1
|
Huang Y, Liu L, Fang F, Zhou H, Liu X. Identification of a novel heterozygous variant in the PEX26 gene in an infant: a case report. Transl Pediatr 2024; 13:192-199. [PMID: 38323187 PMCID: PMC10839275 DOI: 10.21037/tp-23-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 02/08/2024] Open
Abstract
Background The protein PEX26 is involved in the biogenesis and maintenance of peroxisomes, which are organelles within cells. Dysfunction of PEX26 results in peroxisome biogenesis disorders (PBDs) complementation group 8 (CG8), leading to Zellweger spectrum disorders (ZSDs). These disorders present as a syndrome with multiple congenital anomalies, varying in clinical severity. Case Description We present the case of a 7-month-old boy who exhibited hepatic impairment with hepatomegaly, sensorineural hearing loss, developmental delay, abnormal ossification, and mild craniofacial dysmorphology. Tandem mass spectrometry analysis of plasma isolated from whole blood revealed a significant increase in the levels of very long chain fatty acids (VLCFAs) C26:0, C26:0/C22:0, and C24:0/C22:0, consistent with peroxisomal fatty acid oxidation disorder. Exome sequencing identified two variants in the PEX26 gene (c.347T>C and c.616C>T), with the latter being a suspected pathogenic variation. The variant can lead to a defect in the PEX26 gene, resulting in impaired peroxisome biogenesis, β-oxidation of VLCFAs, and disruption of other biochemical pathways. Ultimately, this cascade of events manifests as ZSDs. Currently, symptomatic supportive treatment is the main approach for managing this condition and regular follow-up is being conducted for the patient. Conclusions The present study introduces a novel heterozygous variant comprising two previously unidentified variants in the PEX26 gene, thereby expanding the range of known genetic alterations and highlighting the effectiveness of highly efficient exome sequencing in patients with undetermined multiple system dysfunctions.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
4
|
Lotz-Havla AS, Woidy M, Guder P, Schmiesing J, Erdmann R, Waterham HR, Muntau AC, Gersting SW. Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency. Front Genet 2021; 12:726174. [PMID: 34804114 PMCID: PMC8600046 DOI: 10.3389/fgene.2021.726174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes share metabolic pathways with other organelles and peroxisomes are embedded into key cellular processes. However, the specific function of many peroxisomal proteins remains unclear and restricted knowledge of the peroxisomal protein interaction network limits a precise mapping of this network into the cellular metabolism. Inborn peroxisomal disorders are autosomal or X-linked recessive diseases that affect peroxisomal biogenesis (PBD) and/or peroxisomal metabolism. Pathogenic variants in the PEX26 gene lead to peroxisomal disorders of the full Zellweger spectrum continuum. To investigate the phenotypic complexity of PEX26 deficiency, we performed a combined organelle protein interaction screen and network medicine approach and 1) analyzed whether PEX26 establishes interactions with other peroxisomal proteins, 2) deciphered the PEX26 interaction network, 3) determined how PEX26 is involved in further processes of peroxisomal biogenesis and metabolism, and 4) showed how variant-specific disruption of protein-protein interactions (edgetic perturbations) may contribute to phenotypic variability in PEX26 deficient patients. The discovery of 14 novel protein-protein interactions for PEX26 revealed a hub position of PEX26 inside the peroxisomal interactome. Analysis of edgetic perturbations of PEX26 variants revealed a strong correlation between the number of affected protein-protein interactions and the molecular phenotype of matrix protein import. The role of PEX26 in peroxisomal biogenesis was expanded encompassing matrix protein import, division and proliferation, and membrane assembly. Moreover, the PEX26 interaction network intersects with cellular lipid metabolism at different steps. The results of this study expand the knowledge about the function of PEX26 and refine genotype-phenotype correlations, which may contribute to our understanding of the underlying disease mechanism of PEX26 deficiency.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Schmiesing
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Erdmann
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Hypothyroidism Intensifies Both Canonic and the De Novo Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner. Cells 2021; 10:cells10092248. [PMID: 34571897 PMCID: PMC8472630 DOI: 10.3390/cells10092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodeling and origin in rat brown adipocytes. We found that peroxisomes originated via both canonic, and de novo pathways. Each pathway operates in euthyroid control and over the course of hypothyroidism, in a time-dependent manner. Hypothyroidism increased the peroxisomal number by 1.8-, 3.6- and 5.8-fold on days 7, 15, and 21. Peroxisomal presence, their distribution, and their degree of maturation were heterogeneous in brown adipocytes in a Harlequin-like manner, reflecting differences in their origin. The canonic pathway, through numerous dumbbell-like and “pearls on strings” structures, supported by high levels of Pex11β and Drp1, prevailed on day 7. The de novo pathway of peroxisomal biogenesis started on day 15 and became dominant by day 21. The transition of peroxisomal biogenesis from canonic to the de novo pathway was driven by increased levels of Pex19, PMP70, Pex5S, and Pex26 and characterized by numerous tubular structures. Furthermore, specific peroxisomal origin from mitochondria, regardless of thyroid status, indicates their mutual regulation in rat brown adipocytes.
