1
|
Lee J, Ryu B, Kim Y, Lee E. GMNN and DLL1 mutation-related spondylocarpotarsal synostosis: a case report. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:15. [PMID: 39659197 PMCID: PMC11812068 DOI: 10.12701/jyms.2024.01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Spondylocarpotarsal synostosis syndrome (SCTS) is a rare genetic disorder characterized by vertebral fusion, short stature, and skeletal anomalies. SCTS is primarily associated with mutations in filamin B. However, in this report, we present a unique case of SCTS in a 28-year-old male who complained of neck and shoulder pain persisting for 1 year. His clinical presentation included radioulnar synostosis, cervical spine anomalies (scoliosis and agenesis of the posterior arch of C1), and a history of polydactyly. Genetic analysis revealed mutations in GMNN and DLL1. To the best of our knowledge, this is the first report on the association of SCTS with these genes.
Collapse
Affiliation(s)
- Joonhwan Lee
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| | - Byungju Ryu
- Department of Physical Medicine and Rehabilitation, Loving Care Clinic, Seongnam, Korea
| | - Yunhee Kim
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| | - Eunyoung Lee
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
3
|
Abdelrazek I, Knaus A, Javanmardi B, Krawitz P, Horn D, Abdalla E, Kumar S. Acromesomelic Dysplasia With Homozygosity for a Likely Pathogenic BMPR1B Variant: Postaxial Polydactyly as a Novel Clinical Finding. Mol Genet Genomic Med 2024; 12:e70023. [PMID: 39441036 PMCID: PMC11497645 DOI: 10.1002/mgg3.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula. METHODS Whole trio exome sequencing was conducted to identify potential genetic variants in the patient. RESULTS The analysis identified the biallelic variant NM_001203.3:c.821A > G;p.(Gln274Arg) in BMPR1B, a gene encoding bone morphogenetic protein receptor 1B. CONCLUSION The skeletal phenotype can be brought in line with the phenotypes of previously reported cases of BMPR1B-associated chondrodysplasias. However, the postaxial polydactyly described here is a novel clinical finding in a BMPR1B-related case; notably, it has previously been reported in other acromesomelic dysplasia cases caused by homozygous pathogenic variants in GDF5-a gene which encodes for growth differentiation factor 5, a high-affinity ligand to BMPR1B.
Collapse
Affiliation(s)
- Ibrahim M. Abdelrazek
- Department of Human GeneticsMedical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Behnam Javanmardi
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Denise Horn
- Institute of Medical Genetics and Human GeneticsCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
| | - Ebtesam M. Abdalla
- Department of Human GeneticsMedical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Sheetal Kumar
- Institute of Human Genetics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| |
Collapse
|
4
|
Valenti MT, Zerlotin R, Cominacini M, Bolognin S, Grano M, Dalle Carbonare L. Exploring the Role of Circular RNA in Bone Biology: A Comprehensive Review. Cells 2024; 13:999. [PMID: 38920630 PMCID: PMC11201515 DOI: 10.3390/cells13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression with diverse roles in various biological processes. In recent years, research into circRNAs' involvement in bone biology has gained significant attention, unveiling their potential as novel regulators and biomarkers in bone-related disorders and diseases. CircRNAs, characterized by their closed-loop structure, exhibit stability and resistance to degradation, underscoring their functional significance. In bone tissue, circRNAs are involved in critical processes such as osteogenic differentiation, osteoclastogenesis, and bone remodeling through intricate molecular mechanisms including microRNA regulation. Dysregulated circRNAs are associated with various bone disorders, suggesting their potential as diagnostic and prognostic biomarkers. The therapeutic targeting of these circRNAs holds promise for addressing bone-related conditions, offering new perspectives for precision medicine. Thus, circRNAs constitute integral components of bone regulatory networks, impacting both physiological bone homeostasis and pathological conditions. This review provides a comprehensive overview of circRNAs in bone biology, emphasizing their regulatory mechanisms, functional implications, and therapeutic potential.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| | - Silvia Bolognin
- MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands;
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| |
Collapse
|
5
|
Kidwai FK, Canalis E, Robey PG. Induced pluripotent stem cell technology in bone biology. Bone 2023; 172:116760. [PMID: 37028583 PMCID: PMC10228209 DOI: 10.1016/j.bone.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Technologies on the development and differentiation of human induced pluripotent stem cells (hiPSCs) are rapidly improving, and have been applied to create cell types relevant to the bone field. Differentiation protocols to form bona fide bone-forming cells from iPSCs are available, and can be used to probe details of differentiation and function in depth. When applied to iPSCs bearing disease-causing mutations, the pathogenetic mechanisms of diseases of the skeleton can be elucidated, along with the development of novel therapeutics. These cells can also be used for development of cell therapies for cell and tissue replacement.
Collapse
Affiliation(s)
- Fahad K Kidwai
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America
| | - Ernesto Canalis
- Center for Skeletal Research, Orthopedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-4037, United States of America
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America.
| |
Collapse
|
6
|
Perez E, Salinas L, Mendoza R, Guerrero ME, Oliva J, Mayta-Tovalino F. Osseointegration of Dental Implants in Patients with Congenital and Degenerative Bone Disorders: A Literature Review. J Int Soc Prev Community Dent 2023; 13:167-172. [PMID: 37564172 PMCID: PMC10411298 DOI: 10.4103/jispcd.jispcd_51_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/19/2022] [Accepted: 05/03/2022] [Indexed: 08/12/2023] Open
Abstract
Aims and Objectives The aim of this study was to describe the mechanism of dental implants osseointegration in patients with congenital and degenerative genetic bone disorders. Materials and Methods A PubMed and Scopus documents search was carried out between November 2021 in the, using words such as "osseointegration," "degenerative disease," "congenital disease," and "dental implants." Results The thirteen articles selected dealt with dental implants osseointegration in patients with congenital and degenerative bone disorders. The influence and repercussion of these diseases on the bone system, as well as the osseointegration process were described from healing to bone remodeling. In addition, certain articles described some considerations to improve the osseointegration process in patients suffering from these types of conditions. Conclusions Within the limitations of this literature review we can conclude that osseointegration in patients with ectodermal dysplasia and osteoporosis could be achieved. However, the planning process for dental implant placement in these patients should be more meticulous and individualized considering the degree of tissue involvement as well as the patient's age and skeletal development compared to systemically healthy patients.
Collapse
Affiliation(s)
- Edith Perez
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Liliana Salinas
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Roman Mendoza
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Maria Eugenia Guerrero
- Academic Department of Medical and Surgical Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jose Oliva
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | | |
Collapse
|
7
|
Kyriazis Z, Kollia P, Grivea I, Stefanou N, Sotiriou S, Dailiana ZH. Polydactyly: Clinical and molecular manifestations. World J Orthop 2023; 14:13-22. [PMID: 36686282 PMCID: PMC9850794 DOI: 10.5312/wjo.v14.i1.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Polydactyly is a malformation during the development of the human limb, which is characterized by the presence of more than the normal number of fingers or toes. It is considered to be one of the most common inherited hand disorders. It can be divided into two major groups: Non-syndromic polydactyly or syndromic polydactyly. According to the anatomical location of the duplicated digits, polydactyly can be generally subdivided into pre-, post-axial, and mesoaxial forms. Non-syndromic polydactyly is often inherited with an autosomal dominant trait and defects during the procedure of anterior-posterior patterning of limb development are incriminated for the final phenotype of the malformation. There are several forms of polydactyly, including hand and foot extra digit manifestations. The deformity affects upper limbs with a higher frequency than the lower, and the left foot is more often involved than the right. The treatment is always surgical. Since the clinical presentation is highly diverse, the treatment combines single or multiple surgical operations, depending on the type of polydactyly. The research attention that congenital limb deformities have recently attracted has resulted in broadening the list of isolated gene mutations associated with the disorders. Next generation sequencing technologies have contributed to the correlation of phenotype and genetic profile of the multiple polydactyly manifestations and have helped in early diagnosis and screening of most non-syndromic and syndromic disorders.
