1
|
Kokubo-Tanaka M, Kildemoes AO, Chadeka EA, Cheruiyot BN, Moriyasu T, Sassa M, Nakamura R, Kikuchi M, Fujii Y, de Dood CJ, Corstjens PLAM, Kaneko S, Maruyama H, Njenga SM, de Vrueh R, Hokke CH, Hamano S. Detection and analysis of Serpin and RP26 specific antibodies for monitoring Schistosoma haematobium transmission. PLoS Negl Trop Dis 2025; 19:e0012813. [PMID: 39854314 PMCID: PMC11759395 DOI: 10.1371/journal.pntd.0012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones. Moreover, crude antigens such as soluble egg antigen (SEA) show cross-reactivity with other parasitic infections, and it is difficult to formulate the standard preparations. To resolve these issues, the performances of recombinant antigens have been evaluated. The antibody responses against recombinant S. haematobium serine-protease inhibitor (ShSerpin) and RP26 were previously shown to reflect active schistosome infection in humans. Furthermore, antibody detection using multiple recombinant antigens has been reported to improve the accuracy of antibody-based assays compared to single-target assays. Therefore, we examined the performances of ShSerpin, RP26 and the mixture of these antigens for detecting S. haematobium low-intensity infection and assessed the potential for transmission monitoring. METHODOLOGY/PRINCIPAL FINDINGS We collected urine and plasma samples from school-aged children in Kwale, Kenya and evaluated S. haematobium prevalence by number of eggs in urine and worm-derived circulating anodic antigen (CAA) in plasma. Among 269 pupils, 50.2% were CAA-positive by the lateral flow test utilizing up-converting phosphor particles (UCP-LF CAA), while only 14.1% were egg-positive. IgG levels to S. haematobium SEA (ShSEA), ShSerpin, RP26, and the mixture of ShSerpin and RP26 were measured by ELISA. The mixture of ShSerpin and RP26 showed the highest sensitivity, 88.7%(125/141)among the four antigens in considering indecisive UCP-LF CAA results as negative. CONCLUSION/SIGNIFICANCE IgG detection against the ShSerpin-RP26 mixture demonstrated better sensitivity for detection of active S. haematobium infection. This recombinant antigen mixture is simpler to produce with higher reproducibility and can potentially replace ShSEA in monitoring transmission under near-elimination settings.
Collapse
Affiliation(s)
- Mio Kokubo-Tanaka
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anna Overgaard Kildemoes
- Department of Parasitology, Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Evans Asena Chadeka
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University, Kenya Research Station, NUITM-KEMRI Project, Nairobi, Kenya
| | - Benard Ngetich Cheruiyot
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Nagasaki University, Kenya Research Station, NUITM-KEMRI Project, Nairobi, Kenya
| | - Taeko Moriyasu
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Eco-Epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Miho Sassa
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Mihoko Kikuchi
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yoshito Fujii
- Department of Medical Technology, Sanyo Women’s College, Hatsukaichi, Japan
| | - Claudia J. de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Satoshi Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University, Kenya Research Station, NUITM-KEMRI Project, Nairobi, Kenya
- Department of Eco-Epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sammy M. Njenga
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | | | - Cornelis Hendrik Hokke
- Department of Parasitology, Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University, Kenya Research Station, NUITM-KEMRI Project, Nairobi, Kenya
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Malizia V, de Vlas SJ, Roes KCB, Giardina F. Revisiting the impact of Schistosoma mansoni regulating mechanisms on transmission dynamics using SchiSTOP, a novel modelling framework. PLoS Negl Trop Dis 2024; 18:e0012464. [PMID: 39303001 DOI: 10.1371/journal.pntd.0012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The transmission cycle of Schistosoma is remarkably complex, including sexual reproduction in human hosts and asexual reproduction in the intermediate host (freshwater snails). Patterns of rapid recrudescence after treatment and stable low transmission are often observed, hampering the achievement of control targets. Current mathematical models commonly assume regulation of transmission to occur at worm level through density-dependent egg production. However, conclusive evidence on this regulating mechanism is weak, especially for S. mansoni. In this study, we explore the interplay of different regulating mechanisms and their ability to explain observed patterns in S. mansoni epidemiology. METHODOLOGY/PRINCIPAL FINDINGS We developed SchiSTOP: a hybrid stochastic agent-based and deterministic modelling framework for S. mansoni transmission in an age-structured human population. We implemented different models with regulating mechanisms at: i) worm-level (density-dependent egg production), ii) human-level (anti-reinfection immunity), and iii) snail-level (density-dependent snail dynamics). Additionally, we considered two functional choices for the age-specific relative exposure to infection. We assessed the ability of each model to reproduce observed epidemiological patterns pre- and post-control, and compared successful models in their predictions of the impact of school-based and community-wide treatment. Simulations confirmed that assuming at least one regulating mechanism is required to reproduce a stable endemic equilibrium. Snail-level regulation was necessary to explain stable low transmission, while models combining snail- and human-level regulation with an age-exposure function informed with water contact data were successful in reproducing a rapid rebound after treatment. However, the predicted probability of reaching the control targets varied largely across models. CONCLUSIONS/SIGNIFICANCE The choice of regulating mechanisms in schistosomiasis modelling largely determines the expected impact of control interventions. Overall, this work suggests that reaching the control targets solely through mass drug administration may be more challenging than currently thought. We highlight the importance of regulating mechanisms to be included in transmission models used for policy.
Collapse
Affiliation(s)
- Veronica Malizia
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kit C B Roes
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| | - Federica Giardina
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Mutapi F, Garba A, Woolhouse M, Kazyoba P. Paediatric schistosomiasis: last mile preparations for deploying paediatric praziquantel. Trends Parasitol 2024; 40:687-695. [PMID: 39033047 DOI: 10.1016/j.pt.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Schistosomiasis is the second most important parasitic disease of public health importance in Africa, affecting over 50 million children aged <5 years old. Schistosomiasis control has focused on treating school-aged children (>6 years) and adults through mass drug administration (MDA). Following the recent development of a paediatric praziquantel (PZQ) formulation for children aged <5 years, there are now concerted efforts to determine optimal and effective ways to integrate treatment of these children into national schistosomiasis control programmes. In this opinion article we outline the pathway for successful drug access, delivery, and mainstreaming of the new formulation in endemic country health systems. Effective and sustained paediatric schistosomiasis treatment is an important target of the 2030 World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Tackling Infections to Benefit Africa (TIBA) Partnership, TIBA Global Health Research Unit, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Amadou Garba
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, 1211, Switzerland
| | - Mark Woolhouse
- Tackling Infections to Benefit Africa (TIBA) Partnership, TIBA Global Health Research Unit, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK; Usher Institute of Population Health Sciences and Informatics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Paul Kazyoba
- National Institute for Medical Research, 2448 Barack Obama Dr, Dar es Salaam, Tanzania; TIBA Partnership, NIMR, Tanzania, 2448 Barack Obama Dr, Dar es Salaam, Tanzania
| |
Collapse
|
4
|
Onkanga IO, Sang H, Hamilton R, Ondigo BN, Jaoko W, Odiere MR, Ganley-Leal L. CD193
(
CCR3
) expression by B cells correlates with reduced
IgE
production in paediatric schistosomiasis. Parasite Immunol 2023; 45:e12979. [PMID: 36971331 DOI: 10.1111/pim.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
We demonstrate that CD193, the eotaxin receptor, is highly expressed on circulating B cells in paediatric schistosomiasis mansoni. CD193 plays a role in directing granulocytes into sites of allergic-like inflammation in the mucosa, but little is known about its functional significance on human B cells. We sought to characterize CD193 expression and its relationship with S. mansoni infection. We found that CD193+ B cells increased with the intensity of schistosome infection. In addition, a significant negative association was observed between CD193 expression by B cells and IgE production. Decreased IgE levels are generally associated with susceptibility to re-infection. B cell stimulation with eotaxin-1 increased CD193 levels whereas IL-4 led to a reduction. This was supported by plasma levels of eotaxin-1 correlating with CD193 levels on B cells and other cells. In contrast, CD193 expression was induced on naive B cells with a combination of IL-10 and schistosome antigens. Whereas T cells had a modest increase in CD193 expression, only B cell CD193 appeared functionally chemotactic to eotaxin-1. Thus, CD193+ B cells, which co-express CXCR5, may be enroute to sites with allergic-like inflammation, such as gastrointestinal follicles, or even to Th2 granulomas, which develop around parasite eggs. Overall, our results suggest that schistosome infection may promote CD193 expression and suppress IgE via IL-10 and other undefined mechanisms related to B cell trafficking. This study adds to our understanding of why young children may have poor immunity. Nonetheless, praziquantel treatment was shown to reduce percentages of circulating CD193+ B cells lending hope for future vaccine efforts.
