1
|
Ryu H, Kinoshita K, Joo S, Choi YS, Kim SS. Increased urinary creatinine during hibernation and day roosting in the Eastern bent-winged bat (Miniopterus fuliginosus) in Korea. Commun Biol 2024; 7:42. [PMID: 38182741 PMCID: PMC10770030 DOI: 10.1038/s42003-023-05713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Torpor and arousal cycles, both daily and seasonal (e.g. hibernation), are crucial for small mammals, including bats, to maintain the energy and water balance. The alternation between torpor and arousal leads to metabolic changes, leaving traceable evidence of metabolic wastes in urine. In this study we investigated urinary creatinine and acetoacetate (a ketone body) in the Eastern bent-wing bat (Miniopterus fuliginosus) in Mungyeong, South Korea. We found an increase in urinary creatinine during torpor in summer, indicating changes in renal water reabsorption rates during the active season. Although we could not confirm ketonuria in hibernating bats due to a methodological limitation caused by the small amount of urine, we verified an increase in urinary creatinine concentration during hibernation. This finding suggests that managing water stress resulting from evaporative water loss is one of key reasons for arousal during hibernation in Eastern bent-wing bats.
Collapse
Affiliation(s)
- Heungjin Ryu
- Department of Social Informatics, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea
| | - Kodzue Kinoshita
- Graduate School of Asian and African Area Studies, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sungbae Joo
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea
| | - Yu-Seong Choi
- National Migratory Birds Center, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Sun-Sook Kim
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea.
| |
Collapse
|
2
|
Kocáb O, Bačovčinová M, Bokor B, Šebela M, Lenobel R, Schöner CR, Schöner MG, Pavlovič A. Enzyme activities in two sister-species of carnivorous pitcher plants (Nepenthes) with contrasting nutrient sequestration strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:113-121. [PMID: 33581619 DOI: 10.1016/j.plaphy.2021.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes usually attract, capture and digest arthropod prey to obtain mineral nutrients. But few members of the genus have evolved specialized nutrient sequestration strategies to acquire nitrogen from the faeces and urine of mutualistic mammals, which they attract. Because the plants obtain significant amounts of nitrogen in a more available form, we hypothesized that they have relaxed the production of digestive enzymes. If so, species that digest mammal faeces should show fewer digestive enzymes than closely related species that rely on arthropods. We tested this hypothesis by comparing digestive enzymes in 1) Nepenthes hemsleyana, whose pitchers serve as roosts for the mutualistic woolly bat Kerivoula hardwickii, which also defecate inside the pitchers, and 2) the close relative Nepenthes rafflesiana, a typical arthropod capturing species. To investigate the dynamics of aspartic proteases (nepenthesin I and II) and type III and IV chitinases in both species, we conducted qPCR, western blotting, mass spectrometry, and enzyme activity measurements. We found that mRNA in pitcher tissue and enzyme abundance in the digestive fluid is upregulated in both species in response to faeces and insect feeding. Contrary to our initial hypothesis, the final nepenthesin proteolytic activity in the digestive fluid is higher in response to faeces addition than to insect prey irrespective of Nepenthes species. This indicates that faeces can mimic arthropod prey triggering the production of digestive enzymes and N. hemsleyana retained capacity for production of them.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Bačovčinová
- Department of Botany, Institute of Biology and Ecology, Šafárik University, Mánesova 23, SK-040 01, Košice, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská Dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Rodríguez-Peña N, Stoner KE, Ayala-Berdon J, Flores-Ortiz CM, Duran A, Schondube JE. Nitrogen and amino acids in nectar modify food selection of nectarivorous bats. J Anim Ecol 2013; 82:1106-15. [DOI: 10.1111/1365-2656.12069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 02/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Jorge Ayala-Berdon
- Centro de Investigaciones en Ecosistemas; Universidad Nacional Autónoma de México; Apartado Postal 27-3 (Xangari); Morelia; 58189; México
| | - Cesar M. Flores-Ortiz
- Laboratorio de Fisiología Vegetal; UBIPRO; Facultad de Estudios Superiores Iztacala; UNAM; Mexico City; México
| | - Angel Duran
- Departamento de Matemáticas; Facultad de Estudios Superiores Iztacala; UNAM; Mexico City; México
| | - Jorge E. Schondube
- Centro de Investigaciones en Ecosistemas; Universidad Nacional Autónoma de México; Apartado Postal 27-3 (Xangari); Morelia; 58189; México
| |
Collapse
|
4
|
Herrera LG, Osorio J, Mancina CA. Ammonotely in a neotropical frugivorous bat as energy intake decreases. J Exp Biol 2011; 214:3775-81. [PMID: 22031742 DOI: 10.1242/jeb.059089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We tested the role of increased ammonia in urine as an energy- and/or nitrogen (N)-saving mechanism in the great fruit-eating bat Artibeus lituratus (Phyllostomidae). We compared N excretion in two groups of bats fed energy-rich (2.75 kJ g(-1) wet mass) or energy-poor diets (0.7 kJ g(-1) wet mass). Within each diet, bats were assigned to different N contents. In order to function as an energy-saving mechanism, ammonia production should increase with decreasing energy intake. To function as an N-saving mechanism, ammonia production should increase with decreasing N intake. Because we varied both diet energy density and N content, our study design allowed us to test these two possibilities simultaneously. Bats had higher food intake rate and, consequently, higher N intake rate on the energy-poor diet, but energy intake rate was lower. Most bats on the energy-rich diet were ureotelic whereas on the energy-poor diet bats were ureotelic, ammonotelic or ureo-ammonotelic. Bats fed the energy-poor diet had a higher excretion rate of ammonia and a higher percent of N excreted as ammonia. Percent N ammonia and ammonia excretion rate were inversely related to energy intake, but they were not related to N intake. By favoring ammonia production over urea, bats on the energy-poor diet may save up to 1% of their basal metabolic rate. Consumption of energy-dilute fruits by fruit bats might affect the way in which N wastes are excreted, favoring the excretion of ammonia N when food intake is accompanied by the ingestion of large volumes of water.
