurological disorder characterized by clusters of epileptic seizures. The BFIC1 (MIM601764), BFIC2 (MIM605751) and BFIC4 (MIM612627) loci have been mapped to chromosome 19q, 16p and 1p, respectively, while BFIC3 (MIM607745) is caused by mutations in SCN2A on chromosome 2q24. Furthermore, patients with BFIC have been observed in a family concurrently with PKD. Both PKD and BFIC2 are heritable paroxysmal disorders and map to the same region on chromosome 16. Recently, the causative gene of PKD, the protein-rich transmembrane protein 2 (PRRT2), has been detected using whole-exome sequencing. We performed mutation analysis of PRRT2 by direct sequencing in 81 members of 17 families containing 15 PKD families and two BFIC families. Direct sequencing revealed that two mutations, c.649dupC and c.748C>T, were detected in all members of the PKD and BFIC families. Our results suggest that BFIC2 is caused by a truncated mutation that also causes PKD. Thus, PKD and BFIC2 are genetically identical and may cause convulsions and involuntary movements via a similar mechanism.
Collapse
|
32
|
Depienne C, Brice A. Unlocking the genetics of paroxysmal kinesigenic dyskinesia. Brain 2012; 134:3431-4. [PMID: 22171352 DOI: 10.1093/brain/awr319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012; 90:152-60. [PMID: 22243967 DOI: 10.1016/j.ajhg.2011.12.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 11/21/2022] Open
Abstract
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).
Collapse
|
34
|
Lee HY, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T, Baykan B, Bhatia K, Bressman S, Bruno MK, Brunt ER, Caraballo R, Echenne B, Fejerman N, Frucht S, Gurnett CA, Hirsch E, Houlden H, Jankovic J, Lee WL, Lynch DR, Mohammed S, Müller U, Nespeca MP, Renner D, Rochette J, Rudolf G, Saiki S, Soong BW, Swoboda KJ, Tucker S, Wood N, Hanna M, Bowcock AM, Szepetowski P, Fu YH, Ptáček LJ. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2011; 1:2-12. [PMID: 22832103 DOI: 10.1016/j.celrep.2011.11.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25) of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the t-SNARE, SNAP25. PRRT2 localizes to axons but not to dendritic processes in primary neuronal culture, and mutants associated with PKD/IC lead to dramatically reduced PRRT2 levels, leading ultimately to neuronal hyperexcitability that manifests in vivo as PKD/IC.
Collapse
Affiliation(s)
- Hsien-Yang Lee
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Espeche A, Cersosimo R, Caraballo RH. Benign infantile seizures and paroxysmal dyskinesia: A well-defined familial syndrome. Seizure 2011; 20:686-91. [DOI: 10.1016/j.seizure.2011.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
|
36
|
Bourel-Ponchel E, Le Moing AG, Delignières A, De Broca A, Wallois F, Berquin P. Convulsions infantiles bénignes familiales et non familiales : une entité homogène ? Rev Neurol (Paris) 2011; 167:592-9. [DOI: 10.1016/j.neurol.2011.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/06/2010] [Accepted: 01/17/2011] [Indexed: 11/28/2022]
|
37
|
Weng WC, Hirose S, Lee WT. Benign convulsions with mild gastroenteritis: is it associated with sodium channel gene SCN1A mutation? J Child Neurol 2010; 25:1521-4. [PMID: 20519669 DOI: 10.1177/0883073810370898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Benign convulsions with mild gastroenteritis were afebrile seizures associated with gastroenteritis in previously healthy infants or young children. It has been thought to be a continual spectrum of benign infantile convulsions because of overlapping clinical pictures. Recently, molecular genetic studies have suggested a channelopathy in benign infantile convulsions. The authors prospectively studied the clinical features of benign convulsions with mild gastroenteritis in Taiwanese children and clarified the relationship between neuronal sodium channel alpha 1 subunit (SCN1A) gene and benign convulsions with mild gastroenteritis. The clinical pictures in their patients were similar to those of previous studies except for the low rate of positive rotavirus antigen in the stool, which may indicate a season-related viral infection. No mutations in the SCN1A gene were identified in all patients. This study suggested that SCN1A mutations are probably not associated with benign convulsions with mild gastroenteritis. Other possible pathogenic mechanisms need to be researched in the future.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
38
|
|
39
|
Infantile convulsions with paroxysmal dyskinesia (ICCA syndrome) and copy number variation at human chromosome 16p11. PLoS One 2010; 5:e13750. [PMID: 21060786 PMCID: PMC2966418 DOI: 10.1371/journal.pone.0013750] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study. Methodology/Principal Findings A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area. Conclusions/Significance Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions.