Collapse
Affiliation(s)
- Zisis Kyriazis
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Ioanna Grivea
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Nikolaos Stefanou
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Sotiriou
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
8
|
Kyriazis Z, Kollia P, Grivea I, Sotiriou S, Dailiana ZH. Genetics of congenital anomalies of the hand. World J Orthop 2022; 13:949-954. [PMID: 36439370 PMCID: PMC9685634 DOI: 10.5312/wjo.v13.i11.949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies of the hand are malformations occurring during the development of the human limb, and present as isolated disorders or as a part of a syndrome. During the last years, molecular analysis techniques have offered increasing knowledge about the molecular basis of hand malformations. Disturbances in the signaling pathways during the development of the upper limb result in malformations of the upper extremity. At present, several genes have been identified as responsible for hand anomalies and other have been recognized as suspect genes related to them. Different and new high throughput methods have been introduced for the identification of the gene mutations. In the current editorial, we summarize concisely the current molecular status of isolated hand genetic disorders and the recent progress in molecular genetics, including the genes related to the disorder. This progress improves the knowledge of these disorders and has implications on genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Zisis Kyriazis
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Ioanna Grivea
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Sotiriou
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
9
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
10
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Ahmad M, Krüger BT, Kroll T, Vettorazzi S, Dorn AK, Mengele F, Lee S, Nandi S, Yilmaz D, Stolz M, Tangudu NK, Vázquez DC, Pachmayr J, Cirstea IC, Spasic MV, Ploubidou A, Ignatius A, Tuckermann J. Inhibition of Cdk5 increases osteoblast differentiation and bone mass and improves fracture healing. Bone Res 2022; 10:33. [PMID: 35383146 PMCID: PMC8983726 DOI: 10.1038/s41413-022-00195-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Florian Mengele
- Praxisklinik für Orthopädie, Unfall- und Neurochirurgie Prof. Bischoff/Dr. Spies/Dr. Mengele, 89231, Neu-Ulm, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Dilay Yilmaz
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Miriam Stolz
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Naveen Kumar Tangudu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5115 Center Avenue, 15232, Pittsburgh, PA, USA
| | - David Carro Vázquez
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,TAmiRNA GmbH, Leberstrasse 20, 1110, Vienna, Austria
| | - Johanna Pachmayr
- Paracelsus Medizinische Privatuniverstät, Institute of Pharmacy, Strubergasse 21, 5020, Salzburg, Austria
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany. .,Department of Endocrinology, Ludwig Maximilians University Munich, Munich, 80336, Germany.
| |
Collapse
|
12
|
Maixner F, Gresky J, Zink A. Ancient DNA analysis of rare genetic bone disorders. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:182-187. [PMID: 33971396 DOI: 10.1016/j.ijpp.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Review of the current advancements in the field of paleogenetics that provide new opportunities in studying the evolution of rare genetic bone diseases. MATERIAL AND METHODS Based on cases from the literature, the genetics of rare bone diseases will be introduced and the main methodological issues will be addressed, focusing on the opportunities presented by the application of aDNA analyses in the field of paleopathology. RESULTS Medical literature provides large datasets on the genes responsible for rare bone disorders. These genes, subdivided in functional categories, display important future targets when analyzing rare genetic bone disorders in ancient human remains. CONCLUSIONS Knowledge on both phenotype and genotype is required to study rare diseases in ancient human remains. SIGNIFICANCE The proposed interdisciplinary research will provide new insight into the occurrence and spread of genetic risk factors in the past and will help in the diagnostics of these rare and often neglected diseases. LIMITATIONS The current limitations in ancient DNA research and targeting the disease-causing specific mutations (e.g., somatic or germline). SUGGESTIONS FOR FURTHER RESEARCH Methodological advancements and candidate gene lists provide the optimal basis for future interdisciplinary studies of rare genetic bone disorders in ancient human remains.
Collapse
Affiliation(s)
- Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy.
| | - Julia Gresky
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| |
Collapse
|
13
|
Myneni VD, Szalayova I, Mezey E. Differences in Steady-State Erythropoiesis in Different Mouse Bones and Postnatal Spleen. Front Cell Dev Biol 2021; 9:646646. [PMID: 34055777 PMCID: PMC8155546 DOI: 10.3389/fcell.2021.646646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adult erythropoiesis is a highly controlled sequential differentiation of hematopoietic stem cells (HSCs) to mature red blood cells in the bone marrow (BM). The bones which contain BM are diverse in their structure, embryonic origin, and mode of ossification. This has created substantial heterogeneity in HSCs function in BM of different bones, however, it is not known if this heterogeneity influences erythropoiesis in different bones and different regions of the same bone. In this study, we examined steady state BM erythroid progenitors and precursors from different bones - the femur, tibia, pelvis, sternum, vertebrae, radius, humerus, frontal, parietal bone, and compared all to the femur. Trabecular and cortical regions of the femur were also compared for differences in erythropoiesis. In addition, mouse spleen was studied to determine at which age erythropoietic support by the spleen was lost postnatally. We report that total erythroid cells, and erythroid precursors in the femur are comparable to tibia, pelvis, humerus and sternum, but are significantly reduced in the vertebrae, radius, frontal, and parietal bones. Erythroid progenitors and multipotential progenitor numbers are comparable in all the bones except for reduced number in the parietal bone. In the femur, the epiphysis and metaphysis have significantly reduced number of erythroid precursors and progenitors, multipotential progenitors and myeloid progenitors compared to the diaphysis region. These results show that analysis of erythroid precursors from diaphysis region of the femur is representative of tibia, pelvis, humerus and sternum and have significant implications on the interpretation of the steady-state erythropoiesis finding from adult BM. Postnatal spleen supports erythroid precursors until 6 weeks of age which coincides with reduced number of red pulp macrophages. The residual erythroid progenitor support reaches the adult level by 3 months of age. In conclusion, our findings provide insights to the differences in erythropoiesis between different bones, between trabecular and cortical regions of the femur, and developmental changes in postnatal spleen erythropoiesis.
Collapse
Affiliation(s)
- Vamsee D. Myneni
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Eva Mezey
- Adult Stem Cell Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Zaydman AM, Strokova EL, Pahomova NY, Gusev AF, Mikhaylovskiy MV, Shevchenko AI, Zaidman MN, Shilo AR, Subbotin VM. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses 2021; 151:110585. [PMID: 33932710 DOI: 10.1016/j.mehy.2021.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 2-3% of children. Numerous hypotheses on etiologic/causal factors of AIS were investigated, but all failed to identify therapeutic targets and hence failed to offer a cure. Therefore, currently there are only two options to minimize morbidity of the patients suffering AIS: bracing and spinal surgery. From the beginning of 1960th, spinal surgery, both fusion and rod placement, became the standard of management for progressive adolescent idiopathic spine deformity. However, spinal surgery is often associated with complications. These circumstances motivate AIS scientific community to continue the search for new etiologic and causal factors of AIS. While the role of the genetic factors in AIS pathogenesis was investigated intensively and universally recognized, these studies failed to nominate mutation of a particular gene or genes combination responsible for AIS development. More recently epigenetic factors were suggested to play causal role in AIS pathogenesis. Sharing this new approach, we investigated scoliotic vertebral growth plates removed during vertebral fusion (anterior surgery) for AIS correction. In recent publications we showed that cells from the convex side of human scoliotic deformities undergo normal chondrogenic/osteogenic differentiation, while cells from the concave side acquire a neuronal phenotype. Based on these facts we hypothesized that altered neural crest cell migration in early embryogenesis can be the etiological factor of AIS. In particular, we suggested that neural crest cells failed to migrate through the anterior half of somites and became deposited in sclerotome, which in turn produced chondrogenic/osteogenic-insufficient vertebral growth plates. To test this hypothesis we conducted experiments on chicken embryos with arrest neural crest cell migration by inhibiting expression of Paired-box 3 (Pax3) gene, a known enhancer and promoter of neural crest cells migration and differentiation. The results showed that chicken embryos treated with Pax3 siRNA (microinjection into the neural tube, 44 h post-fertilization) progressively developed scoliotic deformity during maturation. Therefore, this analysis suggests that although adolescent idiopathic scoliosis manifests in children around puberty, the real onset of the disease is of epigenetic nature and takes place in early embryogenesis and involves altered neural crest cells migration. If these results confirmed and further elaborated, the hypothesis may shed new light on the etiology and pathogenesis of AIS.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Nataliya Y Pahomova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Arkady F Gusev
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Mikhail V Mikhaylovskiy
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alexander I Shevchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia
| | | | - Andrey R Shilo
- Novosibirsk Zoo named after R.A. Shilo, Novosibirsk, Russia
| | - Vladimir M Subbotin
- Arrowhead Pharmaceuticals Inc., Madison WI, USA; University of Pittsburgh, Pittsburgh PA, USA; University of Wisconsin, Madison WI, USA.