Collapse
|
6
|
He Y, Lin SB, Li WX, Yang L, Zhang R, Chen C, Yuan L. PEX26 gene genotype-phenotype correlation in neonates with Zellweger syndrome. Transl Pediatr 2021; 10:1825-1833. [PMID: 34430430 PMCID: PMC8349955 DOI: 10.21037/tp-21-103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Zellweger syndrome (ZS) is commonly manifested as facial deformities, hypotonia, and liver dysfunction. However, ZS caused by PEX26 gene mutation shows a broad and dispersed clinical pattern. In this study, the PEX26 gene in ZS was analyzed to enrich its clinical characteristics. Meanwhile, phenotypic and genotypic characteristics of Zellweger spectrum disorder (ZSD) induced by PEX26 mutation were evaluated. METHODS The clinical data of newborn with ZS in our hospital were analyzed retrospectively. We performed WES and found that the infant carried the PEX26 gene variant. We searched the biomedical literature databases (PubMed, Web of Science, and EMBASE) to compare clinical features and genotypes. RESULTS The neonate developed facial deformities, hypotonia, feeding difficulties, and seizures. Her homozygous variant was found in the PEX26 gene (NM_017929: exon2: c.34del) inherited from both parents. Electronic databases, including our case, reported 32 pathogenic variants in PEX26. We found that variation c.292C> T accounted for the largest proportion of PEX26 mutations (16/66, 24.24%). The proportion of deleterious mutations in ZS patients was significantly higher than that in NALD and IRD patients. CONCLUSIONS We identified pathogenic variations in the PEX26 gene and expanded the known mutant spectrum. By comparing patients with PEX26 mutations, the study determined that a significantly higher percentage of deleterious mutations in ZS was associated with severe clinical phenotypic characteristics.
Collapse
Affiliation(s)
- Yue He
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sam Bill Lin
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Xuan Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yuan
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Identification of a Homozygous PEX26 Mutation in a Heimler Syndrome Patient. Genes (Basel) 2021; 12:genes12050646. [PMID: 33926089 PMCID: PMC8146857 DOI: 10.3390/genes12050646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to identify the molecular genetic etiology of an 8-year-old boy with amelogenesis imperfecta in permanent dentition. Bilateral cochlear implants were placed due to sensorineural hearing loss, and there was no other family member with a similar phenotype. Peripheral blood samples were collected with the understanding and written consent of the participating family members. A constitutional chromosome study was performed for the proband. Genomic DNA was isolated, and whole exome sequencing was performed. A series of bioinformatic analyses were performed with the obtained paired-end sequencing reads, and the variants were filtered and annotated with dbSNP147. There was no abnormality in the constitutional chromosome study. Whole exome sequencing analysis with trio samples identified a homozygous mutation (c.506T>C, p. (Leu169Pro)) in the PEX26 gene. We verified “temperature sensitivity (ts)” of patient-derived Pex26-L169P by expression in pex26 CHO mutant ZP167 cells to determine the effect of the L169P mutation on Pex26 function. The L169P mutation causes a mild ts-cellular phenotype representing the decreased peroxisomal import of catalase. This study supports the finding that the recessive mutations in PEX26 are associated with Heimler syndrome and demonstrates the importance of an early and correct diagnosis.
Collapse
|
8
|
Fujiki Y, Abe Y, Imoto Y, Tanaka AJ, Okumoto K, Honsho M, Tamura S, Miyata N, Yamashita T, Chung WK, Kuroiwa T. Recent insights into peroxisome biogenesis and associated diseases. J Cell Sci 2020; 133:133/9/jcs236943. [PMID: 32393673 DOI: 10.1242/jcs.236943] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuuta Imoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Faculty of Arts and Science, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Non Miyata
- Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
9
|
Abstract
Blobel and coworkers discovered in 1978 that peroxisomal proteins are synthesized on free ribosomes in the cytosol and thus provided the grounds for the conception of peroxisomes as self-containing organelles. Peroxisomes are highly adaptive and versatile organelles carrying out a wide variety of metabolic functions. A striking feature of the peroxisomal import machinery is that proteins can traverse the peroxisomal membrane in a folded and even oligomeric state via cycling receptors. We outline essential steps of peroxisomal matrix protein import, from targeting of the proteins to the peroxisomal membrane, their translocation via transient pores and export of the corresponding cycling import receptors with emphasis on the situation in yeast. Peroxisomes can contribute to the adaptation of cells to different environmental conditions. This is realized by changes in metabolic functions and thus the enzyme composition of the organelles is adopted according to the cellular needs. In recent years, it turned out that this organellar diversity is based on an elaborate regulation of gene expression and peroxisomal protein import. The latter is in the focus of this review that summarizes our knowledge on the composition and function of the peroxisomal protein import machinery with emphasis on novel alternative protein import pathways.
