1
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
2
|
Cataract-Associated New Mutants S175G/H181Q of βΒ2-Crystallin and P24S/S31G of γD-Crystallin Are Involved in Protein Aggregation by Structural Changes. Int J Mol Sci 2020; 21:ijms21186504. [PMID: 32899552 PMCID: PMC7555777 DOI: 10.3390/ijms21186504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
β/γ-Crystallins, the main structural protein in human lenses, have highly stable structure for keeping the lens transparent. Their mutations have been linked to cataracts. In this study, we identified 10 new mutations of β/γ-crystallins in lens proteomic dataset of cataract patients using bioinformatics tools. Of these, two double mutants, S175G/H181Q of βΒ2-crystallin and P24S/S31G of γD-crystallin, were found mutations occurred in the largest loop linking the distant β-sheets in the Greek key motif. We selected these double mutants for identifying the properties of these mutations, employing biochemical assay, the identification of protein modifications with nanoUPLC-ESI-TOF tandem MS and examining their structural dynamics with hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that both double mutations decrease protein stability and induce the aggregation of β/γ-crystallin, possibly causing cataracts. This finding suggests that both the double mutants can serve as biomarkers of cataracts.
Collapse
|
3
|
Two Pathogenic Gene Mutations Identified Associating with Congenital Cataract and Iris Coloboma Respectively in a Chinese Family. J Ophthalmol 2020; 2020:7054315. [PMID: 32148946 PMCID: PMC7049832 DOI: 10.1155/2020/7054315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To screen out pathogenic genes in a Chinese family with congenital cataract and iris coloboma. Material and Methods. A three-generation family with congenital cataract and iris coloboma from a Han ethnicity was recruited. DNA was extracted from peripheral blood samples collected from all individuals in the family. Whole exon sequencing was employed for screening the disease-causing gene mutations in the proband, and Sanger sequencing was used for other members of the family and a control group of 500 healthy individuals. Bioinformatics analysis and three-dimensional structure predictions were used to predict the impact of amino acid changes on protein structure and function. Results The candidate genes of cataract and iris coloboma were successfully screened out. A heterozygote mutation, CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, Conclusions We report a novel mutation, WFS1 p.C505S, and a known mutation, CRYGD p.P24T, that cosegregate with iris coloboma and congenital cataract, respectively, in a Chinese family. This is the first time the association of WFS1 p.C505S with iris coloboma has been demonstrated, although CRYGD p.P24T has been widely reported as being associated with congenital cataract, especially in the Eastern Asian population. These findings may have future therapeutic benefit for the diagnosis of iris coloboma and congenital cataract. The results may also be relevant in further studies aiming to investigate the molecular pathogenesis of iris coloboma and congenital cataract.WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation,
Collapse
|
4
|
Molecular genetics of congenital cataracts. Exp Eye Res 2019; 191:107872. [PMID: 31770519 DOI: 10.1016/j.exer.2019.107872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Congenital cataracts, the most common cause of visual impairment and blindness in children worldwide, have diverse etiologies. According to statistics analysis, about one quarter of congenital cataracts caused by genetic defects. Various mutations of more than one hundred genes have been identified in hereditary cataracts so far. In this review, we briefly summarize recent developments about the genetics, molecular mechanisms, and treatments of congenital cataracts. The studies of these pathogenic mutations and molecular genetics is making it possible for us to comprehend the underlying mechanisms of cataractogenesis and providing new insights into the preventive, diagnostic and therapeutic approaches of cataracts.
Collapse
|
5
|
Quinn MK, James S, McManus JJ. Chemical Modification Alters Protein-Protein Interactions and Can Lead to Lower Protein Solubility. J Phys Chem B 2019; 123:4373-4379. [PMID: 31046277 DOI: 10.1021/acs.jpcb.9b02368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemical modification of proteins is at the frontier of developments in biological imaging and biopharmaceutics. With the advent of more sensitive and higher resolution imaging techniques, researchers increasingly rely on the functionalization of proteins to enable these techniques to capture cellular processes. For biopharmaceutical therapies, chemically modified proteins, for example, antibody-drug conjugates (ADCs) offer the possibility of more tailored treatments for the disease with lower toxicities than traditional small molecule therapies. However, relatively little consideration is paid to how chemical modifications impact protein-protein interactions and solution stability. Using human γD-crystallin as a model, we demonstrate that chemical modification of the protein surface alters protein-protein interactions, which can result in lower solubility depending on the chemical nature of the modifier and the position on the protein where the modification is made. Understanding these effects is essential to ensure that modifying proteins effectively occurs with minimum self-association and that studies carried out using labeled proteins accurately reflect those of unmodified proteins.