| |
Collapse
|
15
|
Four Unusual Cases of Congenital Forelimb Malformations in Dogs. Animals (Basel) 2021; 11:ani11030813. [PMID: 33799336 PMCID: PMC7998683 DOI: 10.3390/ani11030813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Congenital limb defects are sporadically encountered in dogs during normal clinical practice. Literature concerning their diagnosis and management in canine species is poor. Sometimes, the diagnosis and description of congenital limb abnormalities are complicated by the concurrent presence of different malformations in the same limb and the lack of widely accepted classification schemes. In order to improve the knowledge about congenital limb anomalies in dogs, this report describes the clinical and radiographic findings in four dogs affected by unusual congenital forelimb defects, underlying also the importance of reviewing current terminology. Abstract Four dogs were presented with thoracic limb deformity. After clinical and radiographic examinations, a diagnosis of congenital malformations was performed for each of them. In one case, a deformity involving both the radial and ulnar side of the distal limb was observed. Based on clinical and radiological evaluations, a diagnosis of postaxial terminal longitudinal ulnar hemimelia was performed. The term ectrodactyly was used to refer different malformations characterized by skin and soft tissue separation of the distal forelimb observed in two dogs. Simple complete uncomplicated syndactyly of the right forelimb, and complex incomplete uncomplicated syndactyly of the left forelimb were diagnosed in the fourth case. To the authors’ knowledge, ectrodactyly and simple complete uncomplicated syndactyly are very uncommon anomalies in companion animals and have been rarely documented. Moreover, postaxial terminal longitudinal ulnar hemimelia has still not been reported in dogs.
Collapse
|
16
|
Qi Y, Li B, Wen Y, Yang X, Chen B, He Z, Zhao Z, Magdalou J, Wang H, Chen L. H3K9ac of TGFβRI in human umbilical cord: a potential biomarker for evaluating cartilage differentiation and susceptibility to osteoarthritis via a two-step strategy. Stem Cell Res Ther 2021; 12:163. [PMID: 33663609 PMCID: PMC7934528 DOI: 10.1186/s13287-021-02234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiological investigation and our previous reports indicated that osteoarthritis had a fetal origin and was closely associated with intrauterine growth retardation (IUGR). Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) could be programmable to “remember” early-life stimuli. Here, we aimed to explore an early-warning biomarker of fetal-originated adult osteoarthritis in the WJ-MSCs. Methods Firstly, two kinds of WJ-MSCs were applied to evaluate their chondrogenic potential in vitro through inducing chondrogenic differentiation as the first step of our strategy, one from newborns with IUGR and the other from normal newborns but treated with excessive cortisol during differentiation to simulate the excessive maternal glucocorticoid in the IUGR newborns. As for the second step of the strategy, the differentiated WJ-MSCs were treated with interleukin 1β (IL-1β) to mimic the susceptibility to osteoarthritis. Then, the expression and histone acetylation levels of transforming growth factor β (TGFβ) signaling pathway and the expression of histone deacetylases (HDACs) were quantified, with or without cortisol receptor inhibitor RU486, or HDAC4 inhibitor LMK235. Secondly, the histone acetylation and expression levels of TGFβRI were further detected in rat cartilage and human umbilical cord from IUGR individuals. Results Glycosaminoglycan content and the expression levels of chondrogenic genes were decreased in the WJ-MSCs from IUGR, and the expression levels of chondrogenic genes were further reduced after IL-1β treatment, while the expression levels of catabolic factors were increased. Then, serum cortisol level from IUGR individuals was found increased, and similar changes were observed in normal WJ-MSCs treated with excessive cortisol. Moreover, the decreased histone 3 lysine 9 acetylation (H3K9ac) level of TGFβRI and its expression were observed in IUGR-derived WJ-MSCs and normal WJ-MSCs treated with excessive cortisol, which could be abolished by RU486 and LMK235. At last, the decreased H3K9ac level of TGFβRI and its expression were further confirmed in the cartilage of IUGR rat offspring and human umbilical cords from IUGR newborn. Conclusions WJ-MSCs from IUGR individuals displayed a poor capacity of chondrogenic differentiation and an increased susceptibility to osteoarthritis-like phenotype, which was attributed to the decreased H3K9ac level of TGFβRI and its expression induced by high cortisol through GR/HDAC4. The H3K9ac of TGFβRI in human umbilical cord could be a potential early-warning biomarker for predicting neonatal cartilage dysplasia and osteoarthritis susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02234-8.
Collapse
Affiliation(s)
- Yongjian Qi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xu Yang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Biao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zheng He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhe Zhao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jacques Magdalou
- UMR 7561 CNRS-Université de Lorraine, Faculté de Médicine, Vandoeuvre-lès-Nancy, France
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
17
|
Cordeiro IR, Yu R, Tanaka M. Regulation of the limb shape during the development of the Chinese softshell turtles. Evol Dev 2020; 22:451-462. [PMID: 32906209 PMCID: PMC7757393 DOI: 10.1111/ede.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Interdigital cell death is an important mechanism employed by amniotes to shape their limbs; inhibiting this process leads to the formation of webbed fingers, as seen in bats and ducks. The Chinese softshell turtle Pelodiscus sinensis (Reptilia: Testudines: Trionychidae) has a distinctive limb morphology: the anterior side of the limbs has partially webbed fingers with claw‐like protrusions, while the posterior fingers are completely enclosed in webbings. Here, P. sinensis embryos were investigated to gain insights on the evolution of limb‐shaping mechanisms in amniotes. We found cell death and cell senescence in their interdigital webbings. Spatial or temporal modulation of these processes were correlated with the appearance of indentations in the webbings, but not a complete regression of this tissue. No differences in interdigital cell proliferation were found. In subsequent stages, differential growth of the finger cartilages led to a major difference in limb shape. While no asymmetry in bone morphogenetic protein signaling was evident during interdigital cell death stages, some components of this pathway were expressed exclusively in the clawed digit tips, which also had earlier ossification. In addition, a delay and/or truncation in the chondrogenesis of the posterior digits was found in comparison with the anterior digits of P. sinensis, and also when compared with the previously published pattern of digit skeletogenesis of turtles without posterior webbings. In conclusion, modulation of cell death, as well as a heterochrony in digit chondrogenesis, may contribute to the formation of the unique limbs of the Chinese softshell turtles. Cell death and senescence shape the interdigital webbings of Pelodiscus sinensis. Delayed chondrogenesis/ossification and truncated tips are found in posterior digits, as well as differential expression of bone morphogenetic proteins and Msh homeobox 1 transcription factors.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
18
|
Kidwai F, Mui BWH, Arora D, Iqbal K, Hockaday M, de Castro Diaz LF, Cherman N, Martin D, Myneni VD, Ahmad M, Futrega K, Ali S, Merling RK, Kaufman DS, Lee J, Robey PG. Lineage-specific differentiation of osteogenic progenitors from pluripotent stem cells reveals the FGF1-RUNX2 association in neural crest-derived osteoprogenitors. Stem Cells 2020; 38:1107-1123. [PMID: 32442326 PMCID: PMC7484058 DOI: 10.1002/stem.3206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage-specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm-like cells, lateral plate mesoderm-like cells, and neural crest-like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest-derived OPs-a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Byron W. H. Mui
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Deepika Arora
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
- Biosystems and Biomaterials DivisionNational Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Kulsum Iqbal
- Department of Health and Human ServicesDental Consult Services, National Institute of Health Dental ClinicBethesdaMarylandUSA
| | - Madison Hockaday
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Luis Fernandez de Castro Diaz
- Department of Health and Human ServicesSkeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Natasha Cherman
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Daniel Martin
- Department of Health and Human ServicesGenomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Vamsee D. Myneni
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch/Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Moaz Ahmad
- Department of Health and Human ServicesMolecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Katarzyna Futrega
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Sania Ali
- Biology of Global Health, Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Randall K. Merling
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Dan S. Kaufman
- Department of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Janice Lee
- Department of Health and Human ServicesCraniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Pamela G. Robey
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
19
|
Zhang B, Wang C, Zhang Y, Jiang Y, Qin Y, Pang D, Zhang G, Liu H, Xie Z, Yuan H, Ouyang H, Wang J, Tang X. A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone 2020; 137:115450. [PMID: 32450343 DOI: 10.1016/j.bone.2020.115450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations in the COL2A1 gene were previously described as a cause of type II collagenopathy (e.g., spondyloepiphyseal dysplasia, Stickler syndrome type I), a major subgroup of genetic skeletal diseases. However, the pathogenic mechanisms associated with COL2A1 mutations remain unclear, and there are few large-mammal models of these diseases. In this study, we established a swine model carrying COL2A1 mutations using CRISPR/Cas9 and somatic cell nuclear transfer technologies. Animals mutant for COL2A1 exhibited severe skeletal dysplasia characterized by shortened long bones, abnormal vertebrae, depressed nasal bridge, and cleft palate. Importantly, COL2A1 mutant piglets suffered tracheal collapse, which was almost certainly the cause of their death shortly after birth. In conclusion, we have demonstrated for the first time that overt and striking skeletal dysplasia occurring in human patients can be recapitulated in large transgenic mammals. This model underscores the importance of employing large animals as models to investigate the pathogenesis and potential therapeutics of skeletal diseases.