Collapse
Affiliation(s)
- Thomas Walter
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
10
|
Abstract
Peroxisomes are considered to form either by growth and division of existing peroxisomes or de novo from the endoplasmic reticulum. A recent study now demonstrates that mitochondria-derived vesicles are also required for de novo peroxisome biogenesis.
Collapse
Affiliation(s)
- Peter Kim
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Rm. 19.9708, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
11
|
Abstract
PURPOSE Congenital clubfoot is a serious birth defect that affects nearly 0.1% of all births. Though there is strong evidence for a genetic basis of isolated clubfoot, aside from a handful of associations, much of the heritability remains unexplained. METHODS By systematically examining the genes involved in syndromic clubfoot, we may find new candidate genes and pathways to investigate in isolated clubfoot. RESULTS In addition to the expected enrichment of extracellular matrix and transforming growth factor beta (TGF-β) signalling genes, we find many genes involved in syndromic clubfoot encode peroxisomal matrix proteins, as well as enzymes necessary for sulfation of proteoglycans, an important part of connective tissue. Further, the association of Filamin B with isolated clubfoot as well as syndromic clubfoot is an encouraging finding. CONCLUSION We should examine these categories for enrichment in isolated clubfoot patients to increase our understanding of the underlying biology and pathophysiology of this deformity. Understanding the spectrum of syndromes that have clubfoot as a feature enables a better understanding of the underlying pathophysiology of the disorder and directs future genetic screening efforts toward certain genes and genetic pathways. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- B. Sadler
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - C. A. Gurnett
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - M. B. Dobbs
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA,Correspondence should be sent to Matthew B. Dobbs, MD, 1 Children’s Place, Suite 4S-60, Department of Orthopedic Surgery, 660 S Euclid Ave, Campus Box 8233, Washington University in St Louis, St Louis, Missouri 63110, USA. E-mail:
| |
Collapse
|
12
|
Mosquera Orgueira A, Antelo Rodríguez B, Alonso Vence N, Díaz Arias JÁ, Díaz Varela N, Pérez Encinas MM, Allegue Toscano C, Goiricelaya Seco EM, Carracedo Álvarez Á, Bello López JL. The association of germline variants with chronic lymphocytic leukemia outcome suggests the implication of novel genes and pathways in clinical evolution. BMC Cancer 2019; 19:515. [PMID: 31142279 PMCID: PMC6542042 DOI: 10.1186/s12885-019-5628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Lymphocytic Leukemia (CLL) is the most frequent lymphoproliferative disorder in western countries and is characterized by a remarkable clinical heterogeneity. During the last decade, multiple genomic studies have identified a myriad of somatic events driving CLL proliferation and aggressivity. Nevertheless, and despite the mounting evidence of inherited risk for CLL development, the existence of germline variants associated with clinical outcomes has not been addressed in depth. METHODS Exome sequencing data from control leukocytes of CLL patients involved in the International Cancer Genome Consortium (ICGC) was used for genotyping. Cox regression was used to detect variants associated with clinical outcomes. Gene and pathways level associations were also calculated. RESULTS Single nucleotide polymorphisms in PPP4R2 and MAP3K4 were associated with earlier treatment need. A gene-level analysis evidenced a significant association of RIPK3 with both treatment need and survival. Furthermore, germline variability in pathways such as apoptosis, cell-cycle, pentose phosphate, GNα13 and Nitric oxide was associated with overall survival. CONCLUSION Our results support the existence of inherited conditionants of CLL evolution and points towards genes and pathways that may results useful as biomarkers of disease outcome. More research is needed to validate these findings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain. .,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain. .,University of Santiago de Compostela, Santiago, Spain.
