1
|
Li H, Chapla D, Amos RA, Ramiah A, Moremen KW, Li H. Structural basis for heparan sulfate co-polymerase action by the EXT1-2 complex. Nat Chem Biol 2023; 19:565-574. [PMID: 36593275 PMCID: PMC10160006 DOI: 10.1038/s41589-022-01220-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023]
Abstract
Heparan sulfate (HS) proteoglycans are extended (-GlcAβ1,4GlcNAcα1,4-)n co-polymers containing decorations of sulfation and epimerization that are linked to cell surface and extracellular matrix proteins. In mammals, HS repeat units are extended by an obligate heterocomplex of two exostosin family members, EXT1 and EXT2, where each protein monomer contains distinct GT47 (GT-B fold) and GT64 (GT-A fold) glycosyltransferase domains. In this study, we generated human EXT1-EXT2 (EXT1-2) as a functional heterocomplex and determined its structure in the presence of bound donor and acceptor substrates. Structural data and enzyme activity of catalytic site mutants demonstrate that only two of the four glycosyltransferase domains are major contributors to co-polymer syntheses: the EXT1 GT-B fold β1,4GlcA transferase domain and the EXT2 GT-A fold α1,4GlcNAc transferase domain. The two catalytic sites are over 90 Å apart, indicating that HS is synthesized by a dissociative process that involves a single catalytic site on each monomer.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert A Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
2
|
Wessel LE, Goldfarb CA, Vuillermin C, Hutchinson DT, Bohn D, Steinman S, Wall LB. The Impact of Isolated Versus Multiple Osteochondromas: Analysis of the CoULD Registry. J Pediatr Orthop 2022; 42:387-392. [PMID: 35749762 DOI: 10.1097/bpo.0000000000002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The burden of upper extremity (UE) osteochondromas on function and self-perception among pediatric patients is unclear. The purpose of our study was to study the impact of osteochondromas in comparison to population norms and to evaluate solitary versus multiple osteochondromas on subjective UE function as measured by patient rated outcomes. METHODS We utilized the CoULD (Congenital Upper Limb Differences) Registry to review all pediatric patients presenting with osteochondromas between January 2014 and February 2021. Demographic information was collected and patients were classified as having either single or multiple osteochondromas. Patient-Reported Outcome Measurement Information System (PROMIS) and Pediatric Outcomes Data Collection Instrument (PODCI) tools were utilized for assessment. Scores for PODCI subscales of UE function, Pain/comfort, and Happiness and PROMIS domains of UE Function, Pain, Depression, Anxiety, and Peer Relations were reviewed. Differences between groups were analyzed using the Student t test. RESULTS Ninety-nine patients met inclusion criteria for the study with an average age of presentation of 9.3 years and 61 patients (62%) were male. Overall, patients demonstrated worse UE Function as well as greater Anxiety and Depression in comparison to the population normals on PROMIS assessment. Patients also demonstrated worse patient and parent reported PODCI UE, Sports and Physical Functioning, Pain/Comfort and Global Functioning scores compared with population norms but demonstrated better than average happiness scores. Patients with multiple osteochondromas demonstrated greater PROMIS pain interference and more disability in PODCI Sports and Physical Functioning, Pain/Comfort and Global Functioning compared with those with solitary osteochondromas. CONCLUSION Patients with UE osteochondromas have worse overall function in comparison to population norms, exceeding established minimally clinically important difference values. In addition, patients with multiple osteochondromas reported more pain and poorer physical function than those with solitary osteochondromas. Physicians should be alert to the physical and psychosocial burden of this disease. LEVEL OF EVIDENCE Level II-prognostic.
Collapse
Affiliation(s)
- Lauren E Wessel
- Department of Orthopedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Charles A Goldfarb
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Carley Vuillermin
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA
| | | | - Deborah Bohn
- Department of Orthopedics, Gillette Children's Specialty Healthcare, Saint Paul, MN
| | - Suzanne Steinman
- Department of Orthopedic Surgery, Seattle Children's Hospital, Seattle, WA
| | - Lindley B Wall
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
4
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
5
|
Tong Y, Zhang Y, Luo J, Hong Z, Chen X, Bi Q. Identification of Novel Mutations in the EXT1 and EXT2 Genes of Chinese Patients with Hereditary Multiple Osteochondromas. Genet Test Mol Biomarkers 2021; 25:145-151. [PMID: 33596140 DOI: 10.1089/gtmb.2020.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: To detect mutations in the EXT1 and EXT2 genes in four Chinese families with hereditary multiple osteochondromas (HMO). HMO is an autosomal dominant disorder characterized by the overgrowth of multiple cartilage-capped bones in the metaphysis of long bones and flat bones. Methods: Polymerase chain reaction-based amplification followed by DNA sequencing of the complete coding sequences of EXT1 and EXT2 was performed for four Chinese families with HMO. Results: The mutant allele was found in six patients: three mutations were found in EXT1 and two in EXT2. A novel frameshift mutation, which generates a premature stop codon at codon 586 and causes partial loss of the glycosyltransferase domain, was detected in exon 9 of EXT1 (F579Yfs*8). We hypothesize that F579Yfs*8 is a pathogenic mutation. Two novel missense mutations (G339S and V545D) were found in EXT1. The variant c.1634T>A (V545D) is apparently benign. In addition we found a novel deletion mutation in EXT2, c.856_864 del TTCCTCCTG, which results in the deletion of 286Phe, 287Leu, and 288Leu, that is likely pathogenic. Finally, we identified a likely benign variant in exon 13 of EXT2. c.2035-41T>C (rs3740878). Conclusions: We found three novel, potentially pathogenic mutations in EXT1 and EXT2, including a novel frameshift mutation. More importantly, our study results have expanded the spectrum of EXT mutations conducive to the genetic diagnosis and counseling of patients with HMO.
Collapse
Affiliation(s)
- Yu Tong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Junchao Luo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheping Hong
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xinji Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qing Bi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Al-Zayed Z, Al-Rijjal RA, Al-Ghofaili L, BinEssa HA, Pant R, Alrabiah A, Al-Hussainan T, Zou M, Meyer BF, Shi Y. Mutation spectrum of EXT1 and EXT2 in the Saudi patients with hereditary multiple exostoses. Orphanet J Rare Dis 2021; 16:100. [PMID: 33632255 PMCID: PMC7905910 DOI: 10.1186/s13023-021-01738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hereditary Multiple Exostoses (HME), also known as Multiple Osteochondromas (MO) is a rare genetic disorder characterized by multiple benign cartilaginous bone tumors, which are caused by mutations in the genes for exostosin glycosyltransferase 1 (EXT1) and exostosin glycosyltransferase 2 (EXT2). The genetic defects have not been studied in the Saudi patients. AIM OF STUDY We investigated mutation spectrum of EXT1 and EXT2 in 22 patients from 17 unrelated families. METHODS Genomic DNA was extracted from peripheral leucocytes. The coding regions and intron-exon boundaries of both EXT1 and EXT2 genes were screened for mutations by PCR-sequencing analysis. Gross deletions were analyzed by MLPA analysis. RESULTS EXT1 mutations were detected in 6 families (35%) and 3 were novel mutations: c.739G > T (p. E247*), c.1319delG (p.R440Lfs*4), and c.1786delA (p.S596Afs*25). EXT2 mutations were detected in 7 families (41%) and 3 were novel mutations: c.541delG (p.D181Ifs*89), c.583delG (p.G195Vfs*75), and a gross deletion of approximately 10 kb including promoter and exon 1. Five patients from different families had no family history and carried de novo mutations (29%, 5/17). No EXT1 and EXT2 mutations were found in the remaining four families. In total, EXT1 and EXT2 mutations were found in 77% (13/17) of Saudi HME patients. CONCLUSION EXT1 and EXT2 mutations contribute significantly to the pathogenesis of HME in the Saudi population. In contrast to high mutation rate in EXT 1 (65%) and low mutation rate in EXT2 (25%) in other populations, the frequency of EXT2 mutations are much higher (41%) and comparable to that of EXT1 among Saudi patients. De novo mutations are also common and the six novel EXT1/EXT2 mutations further expands the mutation spectrum of HME.