Collapse
Affiliation(s)
- Boyan Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, First Bethune Hospital of Jilin University, 130021 Changchun, China
| | - Yue Zhang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021 Changchun, China
| | - Yuan Jiang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China
| | - Yanguo Qin
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Guizhen Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China; Research Centre of the Second Hospital of Jilin University, 130041 Changchun, China.
| | - He Liu
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, 130041 Changchun, China.
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, China.
| |
Collapse
|
20
|
Monogene frühmanifeste Osteoporose und Altersosteoporose – ein Kontinuum. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Zusammenfassung
Das Risiko für atraumatische/osteoporotische Frakturen nimmt ab einem Alter von 55 Jahren zu und wird zu einem großen Teil durch die individuelle Knochenmineraldichte und -struktur bestimmt. Durch Modeling während des Wachstums und anschließendes Remodeling passen Osteoblasten und Osteoklasten als Teil der sog. „basic multicellular unit“ das Knochengewebe kontinuierlich an die Erfordernisse an. Angeborene Störungen ihrer Funktion und/oder ihres Zusammenspiels durch häufige oder seltene Genvarianten können durch verzögerten Knochenaufbau oder beschleunigten Knochenabbau zu einer pathologisch niedrigen Knochenmineraldichte (BMD) führen. Häufige Varianten in über 500 Genloci erklären zusammen derzeit ca. 20 % der BMD-Varianz und beeinflussen das Risiko der Altersosteoporose. In einem signifikanten Teil der erwachsenen Patienten mit frühmanifester Osteoporose (vor dem 55. Lebensjahr) finden sich hingegen seltene Varianten als monogene Krankheitsursache. Aufgrund der mitunter sehr milden und variablen Manifestation dieser monogenen Krankheiten ist die genetische Diagnostik die zuverlässigste Möglichkeit der molekularen Zuordnung. Die bei der früh- und spätmanifesten Osteoporose involvierten Gene zeigen eine deutliche Überlappung, besonders bei Genen mit Funktion im Wnt-Signalweg. Die Einbeziehung genetischer Varianten in den diagnostischen Prozess erlaubt eine genauere Prognose und möglicherweise auch eine spezifischere Therapie. Auf die Altersosteoporose lässt sich dieser personalisierte Ansatz unter Umständen in einem nächsten Schritt mithilfe polygener Risiko-Scores übertragen.
Collapse
|
21
|
Howaldt A, Nampoothiri S, Quell LM, Ozden A, Fischer-Zirnsak B, Collet C, de Vernejoul MC, Doneray H, Kayserili H, Kornak U. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone 2019; 120:495-503. [PMID: 30537558 DOI: 10.1016/j.bone.2018.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022]
Abstract
The osteopetroses and related sclerosing bone dysplasias can have a broad range of manifestations. Especially in the milder forms, sandwich vertebrae are an easily recognizable and reliable radiological hallmark. We report on four patients from three families presenting with sandwich vertebrae and platyspondyly. The long bone phenotypes were discordant with one patient showing modeling defects and patchy osteosclerosis, while the second displayed only metaphyseal sclerotic bands, and the third and fourth had extreme metaphyseal flaring with uniform osteosclerosis. Two of the four patients had experienced pathological fractures, two had developmental delay, but none showed cranial nerve damage, hepatosplenomegaly, or bone marrow failure. According to these clinical features the diagnoses ranged between intermediate autosomal recessive osteopetrosis and dysosteosclerosis. After exclusion of mutations in CLCN7 we performed gene panel and exome sequencing. Two novel mutations in SLC29A3 were found in the first two patients. In the third family a TCIRG1 C-terminal frameshift mutation in combination with a mutation at position +4 in intron 2 were detected. Our study adds two cases to the small group of individuals with SLC29A3 mutations diagnosed with dysosteosclerosis, and expands the phenotypic variability. The finding that intermediate autosomal recessive osteopetrosis due to TCIRG1 splice site mutations can also present with platyspondyly further increases the molecular heterogeneity of dysosteosclerosis-like sclerosing bone dysplasias.
Collapse
Affiliation(s)
- Antonia Howaldt
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Lisa-Marie Quell
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ayse Ozden
- Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Björn Fischer-Zirnsak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Corinne Collet
- Service de Biochimie et Biologie Moléculaire, CHU Paris-GH St-Louis Lariboisière F. Widal - Hôpital Lariboisière, Paris, France
| | - Marie-Christine de Vernejoul
- INSERM U1132 BIOSCAR, Hôpital Lariboisière, 75010 Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Rhumatologie, GH Saint-Louis Lariboisière Fernand Widal, Paris, France
| | - Hakan Doneray
- Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
22
|
Schliermann A, Nickel J. Unraveling the Connection between Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling. Int J Mol Sci 2018; 19:ijms19103220. [PMID: 30340367 PMCID: PMC6214098 DOI: 10.3390/ijms19103220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.
Collapse
Affiliation(s)
- Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
- Fraunhofer Institut für Silicatforschung, Translationszentrum TLZ-RT, Röntgenring 11, 97222 Würzburg, Germany.
| |
Collapse
|
23
|
Yang PY, Yeh GP, Hsieh CTC. Prenatal diagnosis of radial ray defects by ultrasound: A report of 6 cases. Taiwan J Obstet Gynecol 2018; 57:598-600. [PMID: 30122586 DOI: 10.1016/j.tjog.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE All of the medical records of fetuses with the sonographic finding of radial ray defects (RRDs) between 2008 and 2015 were retrieved. The associated sonographic findings, cytogenetic results, and necropsy findings were correlated. CASE REPORT There were 6 cases of RRD. Three cases were bilateral and the other 3 cases were unilateral. The gestational ages at diagnosis were between 12 and 24 weeks gestation. All women carrying fetuses with RRDs opted to terminate the pregnancy. There were 2 cases of trisomy 18, one case of thrombocytopenia-absent radius syndrome, and 2 cases of isolated RRD. Both cases of trisomy 18 had other sonographic abnormalities. CONCLUSION RRD should be considered if a short radius and abnormal angulation of the wrist or thumb is noted. The use of 3-D ultrasound facilitates the diagnosis of RRD, even at early gestation, by providing a better surface appearance, panoramic views, and spatial orientation.