| | - Beatriz Antelo Rodríguez
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,University of Santiago de Compostela, Santiago, Spain
| | - Natalia Alonso Vence
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - José Ángel Díaz Arias
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - Nicolás Díaz Varela
- Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - Manuel Mateo Pérez Encinas
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,University of Santiago de Compostela, Santiago, Spain
| | | | | | - Ángel Carracedo Álvarez
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,Fundación Pública de Medicina Xenómica, A Coruña, Spain
| | - José Luis Bello López
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
13
|
Tan HWS, Anjum B, Shen HM, Ghosh S, Yen PM, Sinha RA. Lysosomal inhibition attenuates peroxisomal gene transcription via suppression of PPARA and PPARGC1A levels. Autophagy 2019; 15:1455-1459. [PMID: 31032705 DOI: 10.1080/15548627.2019.1609847] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lysosomes influence dynamic cellular processes such as nutrient sensing and transcriptional regulation. To explore novel transcriptional pathways regulated by lysosomes, we performed microarray analysis followed by qPCR validation in a mouse hepatocyte cell line, AML12, treated with bafilomycin A1 (lysosomal v-type H+-translocating ATPase inhibitor). Pathway enrichment analysis revealed significant downregulation of gene sets related to peroxisomal biogenesis and peroxisomal lipid oxidation upon lysosomal inhibition. Mechanistically, pharmacological inhibition of lysosomes as well as genetic knockdown of Tfeb led to downregulation of the peroxisomal master regulator PPARA and its coactivator PPARGC1A/PGC1α. Consistently, ectopic induction of PPARA transcriptional activity rescues the effects of lysosomal inhibition on peroxisomal gene expression. Collectively, our results uncover a novel metabolic regulation of peroxisomes by lysosomes via PPARA-PPARGC1A transcriptional signalling. Abbreviations: Acox1: acyl-Coenzyme A oxidase 1, palmitoyl; Acot: acyl-CoA thioesterase; ACAA: acetyl-Coenzyme A acyltransferase; ABCD3/PMP70: ATP-binding cassette, sub-family D (ALD), member 3; BafA1: bafilomycin A1; Crot: carnitine O-octanoyltransferase; CTSB: cathepsin B; Decr2: 2-4-dienoyl-Coenzyme A reductase 2, peroxisomal; Ech1: enoyl coenzyme A hydratase 1, peroxisomal; Ehhadh: enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; FDR: false discovery rate; Hsd17b4: hydroxysteroid (17-beta) dehydrogenase 4; NES: normalized enrichment score; NOM: nominal; Pex: peroxin; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Hayden Weng Siong Tan
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,b Program of Cardiovascular and Metabolic Disorders , Duke-NUS Medical School , Singapore , Singapore.,c School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - B Anjum
- d Department of Endocrinology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Han-Ming Shen
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,c School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Sujoy Ghosh
- b Program of Cardiovascular and Metabolic Disorders , Duke-NUS Medical School , Singapore , Singapore
| | - Paul M Yen
- b Program of Cardiovascular and Metabolic Disorders , Duke-NUS Medical School , Singapore , Singapore
| | - Rohit A Sinha
- d Department of Endocrinology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
14
|
Tanaka AJ, Okumoto K, Tamura S, Abe Y, Hirsch Y, Deng L, Ekstein J, Chung WK, Fujiki Y. A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003483. [PMID: 30446579 PMCID: PMC6371744 DOI: 10.1101/mcs.a003483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immunostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient's fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient's fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient's fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.
Collapse
Affiliation(s)
- Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Arts and Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoel Hirsch
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Joseph Ekstein
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery. Sci Rep 2018; 8:16014. [PMID: 30375424 PMCID: PMC6207756 DOI: 10.1038/s41598-018-34200-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
Peroxisomal matrix proteins contain either a peroxisomal targeting sequence 1 (PTS1) or a PTS2 that are recognized by the import receptors PEX5 and PEX7, respectively. PEX5 transports the PTS1 proteins and the PEX7/PTS2 complex to the docking translocation module (DTM) at the peroxisomal membrane. After cargo release PEX5 is monoubiquitinated and extracted from the peroxisomal membrane by the receptor export machinery (REM) comprising PEX26 and the AAA ATPases PEX1 and PEX6. Here, we investigated the protein interactions of monoubiquitinated PEX5 with the docking proteins PEX13, PEX14 and the REM. “Click” chemistry was used to synthesise monoubiquitinated recombinant PEX5. We found that monoubiquitinated PEX5 binds the PEX7/PTS2 complex and restores PTS2 protein import in vivo in ΔPEX5 fibroblasts. In vitro pull-down assays revealed an interaction of recombinant PEX5 and monoubiquitinated PEX5 with PEX13, PEX14 and with the REM components PEX1, PEX6 and PEX26. The interactions with the docking proteins were independent of the PEX5 ubiquitination status whereas the interactions with the REM components were increased when PEX5 is ubiquitinated.
Collapse
|
16
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
17
|
The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun 2018; 9:135. [PMID: 29321502 PMCID: PMC5762779 DOI: 10.1038/s41467-017-02474-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Pex1 and Pex6 form a heterohexameric motor essential for peroxisome biogenesis and function, and mutations in these AAA-ATPases cause most peroxisome-biogenesis disorders in humans. The tail-anchored protein Pex15 recruits Pex1/Pex6 to the peroxisomal membrane, where it performs an unknown function required for matrix-protein import. Here we determine that Pex1/Pex6 from S. cerevisiae is a protein translocase that unfolds Pex15 in a pore-loop-dependent and ATP-hydrolysis-dependent manner. Our structural studies of Pex15 in isolation and in complex with Pex1/Pex6 illustrate that Pex15 binds the N-terminal domains of Pex6, before its C-terminal disordered region engages with the pore loops of the motor, which then processively threads Pex15 through the central pore. Furthermore, Pex15 directly binds the cargo receptor Pex5, linking Pex1/Pex6 to other components of the peroxisomal import machinery. Our results thus support a role of Pex1/Pex6 in mechanical unfolding of peroxins or their extraction from the peroxisomal membrane during matrix-protein import. Pex1 and Pex6 form a heterohexameric Type-2 AAA-ATPase motor whose function in peroxisomal matrix-protein import is still debated. Here, the authors combine structural, biochemical, and cell-biological approaches to show that Pex1/Pex6 is a protein unfoldase, which supports a role in mechanical unfolding of peroxin proteins.