Collapse
Affiliation(s)
- Zayed Al-Zayed
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | | | - Huda A BinEssa
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rajeev Pant
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anwar Alrabiah
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Thamer Al-Hussainan
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Minjing Zou
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
7
|
Marzin P, Cormier-Daire V. New perspectives on the treatment of skeletal dysplasia. Ther Adv Endocrinol Metab 2020; 11:2042018820904016. [PMID: 32166011 PMCID: PMC7054735 DOI: 10.1177/2042018820904016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
The last few decades have been marked by the identification of numerous genes implicated in genetic disorders, helping in the elucidation of the underlying pathophysiology of these conditions. This has allowed new therapeutic approaches to emerge such as cellular therapy, gene therapy, or pharmacological therapy for various conditions. Skeletal dysplasias are good models to illustrate these scientific advances. Indeed, several therapeutic strategies are currently being investigated in osteogenesis imperfecta; there are ongoing clinical trials based on pharmacological approaches, targeting signaling pathways in achondroplasia and fibrodysplasia ossificans progressiva or the endoplasmic reticulum stress in metaphyseal dysplasia type Schmid or pseudoachondroplasia. Moreover, the treatment of hypophosphatasia or Morquio A disease illustrates the efficacy of enzyme drug replacement. To provide a highly specialized multidisciplinary approach, these treatments are managed by reference centers. The emergence of treatments in skeletal dysplasia provides new perspectives on the prognosis of these severe conditions and may change prenatal counseling in these diseases over the coming years.
Collapse
Affiliation(s)
- Pauline Marzin
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, Paris, France
| | - Valérie Cormier-Daire
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, 149 rue de sevres, Paris, 75015, France
| |
Collapse
|
8
|
Ahn YS, Woo SH, Kang SJ, Jung ST. Coronal malalignment of lower legs depending on the locations of the exostoses in patients with multiple hereditary exostoses. BMC Musculoskelet Disord 2019; 20:564. [PMID: 31766997 PMCID: PMC6878674 DOI: 10.1186/s12891-019-2912-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 10/24/2019] [Indexed: 11/11/2022] Open
Abstract
Backgrounds Though malalignment of lower legs is a common pathologic phenomenon in multiple hereditary exostoses (MHE), relationship between locations of exostoses and malalignment of lower legs remains unclear. This study examined radiographs of MHE patients in an attempt to evaluate the tendency of coronal malalignment of lower legs with different location of exostoses on lower legs consisting of two parallel long bones. Methods Between 2000 and 2017, we retrospectively reviewed the anteroposterior films of the teleo-roentgenographics of 63 patients with MHE. The patients were classified into four different groups depending on the locations of the exostosis, which occurred on both proximal and distal tibiofibular joints (A), proximal tibiofibular joint (B), distal tibiofibular joint (C), and not for the tibiofibular joint area (D). To evaluate the influence of the location of exostoses on coronal malalignment of lower legs, medial proximal tibia angle (MPTA), lateral distal tibia angle (LDTA), and fibular shortening were analyzed for each group. Results Significant difference was observed in multiple comparative analyses for each of the four groups. On MPTA radiologic analysis, group A showed greatest value with significant difference compared with groups C and D (vs. (B): p = 0.215; vs. distal joints (C): p = 0.004; vs. (D): p = 0.001). Group B showed significant difference only with group D (vs. distal joints (C): p = 0.388; vs. (D): p = 0.002), but for group C and D showed no significant difference. For LDTA, only group A showed significant difference compared to other groups (p < 0.001). With regard to tibiofibular ratio for evaluation of fibular shortening, group A showed the lowest ratio (vs. (B): p = 0.004; vs. (C): p = 0.655; vs. (D): p < 0.001). Group C also presented the significant lower ratio than group D (p = 0.002). Conclusions For evaluation of the coronal malalignment of lower legs in MHE patients, not only ankle around the distal tibiofibular joint but also proximal tibiofibular joint should be examined, in that, lower limb deformity occurred by two parallel long bone which has self-contained joint. Level of evidence Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Yeong Seub Ahn
- Department of Orthopedic Surgery, Chonnam National University Hospital, 42 Jebongro, Donggu, Gwangju, 501-757, Republic of Korea
| | - Seong Hwan Woo
- Department of Orthopedic Surgery, Chonnam National University Hospital, 42 Jebongro, Donggu, Gwangju, 501-757, Republic of Korea
| | - Sung Ju Kang
- Department of Orthopedic Surgery, Chonnam National University Hospital, 42 Jebongro, Donggu, Gwangju, 501-757, Republic of Korea
| | - Sung Taek Jung
- Department of Orthopedic Surgery, Chonnam National University Hospital, 42 Jebongro, Donggu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
9
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Oliver GR, Tang X, Schultz-Rogers LE, Vidal-Folch N, Jenkinson WG, Schwab TL, Gaonkar K, Cousin MA, Nair A, Basu S, Chanana P, Oglesbee D, Klee EW. A tailored approach to fusion transcript identification increases diagnosis of rare inherited disease. PLoS One 2019; 14:e0223337. [PMID: 31577830 PMCID: PMC6774566 DOI: 10.1371/journal.pone.0223337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression. To-date however, no study has systematically assessed the presence of gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identified in cancer studies and are increasingly recognized as having diagnostic, prognostic or therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of developmental and neurological phenotypes, and thus, systematic application of fusion detection to germline conditions may further increase diagnostic rates. However, current fusion detection methods are unsuited to the investigation of germline disease due to performance biases arising from their development using tumor, cell-line or in-silico data. METHODS We describe a tailored approach to fusion candidate identification and prioritization in a cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and instead, prioritize candidates using a custom workflow that integrates genomic and transcriptomic sequence alignment, biological and technical annotations, customized categorization logic, and phenotypic prioritization. RESULTS We demonstrate that our approach to fusion transcript identification and prioritization detects genuine fusion events excluded by standard analyses and efficiently removes phenotypically unimportant candidates and false positive events, resulting in a reduced candidate list enriched for events with potential phenotypic relevance. We describe the successful genetic resolution of two previously undiagnosed disease cases through the detection of pathogenic fusion transcripts. Furthermore, we report the experimental validation of five additional cases of fusion transcripts with potential phenotypic relevance. CONCLUSIONS The approach we describe can be implemented to enable the detection of phenotypically relevant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has the potential to increase diagnostic rates in rare inherited disease and should be included in RNA-based analytical pipelines aimed at genetic diagnosis.
Collapse
Affiliation(s)
- Gavin R. Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura E. Schultz-Rogers
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - W. Garrett Jenkinson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Krutika Gaonkar
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Margot A. Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Asha Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shubham Basu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pritha Chanana
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yang A, Kim J, Jang JH, Lee C, Lee JE, Cho SY, Jin DK. Identification of a novel mutation in EXT2 in a fourth-generation Korean family with multiple osteochondromas and overview of mutation spectrum. Ann Hum Genet 2019; 83:160-170. [PMID: 30730578 DOI: 10.1111/ahg.12298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 12/01/2022]
Abstract
Multiple osteochondromas (MOs) or hereditary multiple exostoses is a rare autosomal-dominant disease characterized by growths of MOs, which are benign cartilage-capped bone tumors that grow away from the growth plates. Almost 90% of MOs have a molecular explanation and 10% are unexplained. MOs are genetically heterogeneous with two causal genes on 8q24.11 (EXT1) and 11p12 (EXT2), with a higher frequency in EXT1. MO is a very rare genetic disorder, and the genotype-phenotype of MO with EXT2 mutation has not been well investigated in Korea. We present the clinical radiographic and molecular analysis of a four-generation Korean family with 11 MO-affected members (seven males and four females). The affected members from the third generation available for molecular analysis and their detailed medical histories showed moderate-to-severe phenotypes (clinical classes II-III), including bony deformities and limb misalignment with pain requiring surgical correction. The x-rays showed MOs in multiple sites. A novel EXT2 frameshift mutation (c.590delC, p.P197Qfs*73) was revealed by targeted exome sequencing in the affected members of this family. In this article, we not only expand the phenotypic-genotypic spectrum of MOs but also highlight the phenotypic heterogeneity in a family with the same mutation. In addition, we compiled the mutation spectrum of EXT2 from a literature review and identified that exon 2 of EXT2 is a mutation hot spot. Early medical attention with diagnosis of MO through careful examination of the clinical manifestations and genetic analysis can provide the opportunity to establish coordinated multispecialty management of the patient.