Collapse
Affiliation(s)
- Pei-Yin Yang
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Guang-Perng Yeh
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | | |
Collapse
|
24
|
Agostini G, Holt BM, Relethford JH. Bone functional adaptation does not erase neutral evolutionary information. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:708-729. [DOI: 10.1002/ajpa.23460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gina Agostini
- Mayo Clinic/ASU Obesity Solutions, School of Human Evolution and Social ChangeArizona State UniversityTempe Arizona
| | - Brigitte M. Holt
- Department of AnthropologyUniversity of Massachusetts AmherstAmherst Massachusetts
| | - John H. Relethford
- Department of AnthropologyState University of New York at OneontaOneonta New York
| |
Collapse
|
25
|
Sailani MR, Chappell J, Jingga I, Narasimha A, Zia A, Lynch JL, Mazrouei S, Bernstein JA, Aryani O, Snyder MP. WISP3 mutation associated with pseudorheumatoid dysplasia. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a001990. [PMID: 29092958 PMCID: PMC5793776 DOI: 10.1101/mcs.a001990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
Progressive pseudorheumatoid dysplasia (PPD) is a skeletal dysplasia characterized by predominant involvement of articular cartilage with progressive joint stiffness. Here we report genetic characterization of a consanguineous family segregating an uncharacterized from of skeletal dysplasia. Whole-exome sequencing of four affected siblings and their parents identified a loss-of-function homozygous mutation in the WISP3 gene, leading to diagnosis of PPD in the affected individuals. The identified variant (Chr6: 112382301; WISP3:c.156C>A p.Cys52*) is rare and predicted to cause premature termination of the WISP3 protein.
Collapse
Affiliation(s)
- M Reza Sailani
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - James Chappell
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Inlora Jingga
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Anil Narasimha
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Amin Zia
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Janet Linnea Lynch
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Safoura Mazrouei
- Clinic of Internal Medicine, Department of Cardiology, University Heart Center, Jena University Hospital, 07747 Jena, Germany
| | | | - Omid Aryani
- Department of Neuroscience, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Endocrinology and Metabolic Research Institute, Tehran University of Medical Sciences, Tehran 1599666615, Iran
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| |
Collapse
|
26
|
Greenhough J, Papadakis ES, Cutress RI, Townsend PA, Oreffo ROC, Tare RS. Regulation of osteoblast development by Bcl-2-associated athanogene-1 (BAG-1). Sci Rep 2016; 6:33504. [PMID: 27633857 PMCID: PMC5025845 DOI: 10.1038/srep33504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
BCL-2-associated athanogene-1 (BAG-1) is expressed by osteoblast-lineage cells; early embryonic lethality in Bag-1 null mice, however, has limited the investigation of BAG-1 function in osteoblast development. In the present study, bone morphogenetic protein-2/BMP-2-directed osteogenic differentiation of bone marrow stromal cells (BMSCs) of Bag-1+/− (heterozygous) female mice was decreased significantly. Genes crucial for osteogenic differentiation, bone matrix formation and mineralisation were expressed at significantly lower levels in cultures of Bag-1+/− BMSCs supplemented with BMP-2, while genes with roles in inhibition of BMP-2-directed osteoblastogenesis were significantly upregulated. 17-β-estradiol (E2) enhanced responsiveness of BMSCs of wild-type and Bag-1+/− mice to BMP-2, and promoted robust BMP-2-stimulated osteogenic differentiation of BMSCs. BAG-1 can modulate cellular responses to E2 by regulating the establishment of functional estrogen receptors (ERs), crucially, via its interaction with heat shock proteins (HSC70/HSP70). Inhibition of BAG-1 binding to HSC70 by the small-molecule chemical inhibitor, Thioflavin-S, and a short peptide derived from the C-terminal BAG domain, which mediates binding with the ATPase domain of HSC70, resulted in significant downregulation of E2/ER-facilitated BMP-2-directed osteogenic differentiation of BMSCs. These studies demonstrate for the first time the significance of BAG-1-mediated protein-protein interactions, specifically, BAG-1-regulated activation of ER by HSC70, in modulation of E2-facilitated BMP-2-directed osteoblast development.
Collapse
Affiliation(s)
- Joanna Greenhough
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Emmanouil S Papadakis
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Ramsey I Cutress
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Paul A Townsend
- Institute of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
27
|
Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, Fang J, Qu K, Lin Y, Long H, Yao Y, Tian G, Wu Q. Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq. Cell Rep 2016; 15:1467-1480. [PMID: 27160914 DOI: 10.1016/j.celrep.2016.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
The growth plate (GP) comprising sequentially differentiated cell layers is a critical structure for bone elongation and regeneration. Although several key regulators in GP development have been identified using genetic perturbation, systematic understanding is still limited. Here, we used single-cell RNA-sequencing (RNA-seq) to determine the gene expression profiles of 217 single cells from GPs and developed a bioinformatics pipeline named Sinova to de novo reconstruct physiological GP development in both temporal and spatial high resolution. Our unsupervised model not only confirmed prior knowledge, but also enabled the systematic discovery of genes, potential signal pathways, and surface markers CD9/CD200 to precisely depict development. Sinova further identified the effective combination of transcriptional factors (TFs) that regulates GP maturation, and the result was validated using an in vitro EGFP-Col10a screening system. Our case systematically reconstructed molecular cascades in GP development through single-cell profiling, and the bioinformatics pipeline is applicable to other developmental processes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Junxiang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haofei Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jidong Lang
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenming Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhuo Fang
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Keke Qu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuting Lin
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Haizhou Long
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China
| | - Yi Yao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China
| | - Geng Tian
- School of Medicine, Tsinghua University, Beijing 10084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic & System Biology, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
28
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
29
|
Ni Q, Tan Y, Zhang X, Luo H, Deng Y, Magdalou J, Chen L, Wang H. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway. Sci Rep 2015; 5:14711. [PMID: 26434683 PMCID: PMC4592973 DOI: 10.1038/srep14711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.
Collapse
Affiliation(s)
- Qubo Ni
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianrong Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Deng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jacques Magdalou
- Université de Lorraine, Ingénierie Moléculaire, Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS, Biopôle, F-54505 Vandœuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
30
|
The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders. J Clin Med 2015; 3:1490-510. [PMID: 25621177 PMCID: PMC4300535 DOI: 10.3390/jcm3041490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.
Collapse
|
31
|
Zhang F, Xu L, Xu L, Xu Q, Li D, Yang Y, Karsenty G, Chen CD. JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice. J Mol Cell Biol 2015; 7:23-34. [PMID: 25587042 DOI: 10.1093/jmcb/mjv003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
JMJD3 (KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression. However, the function of JMJD3 in vivo is not well understood. Here we show that JMJD3 is highly expressed in cells of the chondrocyte lineage, especially in prehypertrophic and hypertrophic chondrocytes, during endochondral ossification. Homozygous deletion of Jmjd3 results in severely decreased proliferation and delayed hypertrophy of chondrocytes, and thereby marked retardation of endochondral ossification in mice. Genetically, JMJD3 associates with RUNX2 to promote proliferation and hypertrophy of chondrocytes. Biochemically, JMJD3 associates with and enhances RUNX2 activity by derepression of Runx2 and Ihh transcription through its H3K27me3 demethylase activity. These results demonstrate that JMJD3 is a key epigenetic regulator in the process of cartilage maturation during endochondral bone formation.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Shaanxi 710032, China
| | - Longyong Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longxia Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingzi Yang
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
32
|
Avrunin AS. Osteoporosis and osteomalacia - clinical and diagnostic problems. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2014. [DOI: 10.21823/2311-2905-2014-0-4-68-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aim: to define main clinical and diagnostical problems related to osteoporosis and osteomalacia. Literature data showed that not only osteoporosis but osteomalacia may be the reason for decreasing of mechanical properties of skeleton with risk of low-energy fractures. The solution of associated medical and social problems is difficult because DEXA does not allow to differentiate between osteoporosis and osteomalacia that leads to misdiagnosis and unnecessary prescription of antiosteoporotic drugs. This approach is pathogenetically unproved and even may be harmful for the patient. Osteoporosis and osteomalacia does not exclude each other so bone mass reducing in one cohort of patient may be due to osteoporosis, other - osteomalacia and some of them - combinations of both. Another point is that results of controlled clinical trials that evaluated efficacy of antiosteoporotic drugs without differentiative histology tests for osteoporosis and osteomalacia are of doubtful value. As the bone biopsy that is necessary for osteomalacia diagnosis is invasive procedure there is need in definition of clear criteria when it has to be done in patient with reduced bone mass.