Collapse
Affiliation(s)
- I O Onkanga
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - H Sang
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - R Hamilton
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| | - B N Ondigo
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Egerton, Kenya
| | - W Jaoko
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - M R Odiere
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - L Ganley-Leal
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| |
Collapse
|
5
|
Nono JK, Mpotje T, Mosala P, Aziz NA, Musaigwa F, Hlaka L, Spangenberg T, Brombacher F. Praziquantel Treatment of Schistosoma mansoni Infected Mice Renders Them Less Susceptible to Reinfection. Front Immunol 2021; 12:748387. [PMID: 34956183 PMCID: PMC8703194 DOI: 10.3389/fimmu.2021.748387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Beyond transient control of the infection, additional benefits of mass drug administration of praziquantel in endemic communities have been suggested in communities but not mechanistically investigated experimentally. The present study sought to evaluate the additional and hitherto unreported benefits of repeated mass drug administration of praziquantel. We used a tractable mouse model of Schistosoma mansoni infection to assess the effects of repeated infection-treatment cycles on the host susceptibility to reinfection. Parasitaemia was assessed by quantification of Schistosoma egg burden in liver tissues and morbidity was followed up by histological observation of liver lesions by microscopy and using biochemical measurement of liver transaminases. Immune responses were further determined by serum probing of schistosoma-specific antibodies, cytokines and quantification of liver cellular and soluble mediator responses by flow cytometry and ELISA, respectively. At similar ages and comparable gender distribution, groups of mice undergoing higher number of infections treatment cycles over a longer period, remained susceptible to reinfection by the parasite, as judged by the presence of eggs and the associated increasing pathology in the liver tissues. However, notably, there was a clear and significantly higher propensity to lower egg burden upon reinfection when compared to counterparts undergoing a lower number of infection-treatment cycles. This relative reduction of susceptibility to infection was paralleled by a more robust humoral response against parasite antigens, elevated serum IL-4 and liver cytokines. Of note, praziquantel treatment of infected mice left them at a higher baseline of serum IL-4, IgE and liver cytokines but lower CD4+ T cell -derived cytokines when compared to infected non-treated mice supporting an immunological treatment-induced advantage of previously infected mice over naïve mice and infected/not treated mice. Notably, repeated infection-treatment cycles did not preclude the infection-driven aggravation of collagen deposition in the livers over time and was corroborated by a more robust local production of inflammatory cytokines in the most exposed livers. Taken together, our data reveal that treatment of S. mansoni-infected hosts with praziquantel rewires the immune system to a conformation less permissive to subsequent reinfection in mice. Provided the data are translatable from mouse to human, our findings may provide mechanistic support to the potential benefits of more frequent MDAs in high transmission areas to allow rapid acquisition of protective immunity against reinfection.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Laboratory of ImmunoBiology and Helminth Infections, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Thabo Mpotje
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Paballo Mosala
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Nada Abdel Aziz
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Fungai Musaigwa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Lerato Hlaka
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a Subsidiary of Merck KGaA Darmstadt Germany, Eysins, Switzerland
- *Correspondence: Thomas Spangenberg, ; Frank Brombacher,
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Thomas Spangenberg, ; Frank Brombacher,
| |
Collapse
|
6
|
Kura K, Hardwick RJ, Truscott JE, Anderson RM. What is the impact of acquired immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug administration programmes? PLoS Negl Trop Dis 2021; 15:e0009946. [PMID: 34851952 PMCID: PMC8635407 DOI: 10.1371/journal.pntd.0009946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/23/2021] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis causes severe morbidity in many countries with endemic infection with the schistosome digenean parasites in Africa and Asia. To control and eliminate the disease resulting from infection, regular mass drug administration (MDA) is used, with a focus on school-aged children (SAC; 5-14 years of age). In some high transmission settings, the World Health Organization (WHO) also recommends the inclusion of at-risk adults in MDA treatment programmes. The question of whether ecology (age-dependant exposure) or immunity (resistance to reinfection), or some combination of both, determines the form of observed convex age-intensity profile is still unresolved, but there is a growing body of evidence that the human hosts acquire some partial level of immunity after a long period of repeated exposure to infection. In the majority of past research modelling schistosome transmission and the impact of MDA programmes, the effect of acquired immunity has not been taken into account. Past work has been based on the assumption that age-related contact rates generate convex horizontal age-intensity profiles. In this paper, we use an individual based stochastic model of transmission and MDA impact to explore the effect of acquired immunity in defined MDA programmes. Compared with scenarios with no immunity, we find that acquired immunity makes the MDA programme less effective with a slower decrease in the prevalence of infection. Therefore, the time to achieve morbidity control and elimination as a public health problem is longer than predicted by models with just age-related exposure and no build-up of immunity. The level of impact depends on the baseline prevalence prior to treatment (the magnitude of the basic reproductive number R0) and the treatment frequency, among other factors. We find that immunity has a larger impact within moderate to high transmission settings such that it is very unlikely to achieve morbidity and transmission control employing current MDA programmes.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
| | - Robert J. Hardwick
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - James E. Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - Roy M. Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
7
|
Sarpong-Baidoo M, Ofori MF, Asuming-Brempong EK, Kyei-Baafour E, Idun BK, Owusu-Frimpong I, Amonoo NA, Quarshie QD, Tettevi EJ, Osei-Atweneboana MY. Associations of IL13 gene polymorphisms and immune factors with Schistosoma haematobium infection in schoolchildren in four schistosomiasis-endemic communities in Ghana. PLoS Negl Trop Dis 2021; 15:e0009455. [PMID: 34185775 PMCID: PMC8274844 DOI: 10.1371/journal.pntd.0009455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/12/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis remains a major public health issue with over 90% of the prevalence rates recorded in Sub-Saharan Africa. In this study, the relationships between different interleukin gene polymorphisms (IL-13-591A/G, IL-13-1055C/T, IL-13-1258A/G) and Schistosoma haematobium infection levels were evaluated; as well as the host plasma antibodies and cytokine profiles associated with schistosomiasis infection. METHODOLOGY A total of 469 school children aged 6 to 19 years from four schistosomiasis-endemic communities in Ghana were involved. Single urine and stool samples were obtained from each pupil, processed via sedimentation and Kato-Katz, and examined via microscopy for Schistosoma and soil-transmitted helminth (STH) eggs. Next, venous blood samples were drawn from 350 healthy pupils, and used to measure antibody and plasma cytokine levels by ELISA. Single nucleotide polymorphisms in the IL-13 gene were genotyped on 71 selected blood samples using the Mass Array technique. PRINCIPAL FINDINGS AND CONCLUSION The overall prevalence of urinary schistosomiasis was 21.11%. Community-level prevalences were 17.12%, 32.11%, 20.80%, and 15.32% for Asempaneye, Barikumah, Eyan Akotoguah, and Apewosika respectively. Generally, higher S. haematobium infection prevalence and intensity were recorded for participants with genotypes bearing the IL13-1055C allele, the IL13-591A, and the IL13-1258A alleles. Also, higher S. haematobium infection prevalence was observed among participants in the 12-14-year age group with the IL13-1055C, IL13-591A, and IL13-1258A alleles. Interestingly, higher STH prevalence was also observed among participants with the IL13-1055C, IL13-591A, and IL13-1258A alleles. Furthermore, the age-associated trends of measured antibodies and cytokines of S. haematobium-infected school-children depicted a more pro-inflammatory immune profile for pupils aged up to 1l years, and an increasingly anti-inflammatory profile for pupils aged 12 years and above. This work provides insight into the influence of IL-13 gene polymorphisms on S. haematobium, and STH infections, in school-aged children (SAC).
Collapse
Affiliation(s)
- Margaret Sarpong-Baidoo
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
- Department of Animal Biology and Conservation Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Elias Kwesi Asuming-Brempong
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bright K. Idun
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Isaac Owusu-Frimpong
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Nana A. Amonoo
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Queenstar D. Quarshie
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Edward J. Tettevi
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Mike Y. Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
- * E-mail:
| |
Collapse
|
8
|
Amoani B, Gyan B, Sakyi SA, Abu EK, Nuvor SV, Barnes P, Sarkodie-Addo T, Ahenkorah B, Sewor C, Dwomoh D, Theisen M, Cappello M, Wilson MD, Adu B. Effect of hookworm infection and anthelmintic treatment on naturally acquired antibody responses against the GMZ2 malaria vaccine candidate and constituent antigens. BMC Infect Dis 2021; 21:332. [PMID: 33832450 PMCID: PMC8028774 DOI: 10.1186/s12879-021-06027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Malaria and helminths diseases are co-endemic in most parts of sub-Saharan Africa. Immune responses from each of these pathogens interact, and these interactions may have implications on vaccines. The GMZ2 malaria vaccine candidate is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP R0). GMZ2 has recently showed modest efficacy in a phase IIb multicenter trial. Here, we assessed the effect of hookworm (Necator americanus) infection and anthelmintic treatment on naturally acquired antibody responses against GMZ2 and constituent antigens. Methods This longitudinal cross-sectional study was conducted in the Kintampo North Municipality of Ghana. Blood and stool samples were taken from 158 individuals (4–88 years old) infected with either P. falciparum alone (n = 59) or both hookworm and P. falciparum (n = 63) and uninfected endemic controls (n = 36). Stool hookworm infection was detected by the Kato-Katz method and PCR. Malaria parasitaemia was detected by RDT, light microscopy and P. falciparum-specific 18S rRNA gene PCR. Serum samples were obtained prior to hookworm treatment with a single dose of albendazole (400 mg) and 3 weeks (21 days) after treatment. Levels of IgG1, IgG3 and IgM against GMZ2, MSP3 and GLURP R0 were measured by ELISA and compared among the groups, before and after treatment. Results Participants with P. falciparum and hookworm co-infection had significantly higher IgG3 levels to GMZ2 than those with only P. falciparum infection and negative control (p < 0.05) at baseline. Treatment with albendazole led to a significant reduction in IgG3 levels against both GMZ2 and GLURP R0. Similarly, IgM and IgG1 levels against MSP3 also decreased following deworming treatment. Conclusion Individuals with co-infection had higher antibody responses to GMZ2 antigen. Treatment of hookworm/malaria co-infection resulted in a reduction in antibody responses against GMZ2 and constituent antigens after albendazole treatment. Thus, hookworm infection and treatment could have a potential implication on malaria vaccine efficacy.
Collapse
Affiliation(s)
- Benjamin Amoani
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ben Gyan
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Emmanuel Kwasi Abu
- Department of Optometry, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Precious Barnes
- Department of Physician Assistant, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tracy Sarkodie-Addo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Benjamin Ahenkorah
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Medical Laboratory Science, Bolgatanga Technical University, Bolgatanga, Upper East Region, Ghana
| | - Christian Sewor
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Cappello
- Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
9
|
Houmsou RS, Wama BE, Agere H, Uniga JA, Jerry TJ, Azuaga P, Amuta EU, Kela SL. Diagnostic accuracy of Schistosoma ICT IgG-IgM and comparison to other used techniques screening urinary schistosomiasis in Nigeria. ADVANCES IN LABORATORY MEDICINE 2021; 2:71-86. [PMID: 37359201 PMCID: PMC10197290 DOI: 10.1515/almed-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 06/28/2023]
Abstract
Objectives Schistosomiasis is a blood fluke parasitic illness affecting human lives in rural endemic areas. This study evaluated the performance of Schistosoma ICT Ig G - IgM for screening urinary schistosomiasis in Nigeria. Methods Three hundred and seventy four (374) urine samples were examined. Reagent strips, urine filtration and Schistosoma ICT Ig G - IgM were used for analysis. Schistosoma ICT Ig G - IgM used 2 mL of each serum for serological examination. Then, 3 mL of each preserved serum was sent to LDBIO Diagnostics, France for re-examination with Schistosoma ICT IgG-IgM and confirmation with SCHISTO Western blot (WB) IgG. The performance of the index tests was determined using sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and positive likelihood ratio (PLR). The Youden index (YI) and diagnostic accuracy (DA) were used to determine the accuracy of each test. The statistical significance was at p-value ≤0.05. Results The test had a sensitivity of 94.9%, specificity of 63.9%, positive predictive value of 72.4%, negative predictive value of 92.6%, and positive likelihood ratio of 2.62. Schistosoma ICT Ig G - IgM had a good Cohen's kappa index (κ=0.68), good Youden index (YI=0.58) and good diagnostic accuracy (DA=0.78). Conclusions Schistosoma ICT Ig G - IgM has proven to be the best technique for the screening of urinary schistosomiasis in Nigeria.