Collapse
Affiliation(s)
- Aram Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Green Cross Genome, Yongin-si, Republic of Korea
| | - Chung Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Pediatrics, Inha University Hospital, Inha University Graduate School of Medicine, Incheon, Republic of Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Oliver GR, Blackburn PR, Ellingson MS, Conboy E, Pinto E Vairo F, Webley M, Thorland E, Ferber M, Van Hul E, van der Werf IM, Wuyts W, Babovic-Vuksanovic D, Klee EW. RNA-Seq detects a SAMD12-EXT1 fusion transcript and leads to the discovery of an EXT1 deletion in a child with multiple osteochondromas. Mol Genet Genomic Med 2019; 7:e00560. [PMID: 30632316 PMCID: PMC6418362 DOI: 10.1002/mgg3.560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Background We describe a patient presenting with pachygyria, epilepsy, developmental delay, short stature, failure to thrive, facial dysmorphisms, and multiple osteochondromas. Methods The patient underwent extensive genetic testing and analysis in an attempt to diagnose the cause of his condition. Clinical testing included metaphase karyotyping, array comparative genomic hybridization, direct sequencing and multiplex ligation‐dependent probe amplification and trio‐based exome sequencing. Subsequently, research‐based whole transcriptome sequencing was conducted to determine whether it might shed light on the undiagnosed phenotype. Results Clinical exome sequencing of patient and parent samples revealed a maternally inherited splice‐site variant in the doublecortin (DCX) gene that was classified as likely pathogenic and diagnostic of the patient's neurological phenotype. Clinical array comparative genome hybridization analysis revealed a 16p13.3 deletion that could not be linked to the patient phenotype based on affected genes. Further clinical testing to determine the cause of the patient's multiple osteochondromas was unrevealing despite extensive profiling of the most likely causative genes, EXT1 and EXT2, including mutation screening by direct sequence analysis and multiplex ligation‐dependent probe amplification. Whole transcriptome sequencing identified a SAMD12‐EXT1 fusion transcript that could have resulted from a chromosomal deletion, leading to the loss of EXT1 function. Re‐review of the clinical array comparative genomic hybridization results indicated a possible unreported mosaic deletion affecting the SAMD12 and EXT1 genes that corresponded precisely to the introns predicted to be affected by a fusion‐causing deletion. The existence of the mosaic deletion was subsequently confirmed clinically by an increased density copy number array and orthogonal methodologies Conclusions While mosaic mutations and deletions of EXT1 and EXT2 have been reported in the context of multiple osteochondromas, to our knowledge, this is the first time that transcriptomics technologies have been used to diagnose a patient via fusion transcript analysis in the congenital disease setting.
Collapse
Affiliation(s)
- Gavin R Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Marissa S Ellingson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Erin Conboy
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Filippo Pinto E Vairo
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew Webley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Erik Thorland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew Ferber
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Els Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ilse M van der Werf
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
14
|
Santos SCL, Rizzo IMPO, Takata RI, Speck‐Martins CE, Brum JM, Sollaci C. Analysis of mutations in EXT1 and EXT2 in Brazilian patients with multiple osteochondromas. Mol Genet Genomic Med 2018. [PMID: 29529714 PMCID: PMC6014457 DOI: 10.1002/mgg3.382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Multiple osteochondromas is a dysplasia characterized by growth of two or more osteochondromas. It is genetically heterogeneous, caused by pathogenic variants in EXT1 or EXT2 genes in 70%–90% of patients. The EXT1 is more often mutated than EXT2 gene, with a variable prevalence between populations. There are no data about EXT1 and EXT2 pathogenic variants in patients with multiple osteochondromas in Brazilian population. The aim of this survey is to characterize these to determine the genotype profile of this population. Methods DNA sequencing (Sanger Method) and MLPA analysis were performed to identify point mutations and deletions/duplications in the sample of 153 patients in 114 families. Results Germline variants were identified in 83% of families in which EXT2 variants were detected in 46% and EXT1 in 37% of cases. No variants were detected in 17% of them. We identified 50 different variants, 33 (13 frameshift, 11 nonsense, 5 missense, 2 splice site mutation, and 2 large deletions) in EXT1 and 17 (6 frameshift, 6 splice site mutation, 3 nonsense, 1 missense, and 1 large deletion) in EXT2. Of all 50 variants, 31 (62%) were novel, including 20 out of 33 (60,6%) EXT1 and 11 out of 17 (64.7%) EXT2 alleles. The vast majority of variants (88%) were “loss‐of‐function” and two novel hotspots in EXT2 gene were observed in our study. Conclusion The prevalence of variants detected in the EXT2 gene differs from other researches from Latin America, European, and Asian population. This uncommon prevalence could be related with the newly characterized variant hotspot sites detected in EXT2 gene (p.Ala409Profs*26 and p.Ser290*). A high number of novel variants were also identified indicating that Brazilian population has a unique genetic profile. Characterizing this population and establishing its genotype is essential to understand the molecular pathogenesis of this disease in Brazil.
Collapse
Affiliation(s)
- Savana C. L. Santos
- Molecular Pathology LaboratorySARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | | | - Reinaldo I. Takata
- Molecular Pathology LaboratorySARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | | | - Jaime M. Brum
- Department of Clinical GeneticsSARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| | - Claudio Sollaci
- Department of OrthopaedicsSARAH Network of Rehabilitation HospitalsBrasíliaBrazil
| |
Collapse
|
15
|
Xu Y, Kang Q, Zhang Z. Identification of mutations in EXT1 and EXT2 genes in six Chinese families with multiple osteochondromas. Mol Med Rep 2017; 16:5599-5605. [PMID: 28849184 DOI: 10.3892/mmr.2017.7252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify mutations of major causative genes in six unrelated Chinese families with multiple osteochondromas (MO). Radiographic examinations and genetic analyses were performed in 8 patients exhibiting typical features of MO. Analysis was also performed on unaffected members of the six families and 250 healthy volunteers. Radiographies of the patients revealed multiple exostoses in the cartilage of long bones. A total of five different mutations were identified, one in exostosin‑1 (EXT1) and four in exostosin‑2 (EXT2). Two novel mutations were detected in EXT2: A missense mutation, c.1385G>A, in exon 8, resulting in p.Trp462X; and a splice site mutation, c.725+1G>C, which consisted of a heterozygous guanine‑to‑cytosine transition at nucleotide 725+1 in intron 3. Three common EXT mutations were also detected: c.1036C>T in exon 5 of EXT2 resulting in p.Gln346X; c.1299C>A in exon 8 of EXT2 resulting in p.Phe433Leu; and c.1038A>T in exon 2 of EXT1 resulting in p.Arg346Ser. In conclusion, the present study identified a novel missense mutation (c.1385G>A) in exon 8 and a splicing mutation (c.725+1G>C) in intron 3 of the EXT2 gene, which are responsible for MO in certain Chinese patients. The findings are useful for expanding the database of known EXT2 mutations and understanding the genetic basis of MO in Chinese patients, which may improve genetic counseling and the prenatal diagnosis of MO.
Collapse
Affiliation(s)
- Yang Xu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
16
|
Zoboski RJ. Osteochondroma and Spinal Cord Compression in a Patient With Hereditary Multiple Exostoses: A Case Report. J Chiropr Med 2017; 16:72-77. [PMID: 28228700 PMCID: PMC5310950 DOI: 10.1016/j.jcm.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The purpose of this report was to describe the presentation of a patient with hereditary multiple exostoses and thoracic spinal cord compression from an osteochondroma. CLINICAL FEATURES A 31-year-old female presented to a chiropractic clinic with a history of hereditary multiple exostoses and back pain that had existed since the age of 16 years. She had a past medical history that was remarkable for 3 prior surgeries for mass removal. Examination revealed a left upper midscapular mass with decreased sensation. INTERVENTION/OUTCOME Magnetic resonance imaging, computed tomography, and biopsy led to a diagnosis of osteochondroma. These diagnostic modalities confirmed that there was no malignant degeneration. Initial magnetic resonance imaging revealed a large expansive lesion involving the left posterior elements at the region of T3-T4. Subsequent thoracic hemilaminectomy and resection of the spinal tumor with posterior instrumentation and stabilization from T2-T5 resulted in 90% overall subjective improvement. CONCLUSIONS A detailed case history, thorough examination, guided advanced imaging, and biopsy provide important information for the diagnosis and appropriate treatment of expansive lesions in patients with hereditary multiple exostoses.