Collapse
|
33
|
Chacon-Camacho OF, Villegas-Ruiz V, Buentello-Volante B, Piña-Aguilar RE, Peláez-González H, Ramírez M, González-Rodríguez J, Zenteno JC. Acro-spondylo-pubic dysostosis associated with cataracts, microcephaly, and normal intelligence. Am J Med Genet A 2014; 167A:282-6. [DOI: 10.1002/ajmg.a.36851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/04/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Oscar F. Chacon-Camacho
- Genetics Department-Research Unit; Institute of Ophthalmology “Conde de Valenciana”; Mexico City Mexico
| | - Vanessa Villegas-Ruiz
- Genetics Department-Research Unit; Institute of Ophthalmology “Conde de Valenciana”; Mexico City Mexico
| | - Beatriz Buentello-Volante
- Genetics Department-Research Unit; Institute of Ophthalmology “Conde de Valenciana”; Mexico City Mexico
| | - Raul E. Piña-Aguilar
- Department of Genetics; Centro Médico Nacional “20 de Noviembre”, ISSSTE,; Mexico City Mexico
| | | | - Magdalena Ramírez
- Radiology Department; Hospital General de Mexico; Mexico City Mexico
| | | | - Juan Carlos Zenteno
- Genetics Department-Research Unit; Institute of Ophthalmology “Conde de Valenciana”; Mexico City Mexico
- Biochemistry Department; Faculty of Medicine; National Autonomous University of Mexico (UNAM); Mexico City Mexico
| |
Collapse
|
34
|
Abstract
Isolated familial non-syndromic brachydactyly is interesting from the embryological point of view because the phenotypes of isolated brachydactyly are frequently overlapping, yet they are caused by different gene mutations and the ring finger is frequently relatively preserved. We review the embryology of isolated familial brachydactyly with special attention to these two features.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Tayebi N, Jamsheer A, Flöttmann R, Sowinska-Seidler A, Doelken SC, Oehl-Jaschkowitz B, Hülsemann W, Habenicht R, Klopocki E, Mundlos S, Spielmann M. Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis 2014; 9:108. [PMID: 25231166 PMCID: PMC4237947 DOI: 10.1186/s13023-014-0108-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/01/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A growing number of non-coding regulatory mutations are being identified in congenital disease. Very recently also some exons of protein coding genes have been identified to act as tissue specific enhancer elements and were therefore termed exonic enhancers or "eExons". METHODS We screened a cohort of 134 unrelated families with split-hand/split-foot malformation (SHFM) with high resolution array CGH for CNVs with regulatory potential. RESULTS In three families with an autosomal dominant non-syndromic SHFM phenotype we detected microdeletions encompassing the exonic enhancer (eExons) 15 and 17 of DYNC1I1. In a fourth family, who had hearing loss in addition to SHFM, we found a larger deletion of 510 kb including the eExons of DYNC1I1 and, in addition, the human brain enhancer hs1642. Exons 15 and 17 of DYNC1I1 are known to act as tissue specific limb enhancers of DLX5/6, two genes that have been shown to be associated with SHFM in mice. In our cohort of 134 unrelated families with SHFM, deletions of the eExons of DYNC1I1 account for approximately 3% of the cases, while 17p13.3 duplications were identified in 13% of the families, 10q24 duplications in 12%, and TP63 mutations were detected in 4%. CONCLUSIONS We reduce the minimal critical region for SHFM1 to 78 kb. Hearing loss, however, appears to be associated with deletions of a more telomeric region encompassing the brain enhancer element hs1642. Thus, SHFM1 as well as hearing loss at the same locus are caused by deletion of regulatory elements. Deletions of the exons with regulatory potential of DYNC1I1 are an example of the emerging role of exonic enhancer elements and their implications in congenital malformation syndromes.
Collapse
|
36
|
Flechtner I, Lambot-Juhan K, Teissier R, Colmenares A, Baujat G, Beltrand J, Ajaltouni Z, Pauwels C, Pinto G, Samara-Boustani D, Simon A, Thalassinos C, Le Merrer M, Cormier-Daire V, Polak M. Unexpected high frequency of skeletal dysplasia in idiopathic short stature and small for gestational age patients. Eur J Endocrinol 2014; 170:677-84. [PMID: 24536087 DOI: 10.1530/eje-13-0864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the prevalence of skeletal dysplasias (SDs) in patients with idiopathic short stature (ISS) or small for gestational age (SGA) status. SETTING Rare Endocrine/Growth Diseases Center in Paris, France. DESIGN A prospective study on consecutive patients with ISS and SGA enrolled from 2004 to 2009. METHOD We used a standardized workup to classify patients into well-established diagnostic categories. Of 713 patients with ISS (n=417) or SGA status (n=296), 50.9% underwent a skeletal survey. We chose patients labeled normal or with a prepubertal slowdown of growth as a comparison group. RESULTS Diagnoses were ISS (16.9%), SGA (13.5%), normal growth (24.5%), transient growth rate slowing (17.3%), endocrine dysfunction (12%), genetic syndrome (8.9%), chronic disease (5.1%), and known SD (1.8%). SD was found in 20.9% of SGA and 21.8% ISS patients and in only 13.2% in our comparison group. SD prevalence was significantly higher in the ISS group than in the comparison group, especially (50%) for patients having at least one parent whose height was <-2 SDS. Dyschondrosteosis and hypochondroplasia were the most frequently identified SD, and genetic anomaly was found in 61.5 and 30% respectively. Subtle SD was found equally in the three groups and require long-term growth follow-up to evaluate the impact on final height. CONCLUSION SD may explain more than 20% of cases of growth retardation ascribed to ISS or SGA, and this proportion is higher when parental height is <-2 SDS. A skeletal survey should be obtained in patients with delayed growth in a context of ISS or SGA.