Collapse
|
18
|
Ge MM, Hu L, Li Z, Cheng G, Yan K, Kong Y, Wang H, Yang L, Zhou W. Novel compound heterozygous mutations in the PEX1 gene in two Chinese newborns with Zellweger syndrome based on whole exome sequencing. Clin Chim Acta 2017; 470:24-28. [PMID: 28432012 DOI: 10.1016/j.cca.2017.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Peroxisome biogenesis disorders (PBDs) represent a spectrum of human genetic disorders that are characterized by damaged peroxisome assembly. In the newborn period, the characteristics of affected patients include dysmorphic facial features, neonatal hypotonia, seizures, ocular abnormalities, poor feeding, liver cysts with hepatic dysfunction and skeletal defects. These can be caused by a defect in at least 14 different PEX genes. In this study, whole-exome sequencing (WES) was performed on samples from two Chinese newborns with clinical features of Zellweger syndrome. WES identified two novel mutations (c.2416+1G>T and c.2489delT) in patient 1 and another two novel mutations (c.1483+1G>A and c.1727dupG) in patient 2 in the PEX1 gene. All four mutations have a serious influence on the protein function, which also highlights the power of WES, particularly in clinically challenging cases.
Collapse
Affiliation(s)
- Meng-Meng Ge
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - LiYuan Hu
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - ZhiHua Li
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - GuoQiang Cheng
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Yan
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - YanTing Kong
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - HuiJun Wang
- Birth Defect Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - WenHao Zhou
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China; Birth Defect Laboratory, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
19
|
FUJIKI Y. Peroxisome biogenesis and human peroxisome-deficiency disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:463-477. [PMID: 27941306 PMCID: PMC5328784 DOI: 10.2183/pjab.92.463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function.
Collapse
Affiliation(s)
- Yukio FUJIKI
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Correspondence should be addressed: Y. Fujiki, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
20
|
Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci Rep 2015; 5:17420. [PMID: 26627908 PMCID: PMC4667187 DOI: 10.1038/srep17420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins.
Collapse
|
21
|
Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:828-37. [PMID: 26453804 DOI: 10.1016/j.bbamcr.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Collapse
Affiliation(s)
- Immanuel Grimm
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
22
|
Tamura S, Matsumoto N, Takeba R, Fujiki Y. AAA peroxins and their recruiter Pex26p modulate the interactions of peroxins involved in peroxisomal protein import. J Biol Chem 2014; 289:24336-46. [PMID: 25016021 DOI: 10.1074/jbc.m114.588038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pex1p and Pex6p are required for the relocation of the import receptor Pex5p from the peroxisomal membrane to the cytosol. We herein show that mammalian Pex26p directly binds to Pex14p, the initial docking receptor of Pex5p, and interacts with Pex5p via Pex14p. The binding affinity of Pex26p to Pex14p is altered by Pex5p. Further evidence suggests that the N-terminal region in Pex26p acts as a scaffold protein to recruit Pex14p·Pex5p complex together with Pex1p·Pex6p complexes on peroxisomes. Pex26p binding to Pex14p was suppressed by overexpression of Pex1p and Pex6p in an ATP-dependent manner, whereas Pex14p was not competed out by Pex1p and Pex6p from Pex26p mutant defective in peroxisomal matrix protein import. These results suggested that peroxisome biogenesis requires Pex1p- and Pex6p-regulated dissociation of Pex14p from Pex26p. Pex1p homo-oligomer directly binds to Pex5p as assessed by a surface plasmon resonance-based assay. Moreover, cytosolic Pex1p is likely to maintain the functional oligomer of Pex5p. Taken together, in the peroxisomal protein import, AAA peroxins modulate the interaction between Pex26p and Pex14p on peroxisome membrane as well as Pex5p oligomer in the cytosol.
Collapse
Affiliation(s)
- Shigehiko Tamura
- Faculty of Arts and Science, Kyushu University, Fukuoka 812-8581, Japan and Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Naomi Matsumoto
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Ryota Takeba
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
23
|
Ebberink MS, Mooijer PAW, Gootjes J, Koster J, Wanders RJA, Waterham HR. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011; 32:59-69. [PMID: 21031596 DOI: 10.1002/humu.21388] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently known.