Collapse
|
17
|
Akbaroghli S, Balali M, Kamalidehghan B, Saber S, Aryani O, Meng GY, Houshmand M. Identification of a new mutation in an Iranian family with hereditary multiple osteochondromas. Ther Clin Risk Manag 2017; 13:15-19. [PMID: 28053536 PMCID: PMC5189706 DOI: 10.2147/tcrm.s111717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hereditary multiple osteochondromas (HMO), previously named hereditary multiple exostoses (HME), is an autosomal dominant skeletal disorder characterized by the growth of multiple osteochondromas and is associated with bony deformity, skeletal growth reduction, nerve compression, restriction of joint motion, and premature osteoarthrosis. HMO is genetically heterogeneous, localized on at least three chromosomal loci including 8q24.1 (EXT1), 11p11-p13 (EXT2), and 19p (EXT3). The median age of diagnosis is 3 years; almost all affected individuals are diagnosed by age 12. The risk for malignant degeneration to osteochondrosarcoma increases with age, although the lifetime risk of malignant degeneration is low (~1%). METHODS AND RESULTS This study was performed on an Iranian family with nine affected individuals from three consecutive generations. Here, the proband was an affected woman who received genetic counseling prior to pregnancy. All exons of the three genes were examined in the proband using polymerase chain reaction and sequencing methods (the last member of this family is a male with severe deformities and lesions, especially around his large joints). Exon 4 of EXT1 (c.1235 G>A) was changed in affected individuals. This mutation alters tryptophan to a premature stop codon on amino acid position 412 (p.Trp412x). CONCLUSION The outcome of this study has extended the genotypic spectrum of Iranian patients with HMO, revealing a way for improving detection and genetic counseling in carriers.
Collapse
Affiliation(s)
- Susan Akbaroghli
- Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences
| | - Maryam Balali
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS)
| | - Behnam Kamalidehghan
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences; Medical Genetics Department, National Institute for Genetic Engineering and Biotechnology
| | - Siamak Saber
- Medical Genetics Department, National Institute for Genetic Engineering and Biotechnology
| | - Omid Aryani
- Department of Neuroscience, Iran Medical University, Tehran, Iran
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Massoud Houshmand
- Medical Genetics Department, National Institute for Genetic Engineering and Biotechnology
| |
Collapse
|
18
|
Al Kaissi A, Ben Ghachem M, Ben Chehida F, Hofstaetter JG, Grill F, Ganger R, Kircher SG. Can Multiple Hereditary Exostoses Overlap With Mesomelic Dysplasia? J Clin Med Res 2016; 8:605-9. [PMID: 27429682 PMCID: PMC4931807 DOI: 10.14740/jocmr2593w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background We studied an unusual combination of severe short stature, mesomelia (Leri-Weill dyschondrosteosis syndrome), and multiple exostosis in several family subjects over three generations. The pattern of inheritance was compatible with autosomal dominant. Methods Of 21 affected members over three generations, shortness of stature, associated with mesomelia resembling Leri-Weill dyschondrosteosis syndrome with no exostoses was evident in three family subjects. The rest of the family subjects manifested with normal height, and yet multiple exostoses. In this family, the skeletal manifestations were sufficiently variable for the presentation to be with either short stature or scoliosis, a Madelung’ deformity, or with severe hallux valgus associated with exostosis and with Leri-Weill dyschondrosteosis syndrome. Results Subjects with structural chromosomal aberrations of the proband IV-7, who manifested with normal height but with multiple exostoses were excluded via 20 CAG-banded mitoses (there were no microdeletions or microduplication after performing Array-CGH-analysis). In addition, DNA examination for subject IV-8 (male cousin of the proband showed short stature and Leri-Weill dyschondrosteosis syndrome) revealed no evidence of SHOX deletions. Conclusion We described a multigenerational non-consanguineous North African family , in which mesomelic dysplasia, whose clinical and radiological phenotypes resembled dyschondrosteosis, was a prominent feature in three family subjects. Multiple exostoses were evident in several other family subjects (most were with normal height). We would like to emphasize the variability in the phenotypic expression of multiple exostosis, especially the confusion that might arise when the condition appears both clinically and radiologically to be more complicated, and the overall picture might then be overlapped with one of the other bone dysplasias such as Leri-Weill dyschondrosteosis syndrome.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria; Orthopaedic Hospital of Speising, Paediatric Department, Vienna, Austria
| | - Maher Ben Ghachem
- Department of Paediatric Orthopaedics, Hopital d'infants, Tunis, Tunisia
| | - Farid Ben Chehida
- Department of Paediatric Radiology, Ibn Zohr Centre of Radiology, Tunis, Tunisia
| | - Jochen G Hofstaetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria; Orthopaedic Hospital of Speising, Paediatric Department, Vienna, Austria
| | - Franz Grill
- Orthopaedic Hospital of Speising, Paediatric Department, Vienna, Austria
| | - Rudolf Ganger
- Orthopaedic Hospital of Speising, Paediatric Department, Vienna, Austria
| | | |
Collapse
|
19
|
Daakour S, Hajingabo LJ, Kerselidou D, Devresse A, Kettmann R, Simonis N, Dequiedt F, Twizere JC. Systematic interactome mapping of acute lymphoblastic leukemia cancer gene products reveals EXT-1 tumor suppressor as a Notch1 and FBWX7 common interactor. BMC Cancer 2016; 16:335. [PMID: 27229929 PMCID: PMC4882867 DOI: 10.1186/s12885-016-2374-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Perturbed genotypes in cancer can now be identified by whole genome sequencing of large number of diverse tumor samples, and observed gene mutations can be used for prognosis and classification of cancer subtypes. Although mutations in a few causative genes are directly linked to key signaling pathways perturbation, a global understanding of how known cancer genes drive oncogenesis in human is difficult to assess. METHODS We collected available information about mutated genes in Acute Lymphoblastic Leukemia (ALL). Validated human protein interactions (PPI) were collected from IntAct, HPRD and BioGRID interactomics databases, or obtained using yeast two-hybrid screening assay. RESULTS We have mapped interconnections between 116 cancer census gene products associated with ALL. Combining protein-protein interactions data and cancer-specific gene mutations information, we observed that 63 ALL-gene products are interconnected and identified 37 human proteins interacting with at least 2 ALL-gene products. We highlighted exclusive and coexistence genetic alterations in key signaling pathways including the PI3K/AKT and the NOTCH pathways. We then used different cell lines and reporter assay systems to validate the involvement of EXT1 in the Notch pathway. CONCLUSION We propose that novel ALL-gene candidates can be identified based on their functional association with well-known cancer genes. We identified EXT1, a gene not previously linked to ALL via mutations, as a common interactor of NOTCH1 and FBXW7 regulating the NOTCH pathway in an FBXW7-dependend manner.
Collapse
Affiliation(s)
- Sarah Daakour
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Leon Juvenal Hajingabo
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium.,Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles (ULB), Bruxelles, B-1050, Belgium
| | - Despoina Kerselidou
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Aurelie Devresse
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Richard Kettmann
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Nicolas Simonis
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles (ULB), Bruxelles, B-1050, Belgium
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium.
| |
Collapse
|
20
|
Chappard D, Bizot P, Mabilleau G, Hubert L. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone. Morphologie 2016; 100:95-105. [PMID: 26762722 DOI: 10.1016/j.morpho.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/26/2022]
Abstract
Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy).