Collapse
Affiliation(s)
| | - Binga Emmanuel Wama
- Department of Biological Sciences, Taraba State University, Jalingo, Nigeria
| | - Hemen Agere
- Department of Biological Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria
| | - John Ador Uniga
- Department of Paediatric Unit, Federal Medical Centre, Jalingo, Taraba State, Nigeria
| | - Timothy Jerry Jerry
- Department of Biological Sciences, Taraba State University, Jalingo, Nigeria
| | - Paul Azuaga
- Department of Biological Sciences, Taraba State University, Jalingo, Nigeria
| | - Elizabeth Une Amuta
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State, Nigeria
| | - Santaya Larit Kela
- Department of Biological Sciences, Federal University Kashere, Gombe, Gombe State, Nigeria
| |
Collapse
|
10
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Prevalence and Risk Factors Associated with S. haematobium Egg Excretion during the Dry Season, Six Months following Mass Distribution of Praziquantel (PZQ) in 2017 in the Bafia Health Area, South West Region Cameroon: A Cross-Sectional Study. J Parasitol Res 2019; 2019:4397263. [PMID: 31354982 PMCID: PMC6633961 DOI: 10.1155/2019/4397263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background A selective population mass drug administration of PZQ involving school-aged children was carried out in the Bafia Health Area in April 2017. This study investigated the prevalence, intensity, and factors associated with S. haematobium egg excretion in this foci during the dry season, six months after the chemotherapy campaign. Methods A cross-sectional study including 1001 consenting individuals (aged 3-62 years) was carried out in three localities (Ikata, Bafia, and Munyenge) in the Bafia Health Area between November 2017 and January 2018. Information on sociodemographic, stream usage, and contact behaviour was documented. Schistosoma haematobium ova in urine were detected using membrane filtration technique. Results The prevalence of S. haematobium egg excretion was 8% with a higher level recorded in Munyenge (13.2%) than Ikata (7.5%) and Bafia (2.8%). The difference was significant (p < 0.001). Equally, Munyenge had the highest infection intensity (36.36 range: 2-200) when compared with Ikata (16.25 range: 2-57) and Bafia (8.0 range: 0-8). Although the age group (5–15 years) was significantly (p < 0.001) associated with more exposure to infested water, this group was less likely (OR: 0.42 95% CI: 0.19-0.91) associated with S. haematobium egg excretion. The risk of egg excretion increased by 4.79 times (95% CI: 2.20-10.41) and 3.68 times (95% CI: 1.59-8.54) among residents in Munyenge and Ikata, respectively. Similarly, frequency to the stream (> thrice/day) was significantly higher (χ2 = 58.73; p < 0.001) in Munyenge. Frequent contact (three visits/day) with stream correlated with highest odds of egg excretion (OR: 8.43 95% CI: 3.71-19.13). Conclusion The prevalence of S. haematobium egg excretion was low during the dry season. This was most likely attributed to the preventive campaign with PZQ and may parallel low transmission potentials in infested waters during this period.
Collapse
|
12
|
Chisango TJ, Ndlovu B, Vengesai A, Nhidza AF, Sibanda EP, Zhou D, Mutapi F, Mduluza T. Benefits of annual chemotherapeutic control of schistosomiasis on the development of protective immunity. BMC Infect Dis 2019; 19:219. [PMID: 30832614 PMCID: PMC6398226 DOI: 10.1186/s12879-019-3811-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a devastating parasitic disease. The mainstay of schistosomiasis control is by praziquantel treatment. The study aimed to determine benefits of annual chemotherapy of schistosomiasis on development of protective immunity in school children in a selected endemic rural area in Zimbabwe. METHODS Urine specimens from 212 school children (7-13 years) were collected and examined to determine prevalence, intensity and reinfection of S.haematobium at baseline, 6 weeks and 2 years following annual rounds of praziquantel treatment. Blood samples from the participants were assayed for total and S. haematobium (Sh13)-specific antibodies before and 2 years after annual rounds of treatment. RESULTS Annual treatment reduced the prevalence of S. haematobium infection (p < 0.05) from 23.1% at baseline to 0.47% after 2 years. Overall cure rate was 97.8%. Intensity of infection declined (p < 0.05) from 15.9 eggs/10 ml urine at baseline to 2 eggs/10 ml urine. After two years, overall rate of reinfection was 0.96%. At baseline, total IgG4 was higher in S. haematobium-infected children (p = 0.042) ,while all other immunoglobulins were within normal ranges. There was an increase in total IgG2 (p = 0.044) levels and a decrease in total IgG4 (p = 0.031) levels 2 years post-treatment; and no significant changes in other total immunoglobulins. Schistosoma-infected children at baseline showed an increase in anti-Sh13 IgG1 (p = 0.005) and a decrease in Sh13 IgG4 levels (p = 0.012) following treatment. CONCLUSION Annual praziquantel treatment delivered to school children over 2 years significantly reduce prevalence, intensity of infection and reinfection of S. haematobium infection. Treatment was also observed to cause a reduction in schistosome-specific blocking IgG4 and an increase in Schistosoma-specific protecting IgG1.
Collapse
Affiliation(s)
- Tawanda J Chisango
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Arthur Vengesai
- Biochemistry Department, University of Zimbabwe, 630 Churchill Ave, Mount Pleasant, Harare, Zimbabwe
| | - Agness Farai Nhidza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Edson P Sibanda
- Scientific and Industrial Research and Development Centre, 1574 Alpes Road, Box, Harare, 6640, Zimbabwe
| | - Danai Zhou
- Medical Laboratory Sciences, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Takafira Mduluza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa. .,Biochemistry Department, University of Zimbabwe, 630 Churchill Ave, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
13
|
Ajibola O, Rowan AD, Ogedengbe CO, Mshelia MB, Cabral DJ, Eze AA, Obaro S, Belenky P. Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Sci Rep 2019; 9:829. [PMID: 30696838 PMCID: PMC6351658 DOI: 10.1038/s41598-018-36709-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Urogenital schistosomiasis is a neglected tropical disease caused by the parasite Schistosoma haematobium, which resides in the vasculature surrounding the urogenital system. Previous work has suggested that helminthic infections can affect the intestinal microbiome, and we hypothesized that S. haematobium infection could result in an alteration of immune system-microbiota homeostasis and impact the composition of the gut microbiota. To address this question, we compared the fecal microbiomes of infected and uninfected schoolchildren from the Argungu Local Government Area of Kebbi State, Nigeria, detecting significant differences in community composition between the two groups. Most remarkably, we observed a decreased abundance of Firmicutes and increased abundance of Proteobacteria - a shift in community structure which has been previously associated with dysbiosis. More specifically, we detected a number of changes in lower taxa reminiscent of inflammation-associated dysbiosis, including decreases in Clostridiales and increases in Moraxellaceae, Veillonellaceae, Pasteurellaceae, and Desulfovibrionaceae. Functional potential analysis also revealed an enrichment in orthologs of urease, which has been linked to dysbiosis and inflammation. Overall, our analysis indicates that S. haematobium infection is associated with perturbations in the gut microbiota and may point to microbiome disruption as an additional consequence of schistosome infection.
Collapse
Affiliation(s)
- Olumide Ajibola
- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria.
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| | - Aislinn D Rowan
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Clement O Ogedengbe
- Department of Medical Biochemistry, College of Medicine, University of Nigeria - Enugu Campus, Enugu, Nigeria
| | - Mari B Mshelia
- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Damien J Cabral
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Anthonius A Eze
- Department of Medical Biochemistry, College of Medicine, University of Nigeria - Enugu Campus, Enugu, Nigeria
| | - Stephen Obaro
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- International Foundation Against Infectious Diseases in Nigeria, Department of Pediatrics, Bayero University Kano, Kano, Nigeria
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Fukushige M, Mutapi F, Woolhouse ME. Population level changes in schistosome-specific antibody levels following chemotherapy. Parasite Immunol 2019; 41:e12604. [PMID: 30467873 PMCID: PMC6492179 DOI: 10.1111/pim.12604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
AIMS Previous studies have reported that chemotherapy of schistosomiasis by praziquantel in humans boosts protective antibody responses against S mansoni and S haematobium. A number of studies have reported schistosome-specific antibody levels before and after chemotherapy. Using these reports, a meta-analysis was conducted to identify predictors of population level change in schistosome-specific antibody levels after chemotherapy. METHODS AND RESULTS Following a systematic review, 92 observations from 26 articles published between 1988 and 2013 were included in this study. Observations were grouped by antigen type and antibody isotypes for the classification and regression tree (CART) analysis. The study showed that the change in antibody levels was variable: (a) between different human populations and (b) according to the parasite antigen and antibody isotypes. Thus, while anti-worm responses predominantly increased after chemotherapy, anti-egg responses decreased or did not show a significant trend. The change in antibody levels depended on a combination of age and infection intensity for anti-egg IgA, IgM, IgG1, IgG2 and anti-worm IgM and IgG. CONCLUSION The study results are consistent with praziquantel treatment boosting anti-worm antibody responses. However, there is considerable heterogeneity in post-treatment changes in specific antibody levels that is related to host age and pre-treatment infection intensity.
Collapse
Affiliation(s)
- Mizuho Fukushige
- Present address:
Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Centre for ImmunityInfection & EvolutionCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Francisca Mutapi
- Institute of Immunology and Infection ResearchCentre for ImmunityInfection & EvolutionSchool of Biological SciencesNIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA)University of EdinburghEdinburghUK
| | - Mark E.J. Woolhouse
- Centre for ImmunityInfection & Evolution, and Usher Institute of Population Health Sciences & InformaticsCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
15
|
Ndombi EM, Abudho B, Kittur N, Carter JM, Korir H, Riner DK, Ochanda H, Lee YM, Secor WE, Karanja DM, Colley DG. Effect of four rounds of annual school-wide mass praziquantel treatment for schistosoma mansoni control on schistosome-specific immune responses. Parasite Immunol 2018; 40:e12530. [PMID: 29604074 PMCID: PMC6001474 DOI: 10.1111/pim.12530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
This study evaluated potential changes in antischistosome immune responses in children from schools that received 4 rounds of annual mass drug administration (MDA) of praziquantel (PZQ). In a repeated cross‐sectional study design, 210 schistosome egg‐positive children were recruited at baseline from schools in western Kenya (baseline group). Another 251 children of the same age range were recruited from the same schools and diagnosed with schistosome infection by microscopy (post‐MDA group). In‐vitro schistosome‐specific cytokines and plasma antibody levels were measured by ELISA and compared between the 2 groups of children. Schistosome soluble egg antigen (SEA) and soluble worm antigen preparation (SWAP) stimulated higher IL‐5 production by egg‐negative children in the post‐MDA group compared to the baseline group. Similarly, anti‐SEA IgE levels were higher in egg‐negative children in the post‐MDA group compared to the baseline group. Anti‐SEA and anti‐SWAP IgG4 levels were lower in egg‐negative children in the post‐MDA group compared to baseline. This resulted in higher anti‐SEA IgE/IgG4 ratios for children in the post‐MDA group compared to baseline. These post‐MDA immunological changes are compatible with the current paradigm that treatment shifts immune responses to higher antischistosome IgE:IgG4 ratios in parallel with a potential increase in resistance to reinfection.