Collapse
Affiliation(s)
- Merel S Ebberink
- Academic Medical Centre at the University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 2011; 21:457-68. [PMID: 21920312 DOI: 10.1016/j.devcel.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
A fundamental question in cell biology is how cells control organelle composition and abundance. Woronin bodies are fungal peroxisomes centered on a crystalline core of the self-assembled HEX protein. Despite using the canonical peroxisome import machinery for biogenesis, Woronin bodies are scarce compared to the overall peroxisome population. Here, we show that HEX oligomers promote the differentiation of a subpopulation of peroxisomes, which become enlarged and highly active in matrix protein import. HEX physically associates with the essential matrix import peroxin, PEX26, and promotes its enrichment in the membrane of differentiated peroxisomes. In addition, a PEX26 mutant that disrupts differentiation produces increased numbers of aberrantly small Woronin bodies. Our data suggest a mechanism where HEX oligomers recruit a key component of the import machinery, which promotes the import of additional HEX. This type of positive feedback provides a basic mechanism for the production of an organelle subpopulation of distinct composition and abundance.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
25
|
Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K. New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:145-9. [PMID: 22079764 DOI: 10.1016/j.bbamcr.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 01/25/2023]
Abstract
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
26
|
Thoms S, Grønborg S, Rabenau J, Ohlenbusch A, Rosewich H, Gärtner J. Characterization of two common 5' polymorphisms in PEX1 and correlation to survival in PEX1 peroxisome biogenesis disorder patients. BMC MEDICAL GENETICS 2011; 12:109. [PMID: 21846392 PMCID: PMC3167756 DOI: 10.1186/1471-2350-12-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022]
Abstract
Background Mutations in PEX1 are the most common primary cause of Zellweger syndrome. In addition to exonic mutations, deletions and splice site mutations two 5' polymorphisms at c.-137 and c.-53 with a potential influence on PEX1 protein levels have been described in the 5' untranslated region (UTR) of the PEX1 gene. Methods We used RACE and in silico promoter prediction analysis to study the 5' UTR of PEX1. We determined the distribution of PEX1 5' polymorphisms in a cohort of 30 Zellweger syndrome patients by standard DNA sequencing. 5' polymorphisms were analysed in relation to the two most common mutations in PEX1 and were incorporated into a novel genotype-phenotype analysis by correlation of three classes of PEX1 mutations with patient survival. Results We provide evidence that the polymorphism 137 bp upstream of the ATG codon is not part of the UTR, rendering it a promoter polymorphism. We show that the first, but not the second most common PEX1 mutation arose independently of a specific upstream polymorphic constellation. By genotype-phenotype analysis we identified patients with identical exonic mutation and identical 5' polymorphisms, but strongly differing survival. Conclusions Our study suggests that two different types of PEX1 5' polymorphisms have to be distinguished: a 5' UTR polymorphism at position c.-53 and a promoter polymorphism 137 bp upstream of the PEX1 start codon. Our results indicate that the exonic PEX1 mutation correlates with patient survival, but the two 5' polymorphisms analysed in this study do not have to be considered for diagnostic and/or prognostic purposes.
Collapse
Affiliation(s)
- Sven Thoms
- Department of Pediatrics and Pediatric Neurology, University Medical Center, University of Göttingen, Robert Koch Str, 40, 37099 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Nashiro C, Kashiwagi A, Matsuzaki T, Tamura S, Fujiki Y. Recruiting mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on the peroxisomal membrane. Traffic 2011; 12:774-88. [PMID: 21362118 DOI: 10.1111/j.1600-0854.2011.01182.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A peroxisomal C-tail-anchored type-II membrane protein, Pex26p, recruits AAA ATPase Pex1p-Pex6p complexes to peroxisomes. We herein attempted to gain mechanistic insight into Pex26p function. Pex26pΔ33-40 truncated in amino-acid residues at 33-40 abolishes the recruiting of Pex1p-Pex6p complex to peroxisomes and fails to complement the impaired phenotype of pex26 CHO cell mutant ZP167, thereby suggesting that peroxisomal localization of Pex1p and Pex6p is indispensable for the transport of matrix proteins. In in vitro transport assay using semipermeabilized CHO cells, Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. This finding is confirmed by the assay using Walker-motif mutants. Transport of Pex1p and Pex6p is temperature-dependent. In vitro binding assays with glutathione-S-transferase-fused Pex26p, Pex1p and Pex6p bind to Pex26p in a manner dependent on ATP binding but not ATP hydrolysis. These results suggest that ATP hydrolysis is required for stable localization of Pex1p to peroxisomes, but not for binding to Pex26p. Moreover, Pex1p and Pex6p are altered to a more compact conformation upon binding to ATP, as verified by limited proteolysis. Taken together, Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by the ATPase cycle.
Collapse
Affiliation(s)
- Chika Nashiro
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
28
|
Thoms S, Grønborg S, Gärtner J. Organelle interplay in peroxisomal disorders. Trends Mol Med 2009; 15:293-302. [DOI: 10.1016/j.molmed.2009.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 11/17/2022]
|
29
|
Yik WY, Steinberg SJ, Moser AB, Moser HW, Hacia JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat 2009; 30:E467-80. [PMID: 19105186 DOI: 10.1002/humu.20932] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD-ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD-ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD-ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease-causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD-ZSS patients and interpreting the results from these genetic tests.