Collapse
Affiliation(s)
- D Chappard
- Groupe études remodelage osseux et biomatériaux (GEROM), LHEA, IRIS-IBS institut de biologie en santé, CHU d'Angers, LUNAM université Nantes Angers Le Mans, 49933 Angers cedex, France; Service commun d'imagerie et analyses microscopiques (SCIAM), IRIS-IBS institut de biologie en santé, CHU d'Angers, LUNAM université, 49933 Angers cedex, France.
| | - P Bizot
- Département de chirurgie osseuse, CHU d'Angers, 49933 Angers cedex, France
| | - G Mabilleau
- Groupe études remodelage osseux et biomatériaux (GEROM), LHEA, IRIS-IBS institut de biologie en santé, CHU d'Angers, LUNAM université Nantes Angers Le Mans, 49933 Angers cedex, France; Service commun d'imagerie et analyses microscopiques (SCIAM), IRIS-IBS institut de biologie en santé, CHU d'Angers, LUNAM université, 49933 Angers cedex, France
| | - L Hubert
- Département de chirurgie osseuse, CHU d'Angers, 49933 Angers cedex, France
| |
Collapse
|
21
|
White MJ, Kodaman NM, Harder RH, Asselbergs FW, Vaughan DE, Brown NJ, Moore JH, Williams SM. Genetics of Plasminogen Activator Inhibitor-1 (PAI-1) in a Ghanaian Population. PLoS One 2015; 10:e0136379. [PMID: 26322636 PMCID: PMC4556460 DOI: 10.1371/journal.pone.0136379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a major modulator of the fibrinolytic system, is an important factor in cardiovascular disease (CVD) susceptibility and severity. PAI-1 is highly heritable, but the few genes associated with it explain only a small portion of its variation. Studies of PAI-1 typically employ linear regression to estimate the effects of genetic variants on PAI-1 levels, but PAI-1 is not normally distributed, even after transformation. Therefore, alternative statistical methods may provide greater power to identify important genetic variants. Additionally, most genetic studies of PAI-1 have been performed on populations of European descent, limiting the generalizability of their results. We analyzed >30,000 variants for association with PAI-1 in a Ghanaian population, using median regression, a non-parametric alternative to linear regression. Three variants associated with median PAI-1, the most significant of which was in the gene arylsulfatase B (ARSB) (p = 1.09 x 10−7). We also analyzed the upper quartile of PAI-1, the most clinically relevant part of the distribution, and found 19 SNPs significantly associated in this quartile. Of note an association was found in period circadian clock 3 (PER3). Our results reveal novel associations with median and elevated PAI-1 in an understudied population. The lack of overlap between the two analyses indicates that the genetic effects on PAI-1 are not uniform across its distribution. They also provide evidence of the generalizability of the circadian pathway’s effect on PAI-1, as a recent meta-analysis performed in Caucasian populations identified another circadian clock gene (ARNTL).
Collapse
Affiliation(s)
- Marquitta J. White
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Nuri M. Kodaman
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Reed H. Harder
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Folkert W. Asselbergs
- Department Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Institute of Cardiovascular Science, University College London, 222 Euston Road, London, United Kingdom
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Douglas E. Vaughan
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nancy J. Brown
- Department of Medicine Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason H. Moore
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Scott M. Williams
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
22
|
Malini K, Gudi NS, Kutty AVM, Balakrishna S. Mutational Analysis of Exostosin 1 and 2 Genes in Multiple Osteochondroma. Indian J Pediatr 2015; 82:649-50. [PMID: 25591329 DOI: 10.1007/s12098-014-1675-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
Affiliation(s)
- K Malini
- Genome Lab, Department of Cell Biology and Molecular Genetics, Faculty of Allied Health Sciences, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, 563101, India
| | | | | | | |
Collapse
|
23
|
Lin WD, Hwu WL, Wang CH, Tsai FJ. Mutant EXT1 in Taiwanese Patients with Multiple Hereditary Exostoses. Biomedicine (Taipei) 2014; 4:11. [PMID: 25520924 PMCID: PMC4265008 DOI: 10.7603/s40681-014-0011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/03/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple hereditary exostoses (MHE) is characterized by multiple benign projections of bone capped by cartilage, most numerous in metaphyses of long bones. HME are usually inherited in autosomal dominant mode, chief genes EXT1 and EXT2. METHODS Two MHE patients were identified from clinic and enrolled in genetic study, complete coding regions of EXT1 and EXT2, including intron/exon boundaries, sequenced via DNA samples drawn from participants. RESULTS DNA sequencing revealed mutant EXT1 gene in both cases, within which frame-shift mutation c.447delC (p.Ser149fsX156) in exon1 and nonsense mutation c.2034T>G (p.Tyr678X) in exon10, emerged. Neither mutation was detected in control group. CONCLUSIONS Our results extended the spectrum of EXT1 mutations, revealing similar incidence of EXT1 and EXT2 in Taiwanese MHE patients.
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan ; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University School of Medicine, Taipei, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan ; School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan ; Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan ; Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan ; School of Chinese Medicine, China Medical University, Taichung, Taiwan ; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan ; Department of Pediatrics and Medical Genetics, China Medical University Hospital, No. 2, Yuh Der Road, 404 Taichung, Taiwan
| |
Collapse
|
24
|
Kang QL, Xu J, Zhang Z, He JW, Fu WZ, Zhang ZL. Mutation screening for the EXT1 and EXT2 genes in Chinese patients with multiple osteochondromas. Arch Med Res 2013; 44:542-8. [PMID: 24120389 DOI: 10.1016/j.arcmed.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Multiple osteochondromas (MO), an autosomal dominant skeletal disease, is characterized by the presence of multiple cartilage-capped bone tumors (exostoses). Two genes with mutations that are most commonly associated with MO have been identified as EXT1 and EXT2, which are Exostosin-1 and Exostosin-2. In this study, a variety of EXT1 and EXT2 gene mutations were identified in ten Chinese families with MO. METHODS We investigated ten unrelated Chinese families involving a total of 46 patients who exhibited typical features of MO. The coding exons of EXT1 and EXT2 were sequenced after PCR amplification in ten probands. Radiological investigation was conducted simultaneously. RESULTS Nine mutations were identified, five in EXT1 and four in EXT2, of which three were de novo mutations and six were novel mutations. One proband carried mutations in both EXT1 and EXT2 simultaneously, and three probands, including one sporadic case and two familial cases, had no detectable mutations. CONCLUSIONS Our findings are useful for extending the mutational spectrum in EXT1 and EXT2 and understanding the genetic basis of MO in Chinese patients.
Collapse
Affiliation(s)
- Qing-lin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
This report outlines the management of a large intrathoracic lesion found in a 2-year-old girl with hereditary multiple exostosis. The lesion arose from the right eighth rib and comprised two separate osteochondromata that had coalesced into a single lesion and caused significant deformity to the chest wall. Aside from the deformity, the lesions were asymptomatic. Further growth of the lesions could cause respiratory complications, worsening of the visible deformity and, being lesions of the axial skeleton, bear an increased risk of malignant change. The lesions and the attached eighth rib were removed operatively and the patient recovered without complications. We demonstrate a place for the operative management of asymptomatic lesions in anticipation of future difficulties or malignant changes.
Collapse
|
26
|
Sarrión P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Martorell L, Armstrong J, Anton J, Torner F, Vilaseca MA, Nevado J, Lapunzina P, Asteggiano CG, Balcells S, Grinberg D. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep 2013; 3:1346. [PMID: 23439489 PMCID: PMC3581825 DOI: 10.1038/srep01346] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/07/2013] [Indexed: 11/15/2022] Open
Abstract
Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.
Collapse
Affiliation(s)
- P Sarrión
- Department of Genetics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ciavarella M, Coco M, Baorda F, Stanziale P, Chetta M, Bisceglia L, Palumbo P, Bengala M, Raiteri P, Silengo M, Caldarini C, Facchini R, Lala R, Cavaliere ML, De Brasi D, Pasini B, Zelante L, Guarnieri V, D'Agruma L. 20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis. Gene 2012; 515:339-48. [PMID: 23262345 DOI: 10.1016/j.gene.2012.11.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hereditary multiple exostosis represents the most frequent bone tumor disease in humans. It consists of cartilage deformities affecting the juxta-ephyseal region of long bones. Usually benign, exostosis could degenerate in malignant chondrosarcoma form in less than 5% of the cases. Being caused by mutations in the predicted tumor suppressor genes, EXT1 (chr 8q23-q24) and EXT2 (chr 11p11-p12) genes, HMEs are usually inherited with an autosomal dominant pattern, although "de novo" cases are not infrequent. AIM Here we present our genetic diagnostic report on the largest Southern Italy cohort of HME patients consisting of 90 subjects recruited over the last 5years. RESULTS Molecular screening performed by direct sequencing of both EXT1 and EXT2 genes, by MLPA and Array CGH analyses led to the identification of 66 mutations (56 different occurrences) and one large EXT2 deletion out of 90 patients (74.4%). The total of 21 mutations (20 different occurrences, 33.3%) and the EXT2 gene deletion were novel. In agreement with literature data, EXT1 gene mutations were scattered along all the protein sequence, while EXT2 lesions fell in the first part of the protein. Conservation, damaging prediction and 3-D modeling, in-silico, analyses, performed on three novel missense variants, confirmed that at least in two cases the novel aminoacidic changes could alter the structure stability causing a strong protein misfolding. CONCLUSIONS Here we present 20 novel EXT1/EXT2 mutations and one large EXT2 deletion identified in the largest Southern Italy cohort of patients affected by hereditary multiple exostosis.