Collapse
Affiliation(s)
- E M Ndombi
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.,School of Biological Sciences, University of Nairobi, Nairobi, Kenya.,Department of Pathology, Kenyatta University, Nairobi, Kenya
| | - B Abudho
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.,Department of Biomedical Sciences, Maseno University, Maseno, Kenya
| | - N Kittur
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - J M Carter
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - H Korir
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - D K Riner
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - H Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Y-M Lee
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W E Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D M Karanja
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - D G Colley
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Abstract
Schistosomiasis affects over 200 million people worldwide, most of whom are children. Research and control strategies directed at preschool-aged children (PSAC), i.e., ≤5 years old, have lagged behind those in older children and adults. With the recent WHO revision of the schistosomiasis treatment guidelines to include PSAC, and the recognition of gaps in our current knowledge on the disease and its treatment in this age group, there is now a concerted effort to address these shortcomings. Global and national schistosome control strategies are yet to include PSAC in treatment schedules. Maximum impact of schistosome treatment programmes will be realised through effective treatment of PSAC. In this review, we (i) discuss the current knowledge on the dynamics and consequences of paediatric schistosomiasis and (ii) identify knowledge and policy gaps relevant to these areas and to the successful control of schistosome infection and disease in this age group. Herein, we highlight risk factors, immune mechanisms, pathology, and optimal timing for screening, diagnosis, and treatment of paediatric schistosomiasis. We also discuss the tools required for treating schistosomiasis in PSAC and strategies for accessing them for treatment.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- * E-mail:
| | - Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Abebe F, Belay M, Legesse M, K. L. M. C. F, Ottenhoff THM. IgA and IgG against Mycobacterium tuberculosis Rv2031 discriminate between pulmonary tuberculosis patients, Mycobacterium tuberculosis-infected and non-infected individuals. PLoS One 2018; 13:e0190989. [PMID: 29373577 PMCID: PMC5786301 DOI: 10.1371/journal.pone.0190989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
As part of a major project to investigate protective and diagnostic immune markers against tuberculosis (TB), we measured antibody isotype responses to Mycobacterium tuberculosis (Mtb) antigens (LAM, Rv2031, and HBHA) in cohorts of 149 pulmonary tuberculosis patients (PTBP), 148 household contacts (HHCs), and 68 community controls (CCs) in an endemic setting. ELISA was used to measure levels of IgA, IgG, and IgM from sera of cohorts at baseline, and at 6 and 12 months from entry. The results show that there were significant differences in IgA, IgG, and IgM responses to the different antigens and in the three cohorts. At baseline, the level of IgM against RV2031 and LAM did not vary between cohorts, but the levels of IgA and IgG against Rv2031 were significantly higher in PTB patients than HHCs and CCs, followed by HHCs, and the lowest in CCs. In patients, there was a significant variation in antibody responses before and after chemotherapy. The levels of IgA and IgG against HBHA, and IgA against Rv2031 decreased significantly and remained low, while IgA and IgG against LAM increased significantly and remained high following chemotherapy. However, the levels of IgM against Rv2031 and LAM increased at 6 months but decreased again at 12 months. IgM against HBHA did not show any significant variation before and after chemotherapy. Similarly, there were also significant variations in antibody responses in HHCs over time. Our results show that there are significant variations in IgA, IgG and IgM responses to the different antigens and in the three cohorts, implying that not all antibody isotype responses are markers of clinical TB. In addition, the current and previous studies consistently show that IgA and IgG against Rv2031 discriminate between clinical disease, Mtb-infected and non-infected individuals.
Collapse
Affiliation(s)
- Fekadu Abebe
- University of Oslo, Faculty of Medicine, Institute of Health and Society, Department of Community Medicine and Global health, Oslo, Norway
| | - Mulugeta Belay
- Center for Immuno-biology, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mengistu Legesse
- Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Franken K. L. M. C.
- Department of Infectious Diseases, Leiden Medical Center, Leiden, the Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Immunohistochemical Investigations of Treatment with Ro 13-3978, Praziquantel, Oxamniquine, and Mefloquine in Schistosoma mansoni-Infected Mice. Antimicrob Agents Chemother 2017; 61:AAC.01142-17. [PMID: 28971860 DOI: 10.1128/aac.01142-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
To date, there is only one drug in use, praziquantel, to treat more than 250 million people afflicted with schistosomiasis, a debilitating parasitic disease. The aryl hydantoin Ro 13-3978 is a promising drug candidate with in vivo activity superior to that of praziquantel against both adult and juvenile Schistosoma mansoni organisms. Given the drug's contrasting low activity in vitro and the timing of its onset of action in vivo, it was postulated that immune-assisted parasite clearance could contribute to the drug's in vivo activity. We undertook histopathological studies to investigate this hypothesis. Infected mice were treated with an effective dose of Ro 13-3978 (100 mg/kg of body weight) and were dissected before and after the drug's in vivo onset of action. The veins and livers were excised, paraffin-embedded, and sectioned, and macrophages (IBA-1), neutrophils (Neutro), B cells (CD45R), and T cells (CD3) were stained by immunohistochemistry. For comparison, samples from infected untreated mice and mice treated with effective doses of praziquantel (400 mg/kg), oxamniquine (200 mg/kg), and mefloquine (200 mg/kg) were examined. At 24 h after treatment with Ro 13-3978, significant macrophage recruitment to the veins was observed, along with a modest increase in circulating B cells, and at 48 h, neutrophils and T cells are also present. Treatment with praziquantel and oxamniquine showed similar patterns of recruitment but with comparatively higher cellular levels, whereas mefloquine treatment resulted in minimal cell recruitment until 3 days posttreatment. Our study sheds light on the immediate immune responses to antischistosomal treatment in mice and provides further insight into immune effector mechanisms of schistosome clearance.
Collapse
|
19
|
Urogenital Schistosomiasis—Evidence-Based Benefits of Treatment Initiated Early During Childhood. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
The Interdependence between Schistosome Transmission and Protective Immunity. Trop Med Infect Dis 2017; 2:tropicalmed2030042. [PMID: 30270899 PMCID: PMC6082113 DOI: 10.3390/tropicalmed2030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023] Open
Abstract
Mass drug administration (MDA) for control of schistosomiasis is likely to affect transmission dynamics through a combination of passive vaccination and reduction of local transmission intensity. This is indicated in phenomenological models of immunity and the impact of MDA, yet immunity parameters in these models are not validated by empirical data that reflects protective immunity to reinfection. There is significant empirical evidence supporting the role of IgE in acquired protective immunity. This is proposed to be a form of delayed concomitant immunity, driven at least in part by protective IgE responses to the tegument allergen-like (TAL) family of proteins. Specific questions have arisen from modeling studies regarding the strength and duration of the protective immune response. At present, field studies have not been specifically designed to address these questions. There is therefore a need for field studies that are explicitly designed to capture epidemiological effects of acquired immunity to elucidate these immunological interactions. In doing so, it is important to address the discourse between theoretical modelers and immuno-epidemiologists and develop mechanistic models that empirically define immunity parameters. This is of increasing significance in a climate of potential changing transmission dynamics following long-term implementation of MDA.
Collapse
|
21
|
Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass drug administration era. THE LANCET. INFECTIOUS DISEASES 2017; 17:e42-e48. [PMID: 27988094 PMCID: PMC7614913 DOI: 10.1016/s1473-3099(16)30475-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
Abstract
Profound changes are occurring in the epidemiology of schistosomiasis, a neglected tropical disease caused by a chronic infection with parasitic helminths of the genus Schistosoma. Schistosomiasis currently affects 240 million people worldwide, mostly in sub-Saharan Africa. The advent and proliferation of mass drug administration (MDA) programmes using the drug praziquantel is resulting in substantial increases in the number of people, mainly children aged 6-14 years, being effectively treated, approaching the point where most people in endemic areas will receive one or more treatments during their lifetimes. Praziquantel treatment not only cures infection but also frees the host from the powerful immunomodulatory action of the parasites. The treatment simultaneously enhances exposure to key parasite antigens, accelerating the development of protective acquired immunity, which would take many years to develop naturally. At a population level, these changes constitute a substantial alteration to schistosome ecology in that the parasites are more likely to be exposed not only to praziquantel directly but also to hosts with altered immune phenotypes. Here, we consider the consequences of this for schistosome biology, immunoepidemiology, and public health. We anticipate that there could be substantial effects on chronic pathology, natural immunity, vaccine development strategies, immune disorders, and drug efficacy. This makes for a complex picture that will only become apparent over decades. We recommend careful monitoring and assessment to accompany the roll-out of MDA programmes to ensure that the considerable health benefits to populations are achieved and sustained.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK; Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Rick Maizels
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK; Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow UK
| | - Alan Fenwick
- Schistosomiasis Control Initiative, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Mark Woolhouse
- Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK; Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Abstract
SUMMARYSchistosomiasis, commonly known as bilharzia, is a parasitic disease prevalent in Africa, Asia and South America. The majority of the cases occur in Sub-Saharan Africa where schistosomiasis is a major public health problem impacting on child health and development as well as adult health when infections become chronic. Control of schistosomiasis is by treatment of infected people with the antihelminthic drug praziquantel. Current schistosome control programmes advocated by the World Health Assembly in 2001 are aimed at regular school-based integrated deworming strategies in order to reduce development of severe morbidity, promote school health and to improve cognitive potential of children. Several countries in Africa have now embarked on national scale deworming programmes treating millions of children exposed to schistosomiasis in endemic areas without prior diagnosis of infection through mass drug administration programmes. Implementing such control programmes requires a concerted effort between scientists, policy makers, health practitioners and several other stake holders and of course a receptive community. This paper considers the contributions to global schistosome control efforts made by research conducted in Zimbabwe and the historical context and developments leading to the national schistosomiasis control programme in Zimbabwe giving an example of Getting Research into Policy and Practice.
Collapse
|
23
|
Truscott JE, Turner HC, Farrell SH, Anderson RM. Soil-Transmitted Helminths: Mathematical Models of Transmission, the Impact of Mass Drug Administration and Transmission Elimination Criteria. ADVANCES IN PARASITOLOGY 2016; 94:133-198. [PMID: 27756454 DOI: 10.1016/bs.apar.2016.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Infections caused by soil-transmitted helminthias (STHs) affect over a billion people worldwide, causing anaemia and having a large social and economic impact through poor educational outcomes. They are identified in the World Health Organization (WHO) 2020 goals for neglected tropical diseases as a target for renewed effort to ameliorate their global public health burden through mass drug administration (MDA) and water and hygiene improvement. In this chapter, we review the underlying biology and epidemiology of the three causative intestinal nematode species that are mostly considered under the STH umbrella term. We review efforts to model the transmission cycle of these helminths in populations and the effects of preventative chemotherapy on their control and elimination. Recent modelling shows that the different epidemiological characteristics of the parasitic nematode species that make up the STH group can lead to quite distinct responses to any given form of MDA. When connected with models of treatment cost-effectiveness, these models are potentially a powerful tool for informing public policy. A number of shortcomings are identified; lack of critical types of data and poor understanding of diagnostic sensitivities hamper efforts to test and hence improve models.