Collapse
|
40
|
Ishii A, Zhang B, Kaneko S, Hirose S. Positive association between benign familial infantile convulsions and LGI4. Brain Dev 2010; 32:538-43. [PMID: 19815358 DOI: 10.1016/j.braindev.2009.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE LGI4 is located in 19q13.11, where the locus of benign familial infantile convulsions (BFIC) has been mapped. LGI4 belongs to a family of proteins with the epilepsy-associated repeat (EAR) domain and is associated with various epilepsies. We investigated whether LGI4 is a candidate gene for BFIC. METHODS Fifteen patients with BFIC were examined for mutations and/or polymorphisms of LGI4 by using a direct sequencing method. RESULTS Several frequent polymorphisms were identified. The genotype frequency distribution of c.1722G/A polymorphism was significantly different between patients with BFIC and control subjects (p<0.05). Logistic regression analysis showed that the G allele of c.1722G/A polymorphism had significant recessive effects on the increased relative risk for BFIC (p<0.05). There was no association between c.1722G/A polymorphism and benign familial neonatal convulsion, an epilepsy phenotype similar to BFIC but genetically distinguished from BFIC. DISCUSSION The positive genotypic association between BFIC and c.1722G/A polymorphism suggests that LGI4 might contribute to the susceptibility to BFIC.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Jonanku, Fukuoka, Japan
| | | | | | | |
Collapse
|
41
|
Li N, Li H, Jiang H, Shen L, Yan X, Guo J, Song Y, Yang Q, Wang Y, Li X, Xiang R, Zi X, Long X, Hu Z, Pan Q, Xia K, Tang B. Mutation detection in candidate genes for benign familial infantile seizures on a novel locus. Int J Neurosci 2010; 120:217-21. [PMID: 20374090 DOI: 10.3109/00207450903477779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Benign familial infantile seizures (BFIS) is an autosomal dominant epileptic syndrome characterized by afebrile partial seizures with or without secondary generalized tonic-clonic seizures beginning at three to ten months of age. Genetic studies have revealed three susceptibility chromosomal loci on 19q12-q13.1, 16p12-q12 and 2q24. Previously we described the novel locus on 1p36.12-p35.1 for a Chinese family affected with BFIS, and below is a subsequent mutation analysis of candidate genes for the mapped chromosome region. Forty-five genes were selected and subjected to mutation analysis. Thirty-six nucleotide variants were found, none of which led to pathogenic changes, thereby were identified as nucleotide polymorphisms. The analyses suggest those candidate genes that were detected might not be involved in the epileptogenesis of pure BFIS, at least in the Chinese family we studied.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saadeldin IY, Housawi Y, Al Nemri A, Al Hifzi I. Benign familial and non-familial infantile seizures (Fukuyama-Watanabe-Vigevano syndrome): a study of 14 cases from Saudi Arabia. Brain Dev 2010; 32:378-84. [PMID: 19464832 DOI: 10.1016/j.braindev.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/13/2009] [Accepted: 04/26/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE Benign infantile seizures [BIS], familial and non-familial, represent a benign, age-related idiopathic syndrome of infancy. The aim of the current paper is to document the presence of the syndrome in Saudi Arabia and in Arab populations and to discuss the characteristic electroclinical features and the benign nature of this syndrome. PATIENTS AND METHODS A case series of 275 patients with epileptic seizures (age range: 2 months-13 years) were followed over a period of 3 years and 7 months. The inclusion criteria for BIS were as follows (1) age of seizure onset between 2 and 24 months, (2) normal development before, during and after the onset of seizures, (3) normal interictal EEG, (4) normal brain imaging, and (5) good response to treatment. We analyzed these infants with respect to age at seizure onset, sex, physical and neurological examination, consanguinity, frequency and type of convulsions, associated conditions and laboratory and radiological investigations. A waking and sleeping interictal EEG was performed on all patients, and for one patient (No. 1), ictal EEG and video clips were recorded. RESULTS Fourteen infants (12.0%) showed electroclinical features consistent with BIS. Eleven patients fulfilled the criteria of benign non-familial infantile seizures (BNFIS), and for three patients, their family pedigrees showed the possibility of benign familial infantile seizures (BFIS). All of the patients responded to anti-epileptic treatment, and 50% of them responded within 3 months. CONCLUSIONS To our knowledge, this is the first study to document the presence of BIS (Fukuyama-Watanabe-Vigevano syndrome) in Saudi Arabian and Arab populations. We highlighted the characteristic features of BIS and demonstrated the benign nature of the syndrome.