Collapse
Affiliation(s)
- Michele Ciavarella
- Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mutation screening of EXT genes in Chinese patients with multiple osteochondromas. Gene 2012; 506:298-300. [DOI: 10.1016/j.gene.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/25/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
|
29
|
Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta Gen Subj 2012; 1820:1306-17. [DOI: 10.1016/j.bbagen.2012.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
|
30
|
Pei Y, Wang Y, Huang W, Hu B, Huang D, Zhou Y, Su P. Novel mutations of EXT1 and EXT2 genes among families and sporadic cases with multiple exostoses. Genet Test Mol Biomarkers 2010; 14:865-72. [PMID: 21039224 DOI: 10.1089/gtmb.2010.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hereditary multiple exostoses (HME) is an autosomal dominantly inherited disorder characterized by multiple benign cartilage-capped exostoses. Clinical manifestation of the disease is heterogenous. Overriding toes, scoliosis, spinal cord compression, and brachydactyly caused by shortening of metatarsals are rare findings. EXT1 and EXT2 are the genes responsible in most HME patients. We have characterized 11 HME families and 6 sporadic cases involving a total of 37 patients and performed mutational analysis of EXT1 and EXT2. Structural modeling of the wild and mutant proteins was also performed. Thirteen mutations were identified, including 8 that are novel. Among the novel mutations in EXT1, c.1004T>G-associated HME exhibited overriding toes and scoliosis, c.1883+2T>A-associated HME exhibited brachydactyly, and c.459_460delCT-associated exostosis arising from vertebra T4 caused spinal cord compression. Our structural predictions revealed four domains in the proteins encoded by EXT1 and EXT2: signalP, transmembrane regions, exostosin, and glyco_transf-64. The mutations truncated either part or whole of the exostosin domain and/or the C terminus of the glyco_transf-64 domain, or occurred within one of the domains. Our results provide new data for genetic diagnosis, identification of presymptomatic carriers, phenotype-genotype correlation, and understanding of the mechanisms of disease.
Collapse
Affiliation(s)
- Yuanyuan Pei
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
31
|
Wen W, Zhang Y, Wang Y, Cao L, Wang S, Luo Y. A Novel Mutation in theEXT1Gene Identified in a Han Chinese Kindred with Hereditary Multiple Exostosis. Genet Test Mol Biomarkers 2010; 14:371-6. [DOI: 10.1089/gtmb.2009.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wen Wen
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| | - Yang Zhang
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| | - Yingbo Wang
- The Second Division of Hand Surgery, Fengtian Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Lihua Cao
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Malignant progression in two children with multiple osteochondromas. Sarcoma 2010; 2010:417105. [PMID: 20467466 PMCID: PMC2866243 DOI: 10.1155/2010/417105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/03/2010] [Indexed: 11/17/2022] Open
Abstract
Multiple Osteochondromas (MO) is a disease of benign bony growths with a low incidence of malignant transformation. Secondary chondrosarcoma in children is rare even in children with MO. Making a diagnosis of malignancy in low-grade cartilage tumors is challenging and requires consideration of clinical, radiographic, and histopathological factors. We report two cases of skeletally immature patients with MO who presented with rapidly enlarging and radiographically aggressive lesions consistent with malignant transformation. Both underwent allograft reconstruction of the involved site with no signs of recurrence or metastatic disease at a minimum of four-year follow-up.
Collapse
|
33
|
Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, Casey B, Bakker B, Sangiorgi L, Wuyts W. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat 2010; 30:1620-7. [PMID: 19810120 DOI: 10.1002/humu.21123] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple osteochondromas (MO) is an autosomal dominant skeletal disease characterized by the formation of multiple cartilage-capped bone tumors growing outward from the metaphyses of long tubular bones. MO is genetically heterogeneous, and is associated with mutations in Exostosin-1 (EXT1) or Exostosin-2 (EXT2), both tumor-suppressor genes of the EXT gene family. All members of this multigene family encode glycosyltransferases involved in the adhesion and/or polymerization of heparin sulfate (HS) chains at HS proteoglycans (HSPGs). HSPGs have been shown to play a role in the diffusion of Ihh, thereby regulating chondrocyte proliferation and differentiation. EXT1 is located at 8q24.11-q24.13, and comprises 11 exons, whereas the 16 exon EXT2 is located at 11p12-p11. To date, an EXT1 or EXT2 mutation is detected in 70-95% of affected individuals. EXT1 mutations are detected in +/-65% of cases, versus +/-35% EXT2 mutations in MO patient cohorts. Inactivating mutations (nonsense, frame shift, and splice-site mutations) represent the majority of MO causing mutations (75-80%). In this article, the clinical aspects and molecular genetics of EXT1 and EXT2 are reviewed together with 895 variants in MO patients. An overview of the reported variants is provided by the online Multiple Osteochondromas Mutation Database (http://medgen.ua.ac.be/LOVD).
Collapse
Affiliation(s)
- Ivy Jennes
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Wang J, Li H, Wang J, Wang X, Fu Q. A novel EXT1 gene mutation causing hereditary multiple exostoses in a Chinese pedigree. Pathology 2009; 42:91-3. [PMID: 20025490 DOI: 10.3109/00313020903434694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Pata G, Nascimbeni R, Di Lorenzo D, Gervasi M, Villanacci V, Salerni B. Hereditary multiple exostoses and juvenile colon carcinoma: A case with a common genetic background? J Surg Oncol 2009; 100:520-2. [PMID: 19653241 DOI: 10.1002/jso.21365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A case of obstructing colon cancer is described in a 31-year-old patient affected by hereditary multiple exostoses. The association of these two rare conditions, which has never been described previously, and their early onset prompt us to discuss the clinical and genetic elements of a potential common pathogenic scenario.
Collapse
Affiliation(s)
- Giacomo Pata
- Department of Medical & Surgical Sciences, 1st Division of General Surgery, University of Brescia, 25124 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Li Y, Wang D, Wang W, Wang J, Li H, Wang J, Wang X, Fu Q. Identification of four novel EXT1 and EXT2 mutations in five Chinese pedigrees with hereditary multiple exostoses. Genet Test Mol Biomarkers 2009; 13:825-30. [PMID: 19839753 DOI: 10.1089/gtmb.2009.0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder most frequently caused by the EXT1 and EXT2 gene mutations resulting in reduction or absence of heparan sulfate (HS) in the exostotic cartilage cap. In this study, we investigated the molecular defects in five Chinese pedigrees with HME by direct sequencing analysis. Two novel EXT1 gene mutations and two novel EXT2 gene mutations were identified in two and three pedigrees, respectively. Of the four mutations identified, the c.651-664delinsTTT and c.680delG mutations in the exon 1 of EXT1 gene would cause frameshift (K218fs and R227fs) and introduce premature stop codon at amino acid site 220 and 251, respectively. The two missense mutations of c.398T > G in exon 2 and c.1016G > A in exon 6 of EXT2 gene result in the Leu133Arg and Cys339Tyr substitution, respectively. As HME is caused by defects in HS synthesis that is a complex process and not fully understood, these naturally occurring EXT mutations may provide important clues to future studies elucidating how EXT proteins contribute to HS biosynthesis.