Collapse
Affiliation(s)
- J E Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; School of Public Health, Imperial College London, London, United Kingdom
| | - H C Turner
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; School of Public Health, Imperial College London, London, United Kingdom
| | - S H Farrell
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; School of Public Health, Imperial College London, London, United Kingdom
| | - R M Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Crellen T, Walker M, Lamberton PHL, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP. Reduced Efficacy of Praziquantel Against Schistosoma mansoni Is Associated With Multiple Rounds of Mass Drug Administration. Clin Infect Dis 2016; 63:1151-1159. [PMID: 27470241 PMCID: PMC5064161 DOI: 10.1093/cid/ciw506] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/17/2016] [Indexed: 01/03/2023] Open
Abstract
Background. Mass drug administration (MDA) with praziquantel is the cornerstone of schistosomiasis control in sub-Saharan Africa. The effectiveness of this strategy is dependent on the continued high efficacy of praziquantel; however, drug efficacy is rarely monitored using appropriate statistical approaches that can detect early signs of wane. Methods. We conducted a repeated cross-sectional study, examining children infected with Schistosoma mansoni from 6 schools in Uganda that had previously received between 1 and 9 rounds of MDA with praziquantel. We collected up to 12 S. mansoni egg counts from 414 children aged 6–12 years before and 25–27 days after treatment with praziquantel. We estimated individual patient egg reduction rates (ERRs) using a statistical model to explore the influence of covariates, including the number of prior MDA rounds. Results. The average ERR among children within schools that had received 8 or 9 previous rounds of MDA (95% Bayesian credible interval [BCI], 88.23%–93.64%) was statistically significantly lower than the average in schools that had received 5 rounds (95% BCI, 96.13%–99.08%) or 1 round (95% BCI, 95.51%–98.96%) of MDA. We estimate that 5.11%, 4.55%, and 16.42% of children from schools that had received 1, 5, and 8–9 rounds of MDA, respectively, had ERRs below the 90% threshold of optimal praziquantel efficacy set by the World Health Organization. Conclusions. The reduced efficacy of praziquantel in schools with a higher exposure to MDA may pose a threat to the effectiveness of schistosomiasis control programs. We call for the efficacy of anthelmintic drugs used in MDA to be closely monitored.
Collapse
Affiliation(s)
- Thomas Crellen
- Department of Infectious Disease Epidemiology and the London Centre for Neglected Tropical Disease Research, Imperial College London, St Mary's Campus Wellcome Trust Sanger Institute, Hinxton Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hertfordshire
| | - Martin Walker
- Department of Infectious Disease Epidemiology and the London Centre for Neglected Tropical Disease Research, Imperial College London, St Mary's Campus
| | - Poppy H L Lamberton
- Department of Infectious Disease Epidemiology and the London Centre for Neglected Tropical Disease Research, Imperial College London, St Mary's Campus Institute of Biodiversity, Animal Health & Comparative Medicine and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, United Kingdom
| | | | | | | | - Joanne P Webster
- Department of Infectious Disease Epidemiology and the London Centre for Neglected Tropical Disease Research, Imperial College London, St Mary's Campus Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hertfordshire
| |
Collapse
|
25
|
Anderson RM, Turner HC, Farrell SH, Truscott JE. Studies of the Transmission Dynamics, Mathematical Model Development and the Control of Schistosome Parasites by Mass Drug Administration in Human Communities. ADVANCES IN PARASITOLOGY 2016; 94:199-246. [PMID: 27756455 DOI: 10.1016/bs.apar.2016.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is global in extent within developing countries, but more than 90% of the at-risk population lives in sub-Saharan Africa. In total, 261 million people are estimated to require preventive treatment. However, with increasing drug availability through donation, the World Health Organization has set a goal of increasing coverage to 75% of at-risk children in endemic countries and elimination in some regions. In this chapter, we discuss key biological and epidemiological processes involved in the schistosome transmission cycle and review the history of modelling schistosomiasis and the impact of mass drug administration, including both deterministic and stochastic approaches. In particular, we look at the potential impact of the WHO 2020 schistosomiasis treatment goals.
Collapse
Affiliation(s)
- R M Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - H C Turner
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - S H Farrell
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - J E Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|
26
|
IFN-γ and IgA against non-methylated heparin-binding hemagglutinin as markers of protective immunity and latent tuberculosis: Results of a longitudinal study from an endemic setting. J Infect 2015; 72:189-200. [PMID: 26518056 DOI: 10.1016/j.jinf.2015.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heparin-binding hemagglutinin (HBHA) is a surface protein involved in epithelial attachment and extrapulmonary dissemination of Mycobacterium tuberculosis. HBHA is attracting increasing attention for its vaccine and diagnostic potential. In a longitudinal study, we investigated non-methylated, recombinant HBHA-specific cytokine and antibody profiles in cohorts of TB patients, their contacts and community controls in an endemic setting. METHODS Whole blood assay was done at baseline, 6 and 12 months in patients and contacts, and at entry in controls. ELISA was used to measure IFN-γ, TNF-α and IL-10 (from supernatants), and IgG, IgM and IgA (from sera). RESULTS Fifty-three percent of controls and 72.1% of contacts were QFT-GIT positive. Baseline IFN-γ was significantly higher in community controls and contacts compared to untreated TB patients (p < 0.0001). Controls had significantly higher IgA and lower IgM compared to both untreated TB patients and contacts (p < 0.0001). IL-10 was significantly higher in untreated TB patients compared to contacts and controls (p < 0.0001). In treated TB patients, IFN-γ significantly increased (p < 0.0001) whereas IL-10 significantly decreased (p < 0.001). CONCLUSION This study reports for the first time that anti-HBHA IgA could have the potential as a biomarker of protective immunity. In addition, non-methylated, recombinant HBHA-induced IFN-γ could be used as a biomarker of protective immunity and latent TB.
Collapse
|
27
|
Bah GS, Tanya VN, Makepeace BL. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi. Vet Parasitol 2015; 212:25-34. [PMID: 26100152 DOI: 10.1016/j.vetpar.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 11/26/2022]
Abstract
Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult worm viability, dermal microfilarial density, anti-onchocystatin IgG in sera, and eosinophil counts in nodules. Only the gold-standard antibiotic regimen achieved significant killing of adult worms, a profound reduction in microfilarial load, and a sustained increase in local tissue eosinophilia. A small but statistically significant elevation in anti-onchocystatin IgG was observed for several weeks after immunisation in the immunotherapy-only group, but the antibody response in the immunochemotherapy group was more variable. At 12 weeks post-treatment, only a transient and non-significant increase in eosinophil counts was apparent in the immunochemotherapy group. We conclude that the addition of onchocystatin immunotherapy to a sub-lethal antibiotic regimen is insufficient to induce adulticidal activity, although with booster immunisations or the targeting of additional filarial immunomodulatory proteins, the efficacy of this strategy could be strengthened.
Collapse
Affiliation(s)
- Germanus S Bah
- Institute of Infection & Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool Science Park IC2, Liverpool L3 5RF, UK; Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP 65 Ngaoundéré, Adamawa Region, Cameroon
| | - Vincent N Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP 65 Ngaoundéré, Adamawa Region, Cameroon; Cameroon Academy of Sciences, BP 1457 Yaoundé, Centre Region, Cameroon
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool Science Park IC2, Liverpool L3 5RF, UK.
| |
Collapse
|
28
|
Pearson MS, Becker L, Driguez P, Young ND, Gaze S, Mendes T, Li XH, Doolan DL, Midzi N, Mduluza T, McManus DP, Wilson RA, Bethony JM, Nausch N, Mutapi F, Felgner PL, Loukas A. Of monkeys and men: immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates. Front Immunol 2015; 6:213. [PMID: 25999951 PMCID: PMC4419842 DOI: 10.3389/fimmu.2015.00213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022] Open
Abstract
Schistosoma haematobium affects more than 100 million people throughout Africa and is the causative agent of urogenital schistosomiasis. The parasite is strongly associated with urothelial cancer in infected individuals and as such is designated a group I carcinogen by the International Agency for Research on Cancer. Using a protein microarray containing schistosome proteins, we sought to identify antigens that were the targets of protective IgG1 immune responses in S. haematobium-exposed individuals that acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment. Numerous antigens with known vaccine potential were identified, including calpain (Smp80), tetraspanins, glutathione-S-transferases, and glucose transporters (SGTP1), as well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in exposed individuals who did not acquire DIR. To complement our human subjects study, we screened for antigen targets of rhesus macaques rendered resistant to S. japonicum by experimental infection followed by self-cure, and discovered a number of new and known vaccine targets, including major targets recognized by our human subjects. This study has further validated the immunomics-based approach to schistosomiasis vaccine antigen discovery and identified numerous novel potential vaccine antigens.