Collapse
Affiliation(s)
- Imad Yassin Saadeldin
- Armed Forces Hospital, Southern Region, King Fahad Military Hospital, Pediatric Department, Khamis Mushayt 101, Saudi Arabia.
| | | | | | | |
Collapse
|
43
|
Espeche A. Benign infantile seizures: A prospective study. Epilepsy Res 2010; 89:96-103. [DOI: 10.1016/j.eplepsyres.2009.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/29/2009] [Accepted: 10/29/2009] [Indexed: 11/17/2022]
|
44
|
Wang X, Sun W, Zhu X, Li L, Du T, Mao W, Wu X, Wei H, Zhu S, Sun Y, Liu Y, Niu N, Wang Y, Liu Y. Paroxysmal kinesigenic choreoathetosis: evidence of linkage to the pericentromeric region of chromosome 16 in four Chinese families. Eur J Neurol 2010; 17:800-7. [PMID: 20158512 DOI: 10.1111/j.1468-1331.2009.02929.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Paroxysmal kinesigenic choreoathetosis (PKC) is an autosomal dominant condition characterized by abnormal involuntary movements precipitated by sudden movement. The pericentromeric region of chromosome 16 has been linked to PKC by several reports. This study was to localize and identify PKC gene in four Chinese PKC families. METHODS Genetic linkage mapping with eight markers spanning chromosome 16p12-q13 was performed in 43 family members. Genome-wide single nucleotide polymorphism (SNP) scans were performed on four individuals in Family 1 in which infantile convulsion (IC) was co-inherited with PKC. RESULTS Individuals in Family 1 presented with both IC and paroxysmal choreoathetosis (ICCA), and Families 2, 3, and 4 presented only with PKC. Evidence for linkage was found with a maximum two-point LOD score of 4.89 for D16S690 (theta = 0.0) and a maximum multipoint LOD score was 5.34 between D16S3080 and D16S3136. Haplotype analysis showed the disease locus was between D16S3093 and D16S3057. A total of 84 SNPs spanned on 16q12.1-q13 was not segregated with the PKC phenotype, which defined an unlinked region from rs9933187 to rs8044753. Thus, the critical region of the PKC gene is across the pericentromeric region of chromosome 16, and most likely maps to a region of 20.5 Mb (6.2 cM) between D16S3093 and rs9933187 (16p11.2-q12.1). CONCLUSION The assignment of the locus for PKC to the pericentromeric region of chromosome 16 is confirmed and putatively narrowed in the present study.
Collapse
Affiliation(s)
- X Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Genetic factors play an increasingly recognized role in idiopathic epilepsies. Since 1995, positional cloning strategies in multi-generational families with autosomal dominant transmission have revealed 11 genes (KCNQ2, KCNQ3, CHRNA4, CHRNA2, CHRNB2, SCN1B, SCN1A, SCN2A, GABRG2, GABRA1, and LGI1) and numerous loci for febrile seizures and epilepsies. To date, all genes with the exception of LGI1 (leucine-rich glioma inactivated 1), encode neuronal ion channel or neurotransmitter receptor subunits. Molecular approaches have revealed great genetic heterogeneity, with the vast majority of genes remaining to be identified. One of the major challenges is now to understand phenotype-genotype correlations. This review focuses on the current knowledge on the molecular basis of these rare Mendelian autosomal dominant forms of idiopathic epilepsies.
Collapse
Affiliation(s)
- Stéphanie Baulac
- UPMC/Inserm, UMR_S975, Cricm, F-75013, Bâtiment Pharmacie, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France.
| | - Michel Baulac
- UPMC/Inserm, UMR_S975, Cricm, F-75013, Bâtiment Pharmacie, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France; Center for Epilepsy, AP-HP, Bâtiment Paul Casteigne Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France
| |
Collapse
|
46
|
Anderson CME, Berkovic S, Dulac O, Gardiner M, Jain S, Friis ML, Lindhout D, Noebels J, Ottman R, Scaramelli A, Serratosa J, Steinlein O. ILAE Genetics Commission Conference Report: Molecular Analysis of Complex Genetic Epilepsies. Epilepsia 2009. [DOI: 10.1046/j.1528-1157.2002.t01-1-04312.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Fourcade G, Roubertie A, Doummar D, Vidailhet M, Labauge P. [Paroxysmal kinesigenic dyskinesia: a channelopathy? Study of 19 cases]. Rev Neurol (Paris) 2008; 165:164-9. [PMID: 18922556 DOI: 10.1016/j.neurol.2008.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 08/21/2008] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Paroxysmal kinesigenic dyskinesia (PKD) is characterized by brief episodes of dystonia and choreoathetosis triggered by sudden voluntary movements. Disease onset is seen in the first or second decade. The attacks typically last less than one minute. Three autosomal dominant PKD loci are identified: EKD1, EKD2 and EKD3. EKD1 has an overlap with the locus of the "Infantile Convulsion and Choreoathetosis (ICCA) syndrome". The favorable natural history, the episodic nature of the symptoms and their sensitivity to anticonvulsant therapy suggest channelopathy as a mechanism of PKD. PATIENTS AND METHODS We reviewed the clinical features, the family history, the treatment response, the evolution and the technical investigations in 19 affected individuals. RESULTS All cases were idiopathic. Ten patients had a positive familial history. Three patients suffered from ICCA syndrome. Some atypical features were seen, such as the association of kinesigenic and nonkinesigenic attacks and the presence of migraine, ataxia, seizures and myoclonus. Acetazolamide responsiveness was seen in two patients. CONCLUSION The coexistence of PKD and nonkinesigenic dyskinesia in several patients confirms the earlier described presence of intermediary forms, nonrepresented in the current classification of paroxysmal dyskinesias. Our study results suggest channel dysfunction and basal ganglia involvement in the pathophysiology of PKD.