Collapse
Affiliation(s)
- Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
30
|
Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p involved in shuttling of the PTS1 receptor Pex5p in peroxisome biogenesis. Biochem Soc Trans 2008; 36:109-13. [DOI: 10.1042/bst0360109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The peroxisome is a single-membrane-bound organelle found in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient PBDs (peroxisome biogenesis disorders), such as Zellweger syndrome. Two AAA (ATPase associated with various cellular activities) peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for CG (complementation group) 1 and CG4 PBDs respectively. PEX26, which is responsible for CG8 PBDs, codes for Pex26p, the recruiter of Pex1p–Pex6p complexes to peroxisomes. We recently assigned the binding regions between human Pex1p and Pex6p and elucidated the pivotal roles that the AAA cassettes, D1 and D2 domains, play in Pex1p–Pex6p interaction and in peroxisome biogenesis. ATP binding to both AAA cassettes of Pex1p and Pex6p was a prerequisite for the Pex1p–Pex6p interaction and peroxisomal localization, but ATP hydrolysis by the D2 domains was not required. Pex1p exists in two distinct oligomeric forms, a homo-oligomer in the cytosol and a hetero-oligomer on peroxisome membranes, with these possibly having distinct functions in peroxisome biogenesis. AAA peroxins are involved in the export from peroxisomes of Pex5p, the PTS1 (peroxisome-targeting signal type 1) receptor.
Collapse
|
31
|
The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p. Biochem Soc Trans 2008; 36:99-104. [DOI: 10.1042/bst0360099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of the peroxisomal ATPase Pex1p triggered the beginning of the research on AAA (ATPase associated with various cellular activities) proteins and the genetic dissection of peroxisome biogenesis. Peroxisomes are virtually ubiquitous organelles, which are connected to diverse cellular functions. The highly diverse and adaptive character of peroxisomes is accomplished by modulation of their enzyme content, which is mediated by dynamically operating protein-import machineries. The import of matrix proteins into the peroxisomal lumen has been described as the ATP-consuming step, but the corresponding reaction, as well as the ATPase responsible, had been obscure for nearly 15 years. Recent work using yeast and human fibroblast cells has identified the peroxisomal AAA proteins Pex1p and Pex6p as mechano-enzymes and core components of a complex which dislocates the cycling import receptor Pex5p from the peroxisomal membrane back to the cytosol. This AAA-mediated process is regulated by the ubiquitination status of the receptor. Pex4p [Ubc10p (ubiquitin-conjugating enzyme 10)]-catalysed mono-ubiquitination of Pex5p primes the receptor for recycling, thereby enabling further rounds of matrix protein import, whereas Ubc4p-catalysed polyubiquitination targets Pex5p to proteasomal degradation.
Collapse
|
32
|
Hillebrand M, Verrier SE, Ohlenbusch A, Schäfer A, Söling HD, Wouters FS, Gärtner J. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3). J Biol Chem 2007; 282:26997-27005. [PMID: 17609205 DOI: 10.1074/jbc.m702122200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.
Collapse
Affiliation(s)
- Merle Hillebrand
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Sophie E Verrier
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Annika Schäfer
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Hans-Dieter Söling
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fred S Wouters
- Cell Biophysics Group, European Neuroscience Institute, Waldweg 33, 37073 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| |
Collapse
|
33
|
Thoms S, Erdmann R. Peroxisomal matrix protein receptor ubiquitination and recycling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1620-8. [PMID: 17028012 DOI: 10.1016/j.bbamcr.2006.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/15/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
The peroxisomal targeting signal type1 (PTS1) receptor Pex5 is required for the peroxisomal targeting of most matrix proteins. Pex5 recognises target proteins in the cytosol and directs them to the peroxisomal membrane where cargo is released into the matrix, and the receptor shuttles back to the cytosol. Recently, it has become evident that the membrane-bound Pex5 can be modified by mono- and polyubiquitination. This review summarises recent results on Pex5 ubiquitination and on the role of the AAA peroxins Pex1 and Pex6 as dislocases required for the release of Pex5 from the membrane to the cytosol where the receptor is either degraded by proteasomes or made available for another round of protein import into peroxisomes.
Collapse
Affiliation(s)
- Sven Thoms
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
34
|
Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R, Erdmann R, Rottensteiner H. Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 2006; 119:2508-17. [PMID: 16763195 DOI: 10.1242/jcs.02979] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tail-anchored proteins contain a single transmembrane domain (TMD) followed by a short C-terminal domain extending into the organellar lumen. Tail-anchored proteins are thought to target to the correct subcellular compartment by virtue of general physicochemical properties of their C-termini; however, the machineries that enable correct sorting remain largely elusive. Here we analyzed targeting of the human peroxisomal tail-anchored protein PEX26. Its C-terminal-targeting signal contains two binding sites for PEX19, the import receptor for several peroxisomal membrane proteins. One PEX19-binding site overlapped with the TMD, the other was contained within the luminal domain. Although the PEX19-binding site containing the TMD targeted to peroxisomes to some extent, the luminal site proved essential for correct targeting of the full-length protein, as it prevented PEX26 from mislocalization to mitochondria. Its function as a targeting motif was proved by its ability to insert a heterologous TMD-containing fragment into the peroxisomal membrane. Finally we show that PEX19 is essential for PEX26 import. Analysis of the yeast tail-anchored protein Pex15p revealed that it also harbors a luminal PEX19-binding site that acts as a peroxisomal-targeting motif. We conclude that C-terminal PEX19-binding sites mark tail-anchored proteins for delivery to peroxisomes.