Collapse
Affiliation(s)
- Mark S Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University , Cairns, QLD , Australia
| | - Luke Becker
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University , Cairns, QLD , Australia
| | - Patrick Driguez
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Neil D Young
- University of Melbourne , Melbourne, VIC , Australia
| | - Soraya Gaze
- Centro de Pesquisas Rene Rachou, Oswaldo Cruz Foundation , Belo Horizonte , Brazil
| | - Tiago Mendes
- Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Xiao-Hong Li
- National Institute of Parasitic Diseases , Shanghai , China
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Nicholas Midzi
- National Institutes of Health Research , Harare , Zimbabwe
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe , Harare , Zimbabwe
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - R Alan Wilson
- Department of Biology, University of York , York , UK
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University , Washington, DC , USA
| | | | | | | | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University , Cairns, QLD , Australia
| |
Collapse
|
29
|
Abstract
Schistosomiasis is a chronic disease that affects ∼200 million people. The extended health impact of the disease has been estimated to exceed that of malaria or tuberculosis and to be nearer to that of HIV/AIDS. Within endemic areas, children carry the heaviest burden of infection. Infection/disease is controlled by the treatment of infected subjects with the anthelminthic drug praziquantel. Global initiatives from Partners of Parasite Control, including the World Health Organization (WHO), advocate regular school-based deworming strategies to reduce the development of severe morbidity, promote school-child health and development, and improve the cognitive potential of children. Until recently, preschool-aged children were excluded from schistosome treatment, creating a health inequity in affected populations. In 2010, the WHO updated their recommendations for the treatment of schistosomiasis in preschool-aged children (ie, children aged ≤5 years). This change was the culmination of several decades of research on schistosome epidemiology, immunology, and pathology in this age group. The recent development of a pediatric formulation of praziquantel (soon to enter clinical trials) should advance control efforts in preschool-aged children, with the goal of including these children in preventative chemotherapy (as currently occurs for soil-transmitted helminths). This review discusses the research work supporting the WHO revision of recommendations for treating preschool-aged children, as well as current barriers and knowledge gaps in pediatric schistosomiasis control.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Nausch N, Appleby LJ, Sparks AM, Midzi N, Mduluza T, Mutapi F. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 2015; 9:e0003627. [PMID: 25799270 PMCID: PMC4370749 DOI: 10.1371/journal.pntd.0003627] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Group 2 Innate lymphoid cells (ILC2s) are innate cells that produce the TH2 cytokines IL-5 and IL-13. The importance of these cells has recently been demonstrated in experimental models of parasitic diseases but there is a paucity of data on ILC2s in the context of human parasitic infections and in particular of the blood dwelling parasite Schistosoma haematobium. METHODOLOGY/PRINCIPAL FINDINGS In this case-control study human peripheral blood ILC2s were analysed in relation to infection with the helminth parasite Schistosoma haematobium. Peripheral blood mononuclear cells of 36 S. haematobium infected and 36 age and sex matched uninfected children were analysed for frequencies of ILC2s identified as Lin-CD45+CD127+CD294+CD161+. ILC2s were significantly lower particularly in infected children aged 6-9 years compared to healthy participants. Curative anti-helminthic treatment resulted in an increase in levels of the activating factor TSLP and restoration of ILC2 levels. CONCLUSION This study demonstrates that ILC2s are diminished in young helminth infected children and restored by removal of the parasites by treatment, indicating a previously undescribed association between a human parasitic infection and ILC2s and suggesting a role of ILC2s before the establishment of protective acquired immunity in human schistosomiasis.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Laura J. Appleby
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Alexandra M. Sparks
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Nicholas Midzi
- National Institute of Health Research, Causeway, Harare, Zimbabwe
| | - Takafira Mduluza
- University of Zimbabwe, Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Appleby LJ, Nausch N, Heard F, Erskine L, Bourke CD, Midzi N, Mduluza T, Allen JE, Mutapi F. Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation. Front Immunol 2015; 6:51. [PMID: 25741337 PMCID: PMC4332365 DOI: 10.3389/fimmu.2015.00051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/27/2015] [Indexed: 01/30/2023] Open
Abstract
The CD3ζ forms part of the T cell receptor (TCR) where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models, helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium, which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs) from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p < 0.05), consistent with downregulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p < 0.05) after allowing for confounding variables (host age, sex, and infection level). CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.
Collapse
Affiliation(s)
- Laura J Appleby
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Norman Nausch
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Francesca Heard
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Louise Erskine
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Claire D Bourke
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Nicholas Midzi
- National Institutes of Health Research , Harare , Zimbabwe
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe , Harare , Zimbabwe
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
32
|
Colley DG, Secor WE. Immunology of human schistosomiasis. Parasite Immunol 2014; 36:347-57. [PMID: 25142505 PMCID: PMC4278558 DOI: 10.1111/pim.12087] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
There is a wealth of immunologic studies that have been carried out in experimental and human schistosomiasis that can be classified into three main areas: immunopathogenesis, resistance to reinfection and diagnostics. It is clear that the bulk of, if not all, morbidity due to human schistosomiasis results from immune-response-based inflammation against eggs lodged in the body, either as regulated chronic inflammation or resulting in fibrotic lesions. However, the exact nature of these responses, the antigens to which they are mounted and the mechanisms of the critical regulatory responses are still being sorted out. It is also becoming apparent that protective immunity against schistosomula as they develop into adult worms develops slowly and is hastened by the dying of adult worms, either naturally or when they are killed by praziquantel. However, as with anti-egg responses, the responsible immune mechanisms and inducing antigens are not clearly established, nor are any potential regulatory responses known. Finally, a wide variety of immune markers, both cellular and humoral, can be used to demonstrate exposure to schistosomes, and immunologic measurement of schistosome antigens can be used to detect, and thus diagnose, active infections. All three areas contribute to the public health response to human schistosome infections.
Collapse
Affiliation(s)
- D G Colley
- Department of Microbiology, Center for Tropical and Emerging Global Disease, The University of Georgia, Athens, GA, USA
| | | |
Collapse
|
33
|
No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in mwea, central kenya, a heavy transmission area. PLoS Negl Trop Dis 2014; 8:e3221. [PMID: 25299057 PMCID: PMC4191953 DOI: 10.1371/journal.pntd.0003221] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Schistosomiasis is a debilitating neglected tropical disease that infects over 200 million people worldwide. To combat this disease, in 2012, the World Health Organization announced a goal of reducing and eliminating transmission of schistosomes. Current control focuses primarily on mass drug administration (MDA). Therefore, we monitored transmission of Schistosoma mansoni via fecal egg counts and genetic markers in a typical school based MDA setting to ascertain the actual impacts of MDA on the targeted schistosome population. METHODS For 4 years, we followed 67 children enrolled in a MDA program in Kenya. Infection status and egg counts were measured each year prior to treatment. For 15 of these children, for which there was no evidence of acquired resistance, meaning they became re-infected following each treatment, we collected microsatellite genotype data from schistosomes passed in fecal samples as a representation of the force of transmission between drug treatments. We genotyped a total of 4938 parasites from these children, with an average of 329.2 parasites per child for the entire study, and an average of 82.3 parasites per child per annual examination. We compared prevalence, egg counts, and genetic measures including allelic richness, gene diversity (expected heterozygosity), adult worm burdens and effective number of breeders among time points to search for evidence for a change in transmission or schistosome populations during the MDA program. FINDINGS We found no evidence of reduced transmission or schistosome population decline over the course of the program. Although prevalence declined in the 67 children as it did in the overall program, reinfection rates were high, and for the 15 children studied in detail, schistosome egg counts and estimated adult worm burdens did not decline between years 1 and 4, and genetic diversity increased over the course of drug treatment. INTERPRETATION School based control programs undoubtedly improve the health of individuals; however, our data show that in an endemic area, such a program has had no obvious effect on reducing transmission or of significantly impacting the schistosome population as sampled by the children we studied in depth. Results like these, in combination with other sources of information, suggest more integrated approaches for interrupting transmission and significantly diminishing schistosome populations will be required to achieve sustainable control.
Collapse
|
34
|
Wan D, Ludolf F, Alanine DGW, Stretton O, Ali Ali E, Al-Barwary N, Wang X, Doenhoff MJ, Mari A, Fitzsimmons CM, Dunne DW, Nakamura R, Oliveira GC, Alcocer MJC, Falcone FH. Use of humanised rat basophilic leukaemia cell line RS-ATL8 for the assessment of allergenicity of Schistosoma mansoni proteins. PLoS Negl Trop Dis 2014; 8:e3124. [PMID: 25254513 PMCID: PMC4177753 DOI: 10.1371/journal.pntd.0003124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022] Open
Abstract
Background Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites. Methodology/Principal Findings A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line. Conclusion/Significance This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins. Infection with parasitic helminths is characterised by a marked elevation of total and parasite-specific Immunoglobulin E (IgE). It is widely believed that this IgE response has evolved to protect hosts against large metazoan parasites. Such a protective function has been well characterised in particular against members of the genus Schistosoma. However, with a few notable exceptions, the molecular targets of the IgE response and the downstream immunological mechanisms leading to host protection are not well understood. The molecular targets of a specific IgE response are by definition called allergens. While almost 3,000 different allergens, contained in e.g. plant pollen or seeds, moulds or animal materials, have been characterised at the molecular level, and are listed and described in databases such as the Allergome database (www.allergome.org), only a few dozen allergens have been characterised in parasitic helminths. A more detailed understanding of the molecular targets of the anti-helminth IgE response can not only be expected to further our basic understanding of protective immune responses and allergy in general–such knowledge can also be expected to have important repercussions on the production of safe and effective anti-helminthic vaccines. This research describes a novel approach suitable for genome-wide functional identification of allergens in S. mansoni and other parasites, paving the way for the identification of the Schistosoma allergome.
Collapse
Affiliation(s)
- Daniel Wan
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Fernanda Ludolf
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, National Institute of Science and Technology in Tropical Diseases, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel G. W. Alanine
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Owen Stretton
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Eman Ali Ali
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Nafal Al-Barwary
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Xiaowei Wang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Michael J. Doenhoff
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
- Associated Centres for Molecular Allergology, Rome, Italy
| | | | - David W. Dunne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ryosuke Nakamura
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, National Institute of Science and Technology in Tropical Diseases, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos J. C. Alcocer
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Franco H. Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- * E-mail: ;
| |
Collapse
|
35
|
CD16 expression on monocytes in healthy individuals but not schistosome-infected patients is positively associated with levels of parasite-specific IgG and IgG1. PLoS Negl Trop Dis 2014; 8:e3049. [PMID: 25101623 PMCID: PMC4125298 DOI: 10.1371/journal.pntd.0003049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Human IgG1 antibody responses are associated with protection against Schistosoma haematobium infection and are now a target for schistosome vaccine development. This study aimed to investigate the relationship between total IgG and the IgG subclasses and the monocyte IgG receptor, known as FcγRIIIa or CD16, in schistosome exposed people. Systemic levels of schistosome-specific anti-adult worm total IgG and IgG subclass titres were measured by ELISA in 100 individuals from an S. haematobium endemic area in Zimbabwe and, using parametric statistical methods and regression analysis, related to the levels of CD16 expression on individuals' circulating monocytes, determined via flow cytometry. Monocyte CD16 expression rose with parasite-specific total IgG and IgG1 in healthy participants, but not in schistosome infected patients. Similar to parasite-specific IgG and IgG1, CD16 expression in healthy individuals is associated with protection against schistosome infection. This relationship indicates a mechanistic link between the innate and adaptive immune responses to helminth infection in protection against infection. Further understanding the elements of a protective immune response in schistosomiasis may aid in efforts to develop a protective vaccine against this disease. Schistosomiasis is a parasitic disease caused by the parasite Schistosoma spp. Over 240 million people are infected worldwide, mainly in Sub-Saharan Africa, but an efficacious, protective vaccine has yet to be found. Protection against schistosome infection in individuals living in endemic areas is mediated by antibodies. In particular, IgG1 antibody has been shown to be protective against infection in individuals living in endemic areas, and eliciting IgG1 production has become a cornerstone of vaccine development efforts. However, little is known about the mechanisms by which IgG1 induces protection. The cell surface molecule CD16 is an IgG antibody receptor expressed on monocytes and binds preferentially to IgG antibody subclasses. The work presented here thus investigates the relationship between IgG levels and the monocyte CD16 receptor in a population endemically exposed to infection with schistosomes. We present results linking CD16 expression with IgG1 levels, whereby uninfected individuals have a positive relationship between IgG1 and CD16 expression levels, while schistosome infected individuals did not show any statistically significant relationship between the two. Thus we provide evidence to suggest a mechanistic link between the innate and adaptive immune response in parasitic infection, associating monocyte CD16 expression with a protective immune response.