Collapse
Affiliation(s)
- Yuchan Li
- Department of Pediatric Orthopedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vanita V, Sperling K, Sandhu HS, Sandhu PS, Singh JR. Novel EXT1 and EXT2 mutations in hereditary multiple exostoses families of Indian origin. Genet Test Mol Biomarkers 2009; 13:43-9. [PMID: 19309273 DOI: 10.1089/gtmb.2008.0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hereditary multiple exostosis (HME) is an autosomal dominant bone disorder, characterized by short stature and the presence of multiple benign tumors mainly at the ends of long bones. HME is genetically heterogeneous with two known genes on 8q24 (EXT1) and 11p11 (EXT2), and a third minor locus mapped to 19p (EXT3). The majority of EXT1 and EXT2 mutations result in premature protein truncation and loss of function. MATERIALS AND METHODS We analyzed two autosomal dominant HME families of Indian origin. Linkage analysis using fluorescently labeled microsatellite markers at the candidate gene regions was performed. Mutation analysis was carried out by bidirectional sequencing of purified PCR products. RESULTS We found linkage in one family to EXT1 and in the other family to EXT2. Mutation screening in the EXT1 gene revealed a novel frameshift mutation, a single base deletion in exon 1 (c.142delC). This mutation segregated in all affected members and was absent in the unaffected family members and 60 unrelated controls. In the second family, a previously unreported stop mutation, the substitution c.817C>T, was observed in the EXT2 gene in all affected members and in none of the unaffected family members and 90 unrelated controls. CONCLUSIONS Our findings expand the mutation spectrum of EXT1 and EXT2 and highlight the genetic and phenotypic heterogeneity of HME.
Collapse
Affiliation(s)
- Vanita Vanita
- Centre for Genetic Disorders, Guru Nanak Dev University, Amritsar, India.
| | | | | | | | | |
Collapse
|
38
|
Heinritz W, Hüffmeier U, Strenge S, Miterski B, Zweier C, Leinung S, Bohring A, Mitulla B, Peters U, Froster UG. New Mutations ofEXT1andEXT2Genes in German Patients with Multiple Osteochondromas. Ann Hum Genet 2009; 73:283-91. [DOI: 10.1111/j.1469-1809.2009.00508.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Abstract
BACKGROUND Ankle valgus is one of the most common deformities in multiple cartilaginous exostoses (MCEs). However, the characteristic factors of ankle valgus are not well known. METHODS To determine the characteristic factors of ankle valgus in MCE, we investigated 62 ankles in 33 patients (23 males, 10 females) with no history of surgical treatment of ankles with MCE. Mean age at investigation was 11 years 4 months (range, 2 years 7 months-17 years 1 month). We evaluated Taniguchi classification, tibiotalar angle (ankle valgus), site of exostoses in the distal tibia and distal fibula, fibular shortening (Malhotra classification), and correlations between these factors. RESULTS According to Taniguchi classification, patients were classified as group II (n = 8), group III (n = 18), or unknown (n = 7). Mean tibiotalar angle was 5.1 degrees (range, -4 to 20 degrees) in males and -0.8 degrees (range, -5 to 7 degrees) in females. Significant differences in ankle valgus were found between sexes within the same age group, and ankle valgus progressed with age in males. Ankles with involvement of both lateral distal tibia and medial distal fibula showed significantly more severe ankle valgus than ankles with involvement of the lateral distal tibia alone or no involvement. In Malhotra classification, all except 1 ankle showed station 0 in females. All cases of station II or III involved males and degree of fibular shortening correlated with ankle valgus in males. Taniguchi group III was associated with more frequent involvement of both lateral distal tibia and medial distal fibula in males, and greater frequency of both fibular shortening and ankle valgus with >or=10 degrees was seen compared with Taniguchi group II. CONCLUSIONS Several characteristic factors of ankle valgus in MCE seem to predict progression.
Collapse
|
40
|
Kojima H, Wada T, Seki H, Kubota T, Wakui K, Fukushima Y. One Third of Japanese Patients with Multiple Osteochondromas May Have Mutations in Genes Other Than EXT1 or EXT2. ACTA ACUST UNITED AC 2008; 12:557-61. [DOI: 10.1089/gte.2008.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirofumi Kojima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Orthopedic Surgery, Inariyama Medical and Welfare Center, Chikuma, Japan
| | - Takahito Wada
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Seki
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeo Kubota
- Epigenetic Medicine, University of Yamanashi, Faculty of Medicine, Chuo, Japan
| | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
41
|
Karibe T, Fukui H, Sekikawa A, Shiratori K, Fujimori T. EXTL3 promoter methylation down-regulates EXTL3 and heparan sulphate expression in mucinous colorectal cancers. J Pathol 2008; 216:32-42. [PMID: 18543267 DOI: 10.1002/path.2377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exostoses like-3 (EXTL3) is a putative tumour suppressor gene but its involvement in colorectal cancer (CRC) is unclear. We have investigated the role of methylation of the EXTL3 promoter as a mechanism for EXTL3 regulation and tested the hypothesis that loss of EXTL3 expression is associated with mucinous differentiation and alteration of glycoprotein expression in CRC cells. The methylation status of the EXTL3 gene promoter was analysed by methylation-specific PCR following bisulphite modification in CRC cell lines and microdissected primary CRC tissues and their corresponding adjacent normal colorectal mucosa. EXTL3 promoter methylation was detected in seven of 11 mucinous CRCs (63.6%) but in none of 26 non-mucinous CRCs examined. EXTL3 promoter methylation was also detected in the normal colonic mucosa of three patients with mucinous CRC but not in the normal colonic mucosa of any patients with non-mucinous CRC. The presence of EXTL3 methylation was significantly associated with the partial loss of HS expression in mucinous CRC lesions. The mucinous CRC cell lines, Colo201 and Colo205, showed EXTL3 promoter methylation and loss of EXTL3 mRNA expression. However 5-aza-2'-deoxycytidine treatment demethylated the EXTL3 gene promoter and restored its mRNA expression. Furthermore, the basal expression of HS in CRC cells was abolished by treatment with EXTL3-siRNA. We conclude that EXTL3 promoter methylation and its related loss of EXTL3 expression are involved in the loss of HS expression in mucinous CRCs.
Collapse
Affiliation(s)
- T Karibe
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan
| | | | | | | | | |
Collapse
|
42
|
Liu SG, Lu DG, Liu ZQ, Liu CY, Zhang AY, Li ZQ, Ma X. A novel mutation in EXT2 gene in a Chinese family with hereditary multiple exostoses. GENETIC TESTING 2008; 12:331-2. [PMID: 18666861 DOI: 10.1089/gte.2007.0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hereditary multiple exostoses (HME) is an autosomal-dominant disorder characterized by the presence of bony outgrowths on the long bones. In this report, we describe a Chinese family with HME. Linkage analysis and mutation detection were performed. Linkage with the EXT2 was established in this family. A novel mutation, EXT2 c239-244delG, was identified. Mutation analysis in a family with HME allows for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Shi Guo Liu
- Graduate School of Peking Union Medical College, Beijing, China., National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Foroughmand AM, Galehdari H, Rasouli M, Mohammadian G, Mohammadi M. Novel mutation in the EXT-1 gene in an Iranian family affected with hereditary multiple exostoses. Pak J Biol Sci 2008; 11:1037-41. [PMID: 18810975 DOI: 10.3923/pjbs.2008.1037.1041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identification of casual mutations in Hereditary Multiple Exostoses (HME) is important because of similar conditions in which multiple exostoses occur. Therefore mutation analysis can help to confirm the clinical diagnosis and to improve the management of therapy. HME is an inherited disorder of bone growth. HME can be referred to by various names such as Heredity Multiple Exostoses, Hereditary Multiple Osteochondromata, Multiple Carthaginous Exostoses, etc. People who have HME grow exostoses, or bony bumps, on their bones which can vary in size, location and number depending on the individual. HME is inherited in an autosomal dominant manner with an estimated prevalence of 1/50,000 in western countries. At least three loci (EXT1, EXT2 and EXT3) thought to be involved in this skeletal disease. Approximately 90% of affected families possess mutations in the coding regions of EXT1 and EXT2 genes and the majority of these mutations cause loss of function. EXT1 and EXT2 genes encode related members of a putative tumor suppressor family. In this first report from Iran we identified a frame shift mutation (1100-1101 insA) in exon 3 of EXT1 gene in a family being suspicious of HME. This mutation leads to a premature stop codon and previously not described. Additionally, we have found an unreported silent mutation in the exon six of EXT1 gene with uncertain significance.