Collapse
Affiliation(s)
- André Halbach
- Institut für Physiologische Chemie, Abt. Systembiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Tamura S, Yasutake S, Matsumoto N, Fujiki Y. Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. J Biol Chem 2006; 281:27693-704. [PMID: 16854980 DOI: 10.1074/jbc.m605159200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for peroxisome biogenesis disorders of complementation group 1 (CG1) and CG4, respectively. PEX26 responsible for peroxisome biogenesis disorders of CG8 encodes Pex26p, the recruiter of Pex1p.Pex6p complexes to peroxisomes. We herein assigned the binding regions between human Pex1p and Pex6p and elucidated pivotal roles of the AAA cassettes, called D1 and D2 domains, in Pex1p-Pex6p interaction and peroxisome biogenesis. ATP binding in both AAA cassettes but not ATP hydrolysis in D2 of both Pex1p and Pex6p was prerequisite for Pex1p-Pex6p interaction and their peroxisomal localization. The AAA cassettes, D1 and D2, were essential for peroxisome-restoring activity of Pex1p and Pex6p. In HEK293 cells, endogenous Pex1p was partly localized likely as a homo-oligomer in the cytoplasm, while Pex6p and Pex26p were predominantly localized on peroxisomes. Interaction of Pex1p with Pex6p conferred a conformational change and dissociation of the Pex1p oligomer. These results suggested that Pex1p possesses two distinct oligomeric forms, a homo-oligomer in the cytosol and a hetero-oligomer on peroxisome membranes, possibly playing distinct functions in peroxisome biogenesis.
Collapse
Affiliation(s)
- Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
37
|
Furuki S, Tamura S, Matsumoto N, Miyata N, Moser A, Moser HW, Fujiki Y. Mutations in the Peroxin Pex26p Responsible for Peroxisome Biogenesis Disorders of Complementation Group 8 Impair Its Stability, Peroxisomal Localization, and Interaction with the Pex1p·Pex6p Complex. J Biol Chem 2006; 281:1317-23. [PMID: 16257970 DOI: 10.1074/jbc.m510044200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are fatal autosomal recessive diseases and are caused by impaired peroxisome biogenesis. PBDs are genetically heterogeneous and classified into 13 complementation groups (CGs). CG8 is one of the most common groups and has three clinical phenotypes, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD). We recently isolated PEX26 as the pathogenic gene for PBD of CG8. Pex26p functions in recruiting to peroxisomes the complexes of the AAA ATPase peroxins, Pex1p and Pex6p. In the present work, we identified four distinct mutations in PEX26 from five patients of CG8 PBD including 2 with ZS and 3 with IRD, in addition to 7 mutant alleles in 8 patients in the first report describing the pathogenic PEX26 gene for CG8 PBD. Phenotype-genotype analyses revealed that temperature-sensitive (ts) peroxisome assembly gave rise to a milder IRD in contrast to the non-ts phenotype of the cells from ZS patients. Furthermore, we present several lines of evidence that show that the instability, insufficient binding to Pex1p x Pex6p complexes, or mislocalization of patient-derived Pex26p mutants is most likely responsible for the CG8 PBDs.
Collapse
Affiliation(s)
- Satomi Furuki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Krazy H, Michels PAM. Identification and characterization of three peroxins--PEX6, PEX10 and PEX12--involved in glycosome biogenesis in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1763:6-17. [PMID: 16388862 DOI: 10.1016/j.bbamcr.2005.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/05/2005] [Accepted: 11/07/2005] [Indexed: 12/14/2022]
Abstract
Protozoan Kinetoplastida such as the pathogenic trypanosomes compartmentalize several important metabolic systems, including the glycolytic pathway, in peroxisome-like organelles designated glycosomes. Genes for three proteins involved in glycosome biogenesis of Trypanosoma brucei were identified. A preliminary analysis of these proteins, the peroxins PEX6, PEX10 and PEX12, was performed. Cellular depletion of these peroxins by RNA interference affected growth of both mammalian bloodstream-form and insect-form (procyclic) trypanosomes. The bloodstream forms, which rely entirely on glycolysis for their ATP supply, were more rapidly killed. Both by immunofluorescence studies of intact procyclic T. brucei cells and subcellular fractionation experiments involving differential permeabilization of plasma and organellar membranes it was shown that RNAi-dependent knockdown of the expression of each of these peroxins resulted in the partial mis-localization of different types of glycosomal matrix enzymes to the cytoplasm: proteins with consensus motifs such as the C-terminal type 1 peroxisomal targeting signal PTS1 or the N-terminal signal PTS2 and a protein for which the sorting information is present in a polypeptide-internal fragment not containing an identifiable consensus sequence.
Collapse
Affiliation(s)
- Hanane Krazy
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | |
Collapse
|