Collapse
|
36
|
Mitchell KM, Mutapi F, Mduluza T, Midzi N, Savill NJ, Woolhouse MEJ. Predicted impact of mass drug administration on the development of protective immunity against Schistosoma haematobium. PLoS Negl Trop Dis 2014; 8:e3059. [PMID: 25079601 PMCID: PMC4117464 DOI: 10.1371/journal.pntd.0003059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/17/2014] [Indexed: 01/08/2023] Open
Abstract
Previous studies suggest that protective immunity against Schistosoma haematobium is primarily stimulated by antigens from dying worms. Praziquantel treatment kills adult worms, boosting antigen exposure and protective antibody levels. Current schistosomiasis control efforts use repeated mass drug administration (MDA) of praziquantel to reduce morbidity, and may also reduce transmission. The long-term impact of MDA upon protective immunity, and subsequent effects on infection dynamics, are not known. A stochastic individual-based model describing levels of S. haematobium worm burden, egg output and protective parasite-specific antibody, which has previously been fitted to cross-sectional and short-term post-treatment egg count and antibody patterns, was used to predict dynamics of measured egg output and antibody during and after a 5-year MDA campaign. Different treatment schedules based on current World Health Organisation recommendations as well as different assumptions about reductions in transmission were investigated. We found that antibody levels were initially boosted by MDA, but declined below pre-intervention levels during or after MDA if protective immunity was short-lived. Following cessation of MDA, our models predicted that measured egg counts could sometimes overshoot pre-intervention levels, even if MDA had had no effect on transmission. With no reduction in transmission, this overshoot occurred if protective immunity was short-lived. This implies that disease burden may temporarily increase following discontinuation of treatment, even in the absence of any reduction in the overall transmission rate. If MDA was additionally assumed to reduce transmission, a larger overshoot was seen across a wide range of parameter combinations, including those with longer-lived protective immunity. MDA may reduce population levels of immunity to urogenital schistosomiasis in the long-term (3-10 years), particularly if transmission is reduced. If MDA is stopped while S. haematobium is still being transmitted, large rebounds (up to a doubling) in egg counts could occur.
Collapse
Affiliation(s)
- Kate M. Mitchell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
- College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Nicholas J. Savill
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
El Ridi R, Tallima H, Dalton JP, Donnelly S. Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases. Front Genet 2014; 5:119. [PMID: 24847355 PMCID: PMC4021144 DOI: 10.3389/fgene.2014.00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Each year schistosomiasis afflicts up to 600 million people in 74 tropical and sub-tropical countries, predominantly in the developing world. Yet we depend on a single drug, praziquantel, for its treatment and control. There is no vaccine available but one is urgently needed especially since praziquantel-resistant parasites are likely to emerge at some time in the future. The disease is caused by several worm species of the genus Schistosoma. These express several classes of papain-like cysteine peptidases, cathepsins B and L, in various tissues but particularly in their gastrodermis where they employ them as digestive enzymes. We have shown that sub-cutaneous injection of recombinant and functionally active Schistosoma mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant protection (up to 73%) against an experimental challenge worm infection in murine models of schistosomiasis. The immune modulating properties of this subcutaneous injection can boost protection levels (up to 83%) when combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP). Here, we discuss these data in the context of the parasite's biology and development, and provide putative mechanism by which the native-like cysteine peptidase induce protective immune responses.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - John P Dalton
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland
| | - Sheila Donnelly
- The i-three Institute, University of Technology at Sydney Ultimo, Sydney, NSW, Australia
| |
Collapse
|
38
|
Osada Y, Anyan WK, Boamah D, Otchere J, Quartey J, Asigbee JR, Bosompem KM, Kojima S, Ohta N. The antibody responses to adult-worm antigens ofSchistosoma haematobium, among infected and resistant individuals from an endemic community in southern Ghana. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 97:817-26. [PMID: 14754494 DOI: 10.1179/000349803225002633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibody responses to antigens from adult Schistosoma haematobium were investigated in an endemic community in Ghana, using microplate-ELISA. The results of a survey of egg output in urine and of a questionnaire-based investigation of water-contact activities were used to select 'endemic normal' (EN) and patently infected (PI) individuals as subjects. The plasma levels of antibodies reacting with the adult-worm antigens were determined and compared and the correlations between these levels and the age, water-contact index and egg output of each subject were evaluated. Compared with the EN subjects, the PI generally had higher levels of anti-worm IgG and IgE but lower levels of anti-worm IgA. When the data for the EN and PI groups were combined, the levels of anti-worm IgG and IgE were found to be positively correlated with egg output and with each other. Whichever the antibody class considered, levels of anti-worm antibodies were never negatively correlated with egg output. These results indicate that anti-worm IgE and IgG could be used as markers to reflect current infection intensity, and that anti-worm antibodies may not act as protective antibodies in the natural course of urinary schistosomiasis.
Collapse
Affiliation(s)
- Y Osada
- Parasitology Unit, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG581, Legon, Ghana.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Immunological consequences of antihelminthic treatment in preschool children exposed to urogenital schistosome infection. J Trop Med 2013; 2013:283619. [PMID: 23840222 PMCID: PMC3687481 DOI: 10.1155/2013/283619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 01/13/2023] Open
Abstract
Urogenital schistosomiasis, due to Schistosoma haematobium, is endemic in sub-Saharan Africa. Control is by targeted treatment with praziquantel but preschool age children are excluded from control programs. Immunological studies on the effect of treatment at this young age are scarce. In light of studies in older individuals showing that praziquantel alters antischistosome immune responses and responses to bystander antigens, this study aims to investigate how these responses would be affected by treatment at this young age. Antibody responses directed against schistosome antigens, Plasmodium falciparum crude and recombinant antigens, and the allergen house dust mite were measured in children aged 3 to 5 years before and 6 weeks after treatment. The change in serological recognition of schistosome proteins was also investigated. Treatment augmented antischistosome IgM and IgE responses. The increase in IgE responses directed against adult worm antigens was accompanied by enhanced antigen recognition by sera from the children. Antibody responses directed against Plasmodium antigens were not significantly affected by praziquantel treatment nor were levels of allergen specific responses. Overall, praziquantel treatment enhanced, quantitatively and qualitatively, the antiworm responses associated with protective immunity but did not alter Plasmodium-specific responses or allergen-specific responses which mediate pathology in allergic disease.
Collapse
|
40
|
Gao SJ, He YY, Liu YJ, Yang GJ, Zhou XN. Field transmission intensity of Schistosoma japonicum measured by basic reproduction ratio from modified Barbour's model. Parasit Vectors 2013; 6:141. [PMID: 23680335 PMCID: PMC3667069 DOI: 10.1186/1756-3305-6-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis japonica, caused by infection with Schistosoma japonicum, is still recognized as a major public health problem in the Peoples' Republic of China. Mathematical modelling of schistosomiasis transmission has been undertaken in order to assess and project the effects of various control strategies for elimination of the disease. Seasonal fluctuations in transmission may have the potential to impact on the population dynamics of schistosomiasis, yet no model of S. japonicum has considered such effects. In this paper, we characterize the transmission dynamics of S. japonicum using a modified version of Barbour's model to account for seasonal variation (SV), and investigate the effectiveness of the control strategy adopted in Liaonan village of Xingzi county, Jiangxi Province. METHODS We use mathematical tools for stability analysis of periodic systems and derive expressions for the basic reproduction ratio of S. japonicum in humans; we parameterise such expressions with surveillance data to investigate the conditions for persistence or elimination of the disease in the study village. We perform numerical simulations and parametric sensitivity analysis to understand local transmission conditions and compare values of the basic reproductive ratio with and without seasonal fluctuations. RESULTS The explicit formula of the basic reproduction ratio for the SV-modified Barbour's model is derived. Results show that the value of the basic reproduction ratio, R0, of Liaonan village, Xingzi county is located between 1.064 and 1.066 (very close to 1), for schistosomiasis transmission during 2006 to 2010, after intensification of control efforts. CONCLUSIONS Our modified version of the Barbour model to account for seasonal fluctuations in transmission has the potential to provide better estimations of infection risk than previous models. Ignoring seasonality tends to underestimate R0 values albeit only marginally. In the absence of simultaneous R0 estimations for villages not under control interventions (such villages do not currently exist in China), it is difficult to assess whether control strategies have had a substantial impact on levels of transmission, as the parasite population would still be able to maintain itself at an endemic level, highlighting the difficulties faced by elimination efforts.
Collapse
Affiliation(s)
- Shu-Jing Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
41
|
FIGUEIREDO JP, OLIVEIRA RR, CARDOSO LS, BARNES KC, GRANT AV, CARVALHO EM, ARAUJO MI. Adult worm-specific IgE/IgG4 balance is associated with low infection levels ofSchistosoma mansoniin an endemic area. Parasite Immunol 2012; 34:604-10. [DOI: 10.1111/pim.12001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Rujeni N, Taylor DW, Mutapi F. Human schistosome infection and allergic sensitisation. J Parasitol Res 2012; 2012:154743. [PMID: 22970345 PMCID: PMC3434398 DOI: 10.1155/2012/154743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Several field studies have reported an inverse relationship between the prevalence of helminth infections and that of allergic sensitisation/atopy. Recent studies show that immune responses induced by helminth parasites are, to an extent, comparable to allergic sensitisation. However, helminth products induce regulatory responses capable of inhibiting not only antiparasite immune responses, but also allergic sensitisation. The relative effects of this immunomodulation on the development of protective schistosome-specific responses in humans has yet to be demonstrated at population level, and the clinical significance of immunomodulation of allergic disease is still controversial. Nonetheless, similarities in immune responses against helminths and allergens pose interesting mechanistic and evolutionary questions. This paper examines the epidemiology, biology and immunology of allergic sensitisation/atopy, and schistosome infection in human populations.
Collapse
Affiliation(s)
- Nadine Rujeni
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| | - David W. Taylor
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh EH9 3JT, UK
| |
Collapse
|
43
|
Protective immunity to Schistosoma haematobium infection is primarily an anti-fecundity response stimulated by the death of adult worms. Proc Natl Acad Sci U S A 2012; 109:13347-52. [PMID: 22847410 DOI: 10.1073/pnas.1121051109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protective immunity against human schistosome infection develops slowly, for reasons that are not yet fully understood. For many decades, researchers have attempted to infer properties of the immune response from epidemiological studies, with mathematical models frequently being used to bridge the gap between immunological theory and population-level data on schistosome infection and immune responses. Here, building upon earlier model findings, stochastic individual-based models were used to identify model structures consistent with observed field patterns of Schistosoma haematobium infection and antibody responses, including their distributions in cross-sectional surveys, and the observed treatment-induced antibody switch. We found that the observed patterns of infection and antibody were most consistent with models in which a long-lived protective antibody response is stimulated by the death of adult S. haematobium worms and reduces worm fecundity. These findings are discussed with regard to current understanding of human immune responses to schistosome infection.