Collapse
|
44
|
Genetic analysis of hereditary multiple exostoses in Tunisian families: a novel frame-shift mutation in the EXT1 gene. Mol Biol Rep 2008; 36:661-7. [DOI: 10.1007/s11033-008-9226-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 03/05/2008] [Indexed: 11/26/2022]
|
45
|
Leube B, Hardt K, Portier S, Westhoff B, Jäger M, Krauspe R, Royer-Pokora B. Ulna/Height Ratio as Clinical Parameter SeparatingEXT1fromEXT2Families? ACTA ACUST UNITED AC 2008; 12:129-33. [DOI: 10.1089/gte.2007.0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Barbara Leube
- Institute of Human Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Karin Hardt
- Institute of Human Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sebastian Portier
- Department of Orthopaedics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Bettina Westhoff
- Department of Orthopaedics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Marcus Jäger
- Department of Orthopaedics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
46
|
Jennes I, Entius MM, Van Hul E, Parra A, Sangiorgi L, Wuyts W. Mutation screening of EXT1 and EXT2 by denaturing high-performance liquid chromatography, direct sequencing analysis, fluorescence in situ hybridization, and a new multiplex ligation-dependent probe amplification probe set in patients with multiple osteochondromas. J Mol Diagn 2007; 10:85-92. [PMID: 18165274 DOI: 10.2353/jmoldx.2008.070086] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple osteochondromas (MO) is an autosomal-dominant skeletal disorder characterized by the formation of multiple cartilage-capped protuberances. MO is genetically heterogeneous and is associated with mutations in the EXT1 and EXT2 genes. In this study we describe extensive mutation screening in a set of 63 patients with clinical and radiographical diagnosis of MO. Denaturing high-performance liquid chromatography analysis revealed mutations in 43 patients. Additional deletion analysis by fluorescence in situ hybridization and a newly developed multiplex ligation-dependent probe amplification probe set identified one patient with an intragenic EXT1 translocation, three patients with a partial EXT1 deletion, and one patient with a partial EXT2 deletion. Thirty-six patients harbored an EXT1 mutation (57%), and 12 had an EXT2 mutation (19%). We show that our optimized denaturing high-performance liquid chromatography/sequencing/multiplex ligation-dependent probe amplification protocol represents a reliable and highly sensitive diagnostic strategy for mutation screening in MO patients. Clinical analysis showed no clear genotype-phenotype correlation in our cohort of MO patients.
Collapse
Affiliation(s)
- Ivy Jennes
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Liu SG, Li FF, Huang SZ, Chen Y, Wang J, Lu DG, Zhang M, Ma X. A Novel Mutation in theEXT2Gene Identified in Two Unrelated Chinese Families with Hereditary Multiple Exostoses. ACTA ACUST UNITED AC 2007; 11:445-9. [PMID: 18294062 DOI: 10.1089/gte.2007.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shi Guo Liu
- Graduate School of Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Feng Li
- Graduate School of Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Shang Zhi Huang
- Graduate School of Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Yang Chen
- Department of Surgery, Clinical Laboratory, LinYi People's Hospital, Shandong, China
| | - Jun Wang
- Department of Surgery, Clinical Laboratory, LinYi People's Hospital, Shandong, China
| | - De Guo Lu
- Department of Surgery, Clinical Laboratory, LinYi People's Hospital, Shandong, China
| | - Meng Zhang
- National Research Institute for Family Planning, Beijing, China
| | - Xu Ma
- Graduate School of Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- WHO Collaborative Center for Research in Human Reproduction, Beijing, China
| |
Collapse
|
48
|
Pauli RM. The natural histories of bone dysplasias in adults--vignettes, fables and just-so stories. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:309-21. [PMID: 17639591 DOI: 10.1002/ajmg.c.30135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The bone dysplasias are a heterogeneous group of disorders arising from intrinsic abnormality of bone and cartilage growth and function. All are genetic. Most result in extreme small stature (dwarfism). Historically, emphasis was primarily on diagnostic identification of specific disorders in infants (including differentiating lethal and non-lethal forms), and on the clinical history to be anticipated in infants and children with each of these specific processes. Even in children there is exceedingly limited information of quality and virtually no controlled studies of the effects of intervention. For the most part, information about affected adults is even less complete and even less rigorous. Presented here are a series of examples of medical and adaptive issues in adults affected by one or another of the genetic skeletal dysplasias. Topics discussed include: approach to adults with no specific diagnosis; medical issues that cross diagnostic boundaries (osteoarthritis in the "E" disorders, obstructive apnea, issues in pregnancy in women with dwarfing disorders, activities of daily living, and quality of life assessments); diagnosis-specific problems of adulthood (spinal stenosis in achondroplasia, hearing loss in osteogenesis imperfecta, and malignancy risk in multiple exostoses); adult problems that must be addressed in childhood in order to be prevented (achondroplasia and kyphosis, and cervical spine abnormalities in Morquio syndrome); survival conundrums (why some live unexpectedly and others die unexpectedly). Emphasis is placed on the difficulties intrinsic to trying to learn about needs and expectations in generally rare genetic processes.
Collapse
|
49
|
Signori E, Massi E, Matera MG, Poscente M, Gravina C, Falcone G, Rosa MA, Rinaldi M, Wuyts W, Seripa D, Dallapiccola B, Fazio VM. A combined analytical approach reveals novel EXT1/2 gene mutations in a large cohort of Italian multiple osteochondromas patients. Genes Chromosomes Cancer 2007; 46:470-7. [PMID: 17301954 DOI: 10.1002/gcc.20429] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Multiple osteochondromas (MO), also known as hereditary multiple exostoses (HME), is one of the most common hereditary musculoskeletal diseases in Caucasians (1/50,000) with wide clinical variability and genetic heterogeneity. Two genes have thus far been identified as causing the disease, namely EXT1 and EXT2. Various methods to detect mutations in the EXT genes have been used. Here a cohort of 100 MO patients belonging to unrelated Italian families have been analyzed by single-strand conformation polymorphism (SSCP) analysis or by denaturing high performance liquid chromatography (DHPLC). However, neither of these techniques can detect deletions or duplications of entire exons. Families that were negative at SSCP/DHPLC analysis underwent two-color multiple ligation-dependent probe amplification (MLPA) analysis. By these complementary techniques mutation detection was significantly improved and 26 novel mutations have been revealed as well as 18 previously described mutations to give a total of 44 different mutations. Thus we can conclude that combining MLPA with DHPLC in point-mutations negative MO families, the detection of mutations in EXT genes can significantly improve the identification of both point-mutations and mid-size rearrangements. More important, we were able to characterize all those patients who were negative at the first PCR-based method screening.
Collapse
Affiliation(s)
- Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico School of Medicine and Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alvarez CM, De Vera MA, Heslip TR, Casey B. Evaluation of the anatomic burden of patients with hereditary multiple exostoses. Clin Orthop Relat Res 2007; 462:73-9. [PMID: 17589361 DOI: 10.1097/blo.0b013e3181334b51] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hereditary multiple exostosis (HME) is an autosomal dominant condition resulting predominantly from mutations in the exostosin 1 (EXT1) and exostosin 2 (EXT2) genes. We asked two questions in our study: first, what is the anatomic burden of subjects with HME; second, is there a difference in anatomic burden in subjects with EXT 1 versus EXT 2. The anatomic burden experienced by HME patients was defined according to three domains: (1) lesion quality; (2) limb malalignment and deformity; and (3) limb segment lengths and percentile height. Seventy-nine subjects with HME were included in this study. Of these 79 phenotypes were completed. Forty-eight genotypes were confirmed leaving 48 complete genotype-phenotype profiles for analysis. Analysis of the coding and flanking intronic regions of EXT1 and EXT2 was performed in each patient by direct sequencing of PCR-amplified genomic DNA. All three domains of anatomic burden showed a wide range of presentation in the HME study sample. More lesions and greater tendency to flat bone occurrence was associated with EXT1. EXT1 patients were shorter. All limb segments tended to be shorter for EXT1 subjects. EXT1 subjects showed more anatomic burden with respect to lesion quality and height.
Collapse
Affiliation(s)
- Christine M Alvarez
- University of British Columbia, Faculty of Medicine, Division of Pediatric Orthopaedics, Department of Orthopaedics, British Columbia Children's Hospital, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|