Collapse
MESH Headings
- Adolescent
- Bone Diseases, Developmental/epidemiology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/physiopathology
- Bone and Bones/abnormalities
- Bone and Bones/physiopathology
- Child
- Child, Preschool
- Cohort Studies
- Dwarfism/epidemiology
- Dwarfism/genetics
- Dwarfism/physiopathology
- Family Health
- Female
- Fetal Growth Retardation/epidemiology
- Fetal Growth Retardation/genetics
- Fetal Growth Retardation/physiopathology
- France/epidemiology
- Genetic Variation
- Growth Disorders/epidemiology
- Growth Disorders/etiology
- Growth Disorders/genetics
- Growth Disorders/physiopathology
- Hospitals, Pediatric
- Hospitals, Teaching
- Humans
- Infant
- Infant, Small for Gestational Age
- Limb Deformities, Congenital/epidemiology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/physiopathology
- Lordosis/epidemiology
- Lordosis/genetics
- Lordosis/physiopathology
- Male
- Osteochondrodysplasias/epidemiology
- Osteochondrodysplasias/genetics
- Osteochondrodysplasias/physiopathology
- Prevalence
- Prospective Studies
- Referral and Consultation
Collapse
Affiliation(s)
- I Flechtner
- Pediatric Endocrinology, Gynecology and Diabetology, AP-HP, Imagine Institute Affiliate, Centre de Référence des Maladies Endocriniennes Rares
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu X, Gao L, Zhao A, Zhang R, Ji B, Wang L, Zheng Y, Zeng B, Valenzuela RK, He L, Ma J. Identification of duplication downstream of BMP2 in a Chinese family with brachydactyly type A2 (BDA2). PLoS One 2014; 9:e94201. [PMID: 24710560 PMCID: PMC3978006 DOI: 10.1371/journal.pone.0094201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Brachydactyly type A2 (BDA2, MIM 112600) is characterized by the deviation and shortening of the middle phalange of the index finger and the second toe. Using genome-wide linkage analysis in a Chinese BDA2 family, we mapped the maximum candidate interval of BDA2 to a ∼1.5 Mb region between D20S194 and D20S115 within chromosome 20p12.3 and found that the pairwise logarithm of the odds score was highest for marker D20S156 (Zmax = 6.09 at θ = 0). Based on functional and positional perspectives, the bone morphogenetic protein 2 (BMP2) gene was identified as the causal gene for BDA2 in this region, even though no point mutation was detected in BMP2. Through further investigation, we identified a 4,671 bp (Chr20: 6,809,218-6,813,888) genomic duplication downstream of BMP2. This duplication was located within the linked region, co-segregated with the BDA2 phenotype in this family, and was not found in the unaffected family members and the unrelated control individuals. Compared with the previously reported duplications, the duplication in this family has a different breakpoint flanked by the microhomologous sequence GATCA and a slightly different length. Some other microhomologous nucleotides were also found in the duplicated region. In summary, our findings support the conclusions that BMP2 is the causing gene for BDA2, that the genomic location corresponding to the duplication region is prone to structural changes associated with malformation of the digits, and that this tendency is probably caused by the abundance of microhomologous sequences in the region.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Linghan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Aman Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Baohu Ji
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Lei Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonglan Zheng
- Department of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Bingfang Zeng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Robert K. Valenzuela
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ma
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
38
|
Abstract
Zusammenfassung
Obwohl Ionenkanäle eher mit der Generierung von Aktionspotenzialen in Verbindung gebracht werden, können sie auch in unterschiedlichster Weise die Entwicklung und Funktion von Knochenzellen und -gewebe beeinflussen, was durch die hier vorgestellten Skeletterkrankungen verdeutlicht werden soll. Jeder der grundlegenden Zelltypen, Chondrozyten, Osteoblasten, Osteozyten, Osteoklasten, kann in die Pathogenese involviert sein und in vielen Fällen ist das Zusammenspiel der verschiedenen zellulären Defekte nicht verstanden. Connexin 43 und TRPV4, 2 der genannten Membranproteine, transportieren v. a. Kalzium und stehen jeweils mit einem Spektrum an Skelettphänotypen in Verbindung. Hierbei scheint Connexin 43 v. a. als Regulator in Osteoblasten und Osteozyten zu fungieren, während TRPV4 eine wichtige Rolle in Chondrozyten spielt. Die anderen beiden Beispiele sind die chloridtransportierenden Proteine ANO5 und ClC-7, deren Defekt die gnathodiaphysäre Dysplasie bzw. die Osteopetrose nach sich zieht. Während die Funktion von ANO5 noch unklar ist, konnte die Funktion von ClC-7 in Osteoklasten detailliert beschrieben werden.
Collapse
|
39
|
Gualeni B, Rajpar MH, Kellogg A, Bell PA, Arvan P, Boot-Handford RP, Briggs MD. A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth. Dis Model Mech 2013; 6:1414-25. [PMID: 24046357 PMCID: PMC3820264 DOI: 10.1242/dmm.013342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 01/09/2023] Open
Abstract
Disease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM) alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER) of resting and proliferating chondrocytes. Previous studies on this mutant protein have shown that it induces intracellular aggregates and causes cell stress and death in the thyroid gland. The expression and retention of this exogenous mutant protein in resting and proliferating chondrocytes resulted in a chronic cell stress response, growth plate dysplasia and reduced bone growth, without inducing any alterations to the architecture and organization of the cartilage ECM. More significantly, the decreased bone growth seemed to be the direct result of reduced chondrocyte proliferation in the proliferative zone of growth plates in transgenic mice, without transcriptional activation of a classical unfolded protein response (UPR) or apoptosis. Overall, these data show that mutant protein retention in the ER of resting and proliferative zone chondrocytes is sufficient to cause disrupted bone growth. The specific disease pathways triggered by mutant protein retention do not necessarily involve a prototypic UPR, but all pathways impact upon chondrocyte proliferation in the cartilage growth plate.
Collapse
Affiliation(s)
- Benedetta Gualeni
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - M. Helen Rajpar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Aaron Kellogg
- University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Peter A. Bell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Peter Arvan
- University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Michael D. Briggs
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
40
|
Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe. Eur J Hum Genet 2013; 22:726-33. [PMID: 24129431 DOI: 10.1038/ejhg.2013.222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/01/2023] Open
Abstract
Acromesomelic chondrodysplasias (ACDs) are characterized by disproportionate shortening of the appendicular skeleton, predominantly affecting the middle (forearms and forelegs) and distal segments (hands and feet). Here, we present two consanguineous families with missense (c.157T>C, p.(C53R)) or nonsense (c.657G>A, p.(W219*)) mutations in BMPR1B. Homozygous affected individuals show clinical and radiographic findings consistent with ACD-type Grebe. Functional analysis of the missense mutation C53R revealed that the mutated receptor was partially located at the cell membrane. In contrast to the wild-type receptor, C53R mutation hindered the activation of the receptor by its ligand GDF5, as shown by reporter gene assay. Further, overexpression of the C53R mutation in an in vitro chondrogenesis assay showed no effect on cell differentiation, indicating a loss of function. The nonsense mutation (c.657G>A, p.(W219*)) introduces a premature stop codon, which is predicted to be subject to nonsense-mediated mRNA decay, causing reduced protein translation of the mutant allele. A loss-of-function effect of both mutations causing recessive ACD-type Grebe is further supported by the mild brachydactyly or even non-penetrance of these mutations observed in the heterozygous parents. In contrast, dominant-negative BMPR1B mutations described previously are associated with autosomal-dominant brachydactyly-type A2.
Collapse
|
41
|
Abstract
Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here, we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
Collapse
Affiliation(s)
- K A Staines
- (Correspondence should be addressed to K A Staines; )
| | | | | | - C Farquharson
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College Street, London, NW1 0TUUK
| | | |
Collapse
|
42
|
Embryogenesis and types of subcostal hernia--a rare entity. J Pediatr Surg 2013; 48:533-7. [PMID: 23480907 DOI: 10.1016/j.jpedsurg.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND/PURPOSE Four infants with congenital subcostal hernia are reported, as it is a rare entity with only two cases previously reported. Further, there are no reports concerning the complex multisystem subtype. Embryogenesis of the associated anomalies and subcostal hernia and their management are discussed. MATERIALS/METHODS Clinical features, history, investigations, associated anomalies, and management data of four patients with subcostal hernia were collected and analyzed. RESULTS The following associated anomalies were detected: renal agenesis (2), musculoskeletal abnormality (3), congenital heart disease (2), müllerian-renal-cervicothoracic somite abnormalities and vertebral-anorectal-cardiac-tracheoesophageal-renal-radial-limb anomalies (1). The subcostal hernias were treated by laparoscopic assisted (3) or laparoscopic herniorrhaphy (1). CONCLUSIONS Subcostal hernia is a rare entity with varied clinical presentations and presents either as an isolated defect or as a complex multisystem defect. The exact etiology is still unknown. Phenotypic manifestation of the complex defect is probably due to developmental gene defect affecting the coordinated growth of mesoderm around 4th to 10th weeks of fetal life.
Collapse
|
43
|
Pakkasjärvi N, Koskimies E, Ritvanen A, Nietosvaara Y, Mäkitie O. Characteristics and associated anomalies in radial ray deficiencies in Finland--a population-based study. Am J Med Genet A 2013; 161A:261-7. [PMID: 23322606 DOI: 10.1002/ajmg.a.35707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 09/03/2012] [Indexed: 01/03/2023]
Abstract
Upper-limb defects with deficiencies of the radial ray have varying etiologies, with a low proportion of true Mendelian disorders. We carried out a population-based study to elucidate the birth prevalence and clinical spectrum of radial ray deficiencies in Finland. We identified all births with radial ray deficiency reported to the Finnish Register of Congenital Malformations in 1993-2005. Altogether 138 cases were identified (123 live births), with a birth prevalence of 1.83 per 10,000 births and a live birth prevalence of 1.64 per 10,000 live births. The proportion of infant deaths was as high as 35%. The majority of the cases were associated with known syndromes or multiple anomalies; only 13% were true isolated radial ray deficiencies. The most common syndrome was trisomy 18, and the most common in multiple anomalies was VACTERL association. In 8.7% of cases an association between radial ray deficiency and heart anomaly was observed. The high proportion of cases with associated major anomalies indicates that radial ray deficiency can be regarded isolated only after thorough assessment of the various organ systems in an affected infant.