Collapse
|
44
|
Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2012; 2:472. [PMID: 22737405 PMCID: PMC3382734 DOI: 10.1038/srep00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens.
Collapse
|
45
|
Rujeni N, Nausch N, Midzi N, Mduluza T, Taylor DW, Mutapi F. Schistosoma haematobium infection levels determine the effect of praziquantel treatment on anti-schistosome and anti-mite antibodies. Parasite Immunol 2012; 34:330-40. [PMID: 22429049 PMCID: PMC3417378 DOI: 10.1111/j.1365-3024.2012.01363.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/09/2012] [Indexed: 11/29/2022]
Abstract
Field studies show an association between schistosome infection and atopy, but the effects of anti-helminthic treatment on this association have not yet been investigated in human populations with different schistosome endemicity levels. This study aimed to compare the effects of anti-helminthic treatment on responses directed against the house dust mite Dermatophagoides pteronyssinus (Derp1) and Schistosoma haematobium in Zimbabwean populations living in high and low schistosome infection areas. Derp1- and schistosome-specific IgE and IgG4 antibodies were quantified by ELISA before and 6 weeks after anti-helminthic treatment. Following treatment, there were changes in the immune responses, which varied with place of residence. After allowing for the effects of sex, age and baseline infection intensity, there was no significant treatment effect on the change in anti-schistosome IgE and IgG4 in the high infection area. However, the anti-schistosome IgE/IgG4 ratio increased significantly, while anti-Derp1 IgE responses decreased as a result of treatment. In the low infection area, treatment resulted in a significant increase in anti-worm IgE levels, but there was no significant treatment effect on anti-schistosome or anti-Derp1 IgE/IgG4 ratios. Thus, the study shows that the level of schistosome endemicity affects the host responses to schistosome and mite antigens following anti-helminthic treatment.
Collapse
Affiliation(s)
- N Rujeni
- Institute of Immunology and Infection Research, Centre for Infectious Diseases, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.
Collapse
|
47
|
Stromberg SP, Antia R. Vaccination by delayed treatment of infection. Vaccine 2011; 29:9624-31. [PMID: 22041302 DOI: 10.1016/j.vaccine.2011.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/07/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022]
Abstract
Two medical interventions allow us to combat infectious diseases: vaccination which can be administered well in advance of exposure, and antimicrobials which are most often administered contemporaneously with exposure. In this paper we show how they can, in principle, be combined - with infection followed by treatment being used as a form of vaccination. We use mathematical models to examine how appropriately administered antimicrobial treatment following natural infection can be used to reduce the pathology caused by the infection, and also generate long-lasting immunological memory to the pathogen. The models explore the tradeoff between reduction in pathology and strength of immunization. This tradeoff suggests a limited treatment window during which antimicrobial treatment can be started and provide both amelioration of disease symptoms and long-term immunity. This approach may be particularly well suited to combat the emergence of novel pandemic influenza infections particularly for individuals such as medical healthcare professionals at greatest risk for exposure during the initial stages of a pandemic.
Collapse
Affiliation(s)
- Sean P Stromberg
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | | |
Collapse
|
48
|
Mitchell KM, Mutapi F, Savill NJ, Woolhouse MEJ. Explaining observed infection and antibody age-profiles in populations with urogenital schistosomiasis. PLoS Comput Biol 2011; 7:e1002237. [PMID: 22028640 PMCID: PMC3197645 DOI: 10.1371/journal.pcbi.1002237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/04/2011] [Indexed: 01/05/2023] Open
Abstract
Urogenital schistosomiasis is a tropical disease infecting more than 100 million people in sub-Saharan Africa. Individuals in endemic areas endure repeated infections with long-lived schistosome worms, and also encounter larval and egg stages of the life cycle. Protective immunity against infection develops slowly with age. Distinctive age-related patterns of infection and specific antibody responses are seen in endemic areas, including an infection 'peak shift' and a switch in the antibody types produced. Deterministic models describing changing levels of infection and antibody with age in homogeneously exposed populations were developed to identify the key mechanisms underlying the antibody switch, and to test two theories for the slow development of protective immunity: that (i) exposure to dying (long-lived) worms, or (ii) experience of a threshold level of antigen, is necessary to stimulate protective antibody. Different model structures were explored, including alternative stages of the life cycle as the main antigenic source and the principal target of protective antibody, different worm survival distributions, antigen thresholds and immune cross-regulation. Models were identified which could reproduce patterns of infection and antibody consistent with field data. Models with dying worms as the main source of protective antigen could reproduce all of these patterns, but so could some models with other continually-encountered life stages acting as the principal antigen source. An antigen threshold enhanced the ability of the model to replicate these patterns, but was not essential for it to do so. Models including either non-exponential worm survival or cross-regulation were more likely to be able to reproduce field patterns, but neither of these was absolutely required. The combination of life cycle stage stimulating, and targeted by, antibody was found to be critical in determining whether models could successfully reproduce patterns in the data, and a number of combinations were excluded as being inconsistent with field data.
Collapse
Affiliation(s)
- Kate M Mitchell
- Centre for Immunology, Infection and Evolution, Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Rajekar H, Vasishta RK, Chawla YK, Dhiman RK. Noncirrhotic portal hypertension. J Clin Exp Hepatol 2011; 1:94-108. [PMID: 25755321 PMCID: PMC3940546 DOI: 10.1016/s0973-6883(11)60128-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension is characterized by an increase in portal pressure (> 10 mmHg) and could be a result of cirrhosis of the liver or of noncirrhotic diseases. When portal hypertension occurs in the absence of liver cirrhosis, noncirrhotic portal hypertension (NCPH) must be considered. The prognosis of this disease is much better than that of cirrhosis. Noncirrhotic diseases are the common cause of portal hypertension in developing countries, especially in Asia. NCPH is a heterogeneous group of diseases that is due to intrahepatic or extrahepatic etiologies. In general, the lesions in NCPH are vascular in nature and can be classified based on the site of resistance to blood flow. In most cases, these disorders can be explained by endothelial cell lesions, intimal thickening, thrombotic obliterations, or scarring of the intrahepatic portal or hepatic venous circulation. Many different conditions can determine NCPH through the association of these various lesions in various degrees. Many clinical manifestations of NCPH result from the secondary effects of portal hypertension. Patients with NCPH present with upper gastrointestinal bleeding, splenomegaly, ascites after gastrointestinal bleeding, features of hypersplenism, growth retardation, and jaundice due to portal hypertensive biliopathy. Other sequelae include hyperdynamic circulation, pulmonary complications, and other effects of portosystemic collateral circulation like portosystemic encephalopathy. At present, pharmacologic and endoscopic treatments are the treatments of choice for portal hypertension. The therapy of all disorders causing NCPH involves the reduction of portal pressure by pharmacotherapy or portosystemic shunting, apart from prevention and treatment of complications of portal hypertension.
Collapse
Key Words
- ADPKD, autosomal-dominant polycystic kidney disease
- ARPKD, autosomal-recessive polycystic kidney disease
- BCS, Budd-Chiari syndrome
- Budd-Chiari syndrome
- CHF, congenital hepatic fibrosis
- CTGF, connective tissue growth factor
- DSRS, distal splenorenal Shunt
- EHPVO, extrahepatic portal vein obstruction
- ERCP, endoscopic retrograde cholangio pancreatography
- EST, endoscopic sclerotherapy
- EVL, endoscopic variceal ligation
- FHF, fulminant hepatic failure
- GI, Gastrointestinal
- GVHD, graft versus cells host disease
- HLA, human lymphocyte antigen
- HVPG, hepatic vanous pressure gradient
- IPH, idiopathic portal hypertension
- IVC, inferior vena cava
- MRCP, magnetic resonance cholangio pancreatography
- NCPF, noncirrhotic portal hypertension
- NCPH, noncirrhotic portal hypertension
- NRH, nodular regenerative hyperplasia
- PVT, portal vein thrombosis
- SCT, stem-cell transplantation
- TIPS, transjugular intrahepatic portosystemic shunt placement
- TIPSS, transjugular intrahepatic portosystemic shunt
- VOD, veno-occlusive disease
- congenital hepatic fibrosis
- extra-hepatic portal venous obstruction
- nodular regenerative hyperplasia
- noncirrhotic intrahepatic portal hypertension
- portal vein thrombosis
- portosystemic shunting
- schistosomiasis
- veno-occlusive disease
Collapse
Affiliation(s)
- Harshal Rajekar
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh - 160012, India
| | - Rakesh K Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160012, India
| | - Yogesh K Chawla
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160012, India
| | - Radha K Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160012, India
| |
Collapse
|
50
|
Wilson MS, Cheever AW, White SD, Thompson RW, Wynn TA. IL-10 blocks the development of resistance to re-infection with Schistosoma mansoni. PLoS Pathog 2011; 7:e1002171. [PMID: 21829367 PMCID: PMC3150278 DOI: 10.1371/journal.ppat.1002171] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/03/2011] [Indexed: 01/26/2023] Open
Abstract
Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni. Schistosomes are zoonotic parasitic helminths that infect hundreds of millions of people worldwide. Despite effective chemotherapy, schistosomiasis- the disease caused by these parasites, still plagues tropical regions of the world. This is due, in part, to poor resistance to reinfection resulting in high re-infection rates following treatment. This lack of resistance is intriguing, as effective treatment relies upon drug-induced parasite damage combined with host immune mediated killing. Furthermore, it has been widely reported that post-treatment, individuals develop and retain elevated levels of anti-parasite immune responses. We therefore asked why resistance to re-infection is so poor, despite the development of significant anti-worm responses post-treatment. It is essential that immune responses are controlled by various immunosuppressive mechanisms to prevent immune-mediated pathologies. However, a robust immunoregulatory response may obstruct the development of protective immunity. Thus, a balanced immune response providing a non-pathogenic yet effective immune response may be required for the development of effective resistance to reinfection. Understanding the immunological mechanisms of resistance to re-infection and the role of effector and regulatory responses may aid in the development of more effective vaccines and treatment strategies for schistosomaisis. This study suggests that combining chemotherapy with drugs that block IL-10 might provide an improved strategy to elicit acquired immunity to this parasite.
Collapse
Affiliation(s)
- Mark S Wilson
- Immunopathogensis Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Marlyand, United States of America.
| | | | | | | | | |
Collapse
|