Collapse
Affiliation(s)
- G Fourcade
- Service de Neurologie, CHU Carémeau, Place du Professeur-Robert-Debré, 30029 Nîmes Cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Li HY, Li N, Jiang H, Shen L, Guo JF, Zhang RX, Xia K, Pan Q, Zi XH, Tang BS. A novel genetic locus for benign familial infantile seizures maps to chromosome 1p36.12-p35.1. Clin Genet 2008; 74:490-2. [PMID: 18811698 DOI: 10.1111/j.1399-0004.2008.01092.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Weber YG, Jacob M, Weber G, Lerche H. A BFIS-like syndrome with late onset and febrile seizures: suggestive linkage to chromosome 16p11.2-16q12.1. Epilepsia 2008; 49:1959-64. [PMID: 18479394 DOI: 10.1111/j.1528-1167.2008.01646.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benign familial infantile seizures (BFIS) is a dominant idiopathic epilepsy with partial and secondarily generalized seizures with age of onsetr between 3 and 12 months. Here we describe a four-generation family with some characteristic features of BFIS but with unusual clinical signs, in eight affected members with an unusual clinical phenotype. Onset was consistently between 14 and 20 months of age with clusters of complex-partial or generalized tonic-clonic seizures and a high rate of febrile seizures, which have not been described for BFIS previously. All affected members showed multifocal interictal epileptiform discharges in the EEG. The known loci for benign familial neonatal/infantile seizures (BFNS/BFNIS), generalized epilepsy with febrile seizures plus (GEFS+) and the BFIS locus on chromosome 19q were excluded. Further genetic analysis showed suggestive linkage to the major BFIS locus on chromosome 16 between markers D16S690 and D16S3136. This ;;BFIS-like'' syndrome may enlarge the phenotypic spectrum of diseases linked to the chromosome 16 region.
Collapse
|
50
|
Kikuchi T, Nomura M, Tomita H, Harada N, Kanai K, Konishi T, Yasuda A, Matsuura M, Kato N, Yoshiura KI, Niikawa N. Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet 2007; 52:334-341. [PMID: 17387577 DOI: 10.1007/s10038-007-0116-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is a paroxysmal movement disorder of unknown cause. Although the PKC-critical region (PKCCR) has been assigned to the pericentromeric region of chromosome 16 by several studies of families from various ethnic backgrounds, the causative gene has not yet been identified. In the present study, we performed linkage and haplotype analysis in four new families with PKC, as well as an intensive polymerase chain reaction (PCR) based mutation analysis in seven families for a total of 1,563 exons from 157 genes mapped around the PKCCR. Consequently, the linkage/haplotype analysis revealed that PKC was assigned to a 24-cM segment between D16S3131 and D16S408, the result confirming the previously defined PKCCR, but being unable to narrow it down. Although the mutation analysis of the 157 genes was unsuccessful at identifying any mutations that were shared by patients from the seven families, two nonsynonymous substitutions, i.e., 6186C>A in exon 3 of SCNN1G and 45842A>G in exon 29 of ITGAL, which were segregated with the disease in Families C and F, respectively, were not observed in more than 400 normal controls. Thus, one of the two genes, SCNN1G and ITGAL, could be causative for PKC, but we were not able to find any other mutations that explain the PKC phenotype.
Collapse
Affiliation(s)
- Taeko Kikuchi
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Department of Psychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Masayo Nomura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Hiroaki Tomita
- Department of Psychobiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Harada
- Kyushu Medical Science, Nagasaki, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Kazuaki Kanai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Tohru Konishi
- Division of Pediatrics, Nagaoka Ryoikuen, Nagaoka, Japan
| | - Ayako Yasuda
- Department of Pediatrics, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masato Matsuura
- Section of Biofunctional Informatics, Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobumasa Kato
- Department of Psychiatry, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
- Solution Oriented Research of Science and Technology (SORST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|