Collapse
Affiliation(s)
- Niklas Pakkasjärvi
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
44
|
Nilius B, Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep 2013; 14:152-63. [PMID: 23306656 DOI: 10.1038/embor.2012.219] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Hereditary channelopathies, that is, mutations in channel genes that alter channel function and are causal for the pathogenesis of the disease, have been described for several members of the transient receptor potential channel family. Mutations in the TRPV4 gene, encoding a polymodal Ca(2+) permeable channel, are causative for several human diseases, which affect the skeletal system and the peripheral nervous system, with highly variable phenotypes. In this review, we describe the phenotypes of TRPV4 channelopathies and overlapping symptoms. Putative mechanisms to explain the puzzle, and how mutations in the same region of the channel cause different diseases, are discussed and experimental approaches to tackle this surprising problem are suggested.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular & Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
45
|
Pasold J, Engelmann R, Keller J, Joost S, Marshall RP, Frerich B, Müller-Hilke B. High bone mass in the STR/ort mouse results from increased bone formation and impaired bone resorption and is associated with extramedullary hematopoiesis. J Bone Miner Metab 2013. [PMID: 23192248 DOI: 10.1007/s00774-012-0394-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We here describe the novel high bone mass phenotype in STR/ort mice that leads to increased bone masses of cortical and trabecular bone and is associated with elevated osteoblast activity and impaired osteoclast function alike. Comparison of STR/ort and C57BL/6 mice reveals an increase in trabecular bone volumes of the vertebrae and at femoral metaphysis. In the females, this difference is significant as early as 2 months of age and at 9 months the females by far exceed their age matched males in all parameters measured. The increase in cortical bone mass at femoral diaphysis results from an apposition to the endosteal surface, it is significant for both sexes as early as 1 month of age and leads to bone marrow compression and extramedullary hematopoiesis. Altered activities of both, the osteoblast and the osteoclast contribute to the high bone mass and collectively this phenotype supports a multifactorial pathogenesis. Moreover, the spontaneous development of osteoarthritis in male STR/ort mice is suggestive of a tight correlation between trabecular bone mass and the development of degenerative changes of the articular cartilage.
Collapse
Affiliation(s)
- Juliane Pasold
- Institute of Immunology, University of Rostock, Schillingallee 68, 18057, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Spongiosa primary development: a biochemical hypothesis by Turing patterns formations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012. [PMID: 23193429 PMCID: PMC3447359 DOI: 10.1155/2012/748302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.
Collapse
|
47
|
Bell PA, Piróg KA, Fresquet M, Thornton DJ, Boot-Handford RP, Briggs MD. Loss of matrilin 1 does not exacerbate the skeletal phenotype in a mouse model of multiple epiphyseal dysplasia caused by a Matn3 V194D mutation. ACTA ACUST UNITED AC 2012; 64:1529-39. [PMID: 22083516 PMCID: PMC3374853 DOI: 10.1002/art.33486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective Mutations in matrilin 3 can result in multiple epiphyseal dysplasia (MED), a disease characterized by delayed and irregular bone growth and early-onset osteoarthritis. Although intracellular retention of the majority of mutant matrilin 3 was previously observed in a murine model of MED caused by a Matn3 V194D mutation, some mutant protein was secreted into the extracellular matrix. Thus, it was proposed that secretion of mutant matrilin 3 may be dependent on the formation of hetero-oligomers with matrilin 1. The aim of this study was to investigate the hypothesis that deletion of matrilin 1 would abolish the formation of matrilin 1/matrilin 3 hetero-oligomers, eliminate the secretion of mutant matrilin 3, and influence disease severity. Methods Mice with a Matn3 V194D mutation were crossed with Matn1-null mice, generating mice that were homozygous for V194D and null for matrilin 1. This novel mouse was used for in-depth phenotyping, while cartilage and chondrocytes were studied both histochemically and biochemically. Results Endochondral ossification was not disrupted any further in mice with a double V194D mutation compared with mice with a single mutation. A similar proportion of mutant matrilin 3 was present in the extracellular matrix, and the amount of retained mutant matrilin 3 was not noticeably increased. Retained mutant matrilin 3 formed disulfide-bonded aggregates and caused the co-retention of matrilin 1. Conclusion We showed that secretion of matrilin 3 V194D mutant protein is not dependent on hetero-oligomerization with matrilin 1, and that the total ablation of matrilin 1 expression has no impact on disease severity in mice with MED. Mutant matrilin 3 oligomers form non-native disulfide-bonded aggregates through the misfolded A domain.
Collapse
|
48
|
Klopocki E, Kähler C, Foulds N, Shah H, Joseph B, Vogel H, Lüttgen S, Bald R, Besoke R, Held K, Mundlos S, Kurth I. Deletions in PITX1 cause a spectrum of lower-limb malformations including mirror-image polydactyly. Eur J Hum Genet 2012; 20:705-8. [PMID: 22258522 DOI: 10.1038/ejhg.2011.264] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PITX1 is a bicoid-related homeodomain transcription factor implicated in vertebrate hindlimb development. Recently, mutations in PITX1 have been associated with autosomal-dominant clubfoot. In addition, one affected individual showed a polydactyly and right-sided tibial hemimelia. We now report on PITX1 deletions in two fetuses with a high-degree polydactyly, that is, mirror-image polydactyly. Analysis of DNA from additional individuals with isolated lower-limb malformations and higher-degree polydactyly identified a third individual with long-bone deficiency and preaxial polydactyly harboring a heterozygous 35 bp deletion in PITX1. The findings demonstrate that mutations in PITX1 can cause a broad spectrum of isolated lower-limb malformations including clubfoot, deficiency of long bones, and mirror-image polydactyly.
Collapse
Affiliation(s)
- Eva Klopocki
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shore EM. Fibrodysplasia ossificans progressiva: a human genetic disorder of extraskeletal bone formation, or--how does one tissue become another? WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:153-65. [PMID: 22408652 PMCID: PMC3297114 DOI: 10.1002/wdev.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disease in which de novo osteogenesis—a developmental process occurring during embryonic skeletal formation—is induced aberrantly and progressively beginning during early childhood in soft connective tissues. Episodic initiation of spontaneous bone-forming lesions occurs over time, affecting a generally predictable sequence of body locations following a pattern similar to that of the developing embryonic skeleton. The heterotopic (extraskeletal) bone formation in FOP can also be induced by connective tissue injury. At the tissue level, an initial tissue degradation phase is followed by a tissue formation phase during which soft connective tissues are replaced by bone tissue through endochondral osteogenesis. This extraskeletal bone is physiologically normal and develops through the same series of tissue differentiation events that occur during normal embryonic skeletal development. The underlying genetic mutation in FOP alters the signals that regulate induction of cell differentiation leading to bone formation. In addition to postnatal heterotopic ossification, FOP patients show specific malformations of skeletal elements indicating effects on bone formation during embryonic development as well. Nearly all cases of FOP are caused by the identical mutation in the ACVR1 gene that causes a single amino acid substitution, R206H, in the bone morphogenetic protein (BMP) type I receptor ACVR1 (formerly known as ALK2). This mutation causes mild constitutive activation of the BMP signaling pathway and identifies ACVR1 as a key regulator of cell fate decisions and bone formation, providing opportunities to investigate previously unrecognized functions for this receptor during tissue development and homeostasis.
Collapse
Affiliation(s)
- Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Neonatal skeletal dysplasias. Pediatr Radiol 2012; 42 Suppl 1:S150-7. [PMID: 22395727 DOI: 10.1007/s00247-011-2176-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/05/2011] [Accepted: 04/20/2011] [Indexed: 10/28/2022]
Abstract
Skeletal dysplasias are a large diverse group of disorders characterized by abnormal bone and cartilage growth. Approximately one-quarter of them are considered lethal in the perinatal period. This paper will review the components of the skeletal survey, the primary imaging tool for diagnosing dysplasias postnatally, emphasizing the use of an organized approach and appropriate descriptive terminology. Several illustrative cases of lethal and nonlethal dysplasias will be shown, with additional discussion of commonly associated genetic mutations and classification systems.
Collapse
|