Collapse
Affiliation(s)
- L Gerardo Herrera
- Estación de Biología de Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, Jalisco 48980, México.
| | | | | |
Collapse
|
5
|
Voigt CC, Zubaid A, Kunz TH, Kingston T. Sources of Assimilated Proteins in Old and New World Phytophagous Bats. Biotropica 2010. [DOI: 10.1111/j.1744-7429.2010.00632.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Welch KC, Herrera M. LG, Suarez RK. Dietary sugar as a direct fuel for flight in the nectarivorous bat Glossophaga soricina. J Exp Biol 2008; 211:310-6. [DOI: 10.1242/jeb.012252] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
It is thought that the capacity of mammals to directly supply the energetic needs of exercising muscles using recently ingested fuels is limited. Humans,for example, can only fuel about 30%, at most, of exercise metabolism with dietary sugar. Using indirect calorimetry, i.e. measurement of rates of O2 consumption and CO2 production, in combination with carbon stable isotope techniques, we found that nectarivorous bats Glossophaga soricina use recently ingested sugars to provide ∼78%of the fuel required for oxidative metabolism during their energetically expensive hovering flight. Among vertebrate animals, only hummingbirds exceed the capacity of these nectarivorous bats to fuel exercise with dietary sucrose. Similar experiments performed on Anna's (Calypte anna) and rufous (Selasphorus rufus) hummingbirds show that they use recently ingested sugars to support ∼95% of hovering metabolism. These results support the suggestion that convergent evolution of physiological and biochemical traits has occurred among hovering nectarivorous animals,rendering them capable of a process analogous to aerial refueling in aircraft.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Ecology, Evolution and Marine Biology, University of California,Santa Barbara, CA 93106-9610, USA
| | - L. Gerardo Herrera M.
- Estación de Biología de Chamela, Instituto de Biología,Universidad Nacional Autónoma de México, Apartado Postal 21,48980, San Patricio, Jalisco, México
| | - Raul K. Suarez
- Department of Ecology, Evolution and Marine Biology, University of California,Santa Barbara, CA 93106-9610, USA
| |
Collapse
|
7
|
Lee SML, Wong WP, Loong AM, Hiong KC, Chew SF, Ip YK. Postprandial increases in nitrogenous excretion and urea synthesis in the Chinese soft-shelled turtle, Pelodiscus sinensis. J Comp Physiol B 2006; 177:19-29. [PMID: 16838133 DOI: 10.1007/s00360-006-0105-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 06/06/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the aquatic Chinese soft-shelled turtle, Pelodiscus sinensis, with a special emphasis on the role of urea synthesis in ammonia detoxification. P. sinensis is ureogenic and possesses a full complement of ornithine-urea cycle enzymes in its liver. It is primarily ureotelic in water, and the estimated rate of urea synthesis in unfed animals was equivalent to only 1.5% of the maximal capacity of carbamoyl phosphate synthetase I (CPS I) in its liver. Approximately 72 h was required for P. sinensis to completely digest a meal of prawn meat. During this period, there were significant increases in ammonia contents in the stomach at hour 24 and in the intestine between hours 12 and 36, which could be a result of bacterial activities in the intestinal tract. However, ammonia contents in the liver, muscle, brain and plasma remained unchanged throughout the 72-h post-feeding. In contrast, at hour 24, urea contents in the stomach, intestine, liver, muscle, brain and plasma increased significantly by 2.9-, 3.5-, 2.6-, 2.9-, 3.4 and 3.0-fold, respectively. In addition, there was a 3.3- to 8.0-fold increase in the urea excretion rate between hours 0 and 36 post-feeding, which preceded the increase in ammonia excretion between hours 12 and 48. By hour 48, 68% of the assimilated N from the feed was excreted, 54% of which was excreted as urea-N. The rate of urea synthesis apparently increased sevenfold during the initial 24 h after feeding, which demanded only 10% of the maximal CPS I capacity in P. sinensis. The postprandial detoxification of ammonia to urea in P. sinensis effectively prevented postprandial surges in ammonia contents in the plasma and other tissues, as observed in other animals, during the 72-h period post-feeding. In addition, postprandial ammonia toxicity was ameliorated by increased transamination and synthesis of certain amino acids in the liver and muscle of P. sinensis. After feeding, a slight but significant increase in the glutamine content occurred in the brain at hour 24, indicating that the brain might experience a transient increase in ammonia and ammonia was detoxified to glutamine.
Collapse
Affiliation(s)
- Serene M L Lee
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | | | | | | | | | | |
Collapse
|