Collapse
Affiliation(s)
- Michelle K Quinn
- Department of Chemistry , Maynooth University , Maynooth , Co. Kildare , Ireland
| | - Susan James
- Department of Chemistry , Maynooth University , Maynooth , Co. Kildare , Ireland
| | - Jennifer J McManus
- Department of Chemistry , Maynooth University , Maynooth , Co. Kildare , Ireland
| |
Collapse
|
6
|
Ching YH, Yeh JI, Fan WL, Chen KC, Yeh MC, Woon PY, Lee YC. A CRYBB2 mutation in a Taiwanese family with autosomal dominant cataract. J Formos Med Assoc 2018; 118:57-63. [PMID: 29395391 DOI: 10.1016/j.jfma.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/24/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND/PURPOSE To identify the underlying genetic cause of a Taiwanese family with autosomal dominant cerulean cataract. METHODS A three-generation cerulean cataract family with 13 affected and 13 normal was identified. Whole exome sequencing, whole genome single nucleotide polymorphism genotyping and haplotype analysis, and fine mapping using polymorphic short tandem repeat markers were used to identify the causative gene mutation. RESULTS Whole genome single nucleotide polymorphism genotyping and haplotype analysis mapped the candidate disease loci to chromosome 18 and chromosome 22. Polymorphic short tandem repeat markers further narrowed down the disease interval to chromosome 22 between markers D22S1174 and D22S1163. Whole exome sequencing was performed on selected individuals. Polymorphisms detected were filtered based on their genomic positions, allele frequency (<1%), and segregation within the pedigree. Affected individuals were found to be heterozygous carrying a C to T mutation on exon 6 of the CRYBB2 gene (with SNP ID: rs74315489). The mutation was predicted to produce a premature stop mutation Q155X. The mutation is co-segregation across the pedigree and the disease "T" allele was not detected in healthy members of the family and in additional 50 normal controls (100 chromosomes). Phylogenic protein alignment was also performed for the CRYBB2 gene across 68 species ranging from fishes, Sauropsida, Placentalia, carnivores, rodents, and primates with total 56 orthologous genes. The Q155 residue is 100% conserved across the evolutionary tree, indicating its crucial function. CONCLUSION Here we identify the first Taiwanese cerulean cataract family carrying a CRYBB2_Q155X mutation.
Collapse
Affiliation(s)
- Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Jih-I Yeh
- Department of Family Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Wen-Lang Fan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ko-Chen Chen
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Man-Chieh Yeh
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yuan-Chieh Lee
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
7
|
Humanized Flies and Resources for Cross-Species Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:277-288. [DOI: 10.1007/978-981-13-0529-0_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
9
|
Yang G, Chen Z, Zhang W, Liu Z, Zhao J. Novel mutations in CRYGD are associated with congenital cataracts in Chinese families. Sci Rep 2016; 6:18912. [PMID: 26732753 PMCID: PMC4702117 DOI: 10.1038/srep18912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022] Open
Abstract
Congenital cataract disease is a clinically and genetically heterogeneous lens disorder. The purpose of this study was to identify the genetic defects and to investigate the relationships between disease-causing genes and lens morphology in congenital cataracts. Patients were given a physical examination, and their blood samples were collected for DNA extraction. Mutation analysis was performed by direct sequencing of the following candidate genes: CRYGC, CRYGD, CRYGS, GJA8, GJA3 and CRYAA. Mutational analysis of CRYGD identified a recurrent (p.P24T) mutation in two unrelated families with congenital coralliform cataracts and three novel (p.Q101X, p.E104fsX4 and p.E135X) mutations in three families with congenital nuclear cataracts. The p.E135X mutation is a de novo mutation. Haplotype analysis showed patients inherited the same CRYGD allele originated from father. The p.E135X mutation seen in two siblings suggests a mechanism of gonadal mosaicism in the father.
Collapse
Affiliation(s)
- Guoxing Yang
- Department of Opthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.,Department of Opthalmology, Hebei Provincial Ophthalmic Hospital, Hebei, China.,Hebei Provincial Key laboratory of ophthalmology, Hebei, China
| | - Zhimin Chen
- Department of Opthalmology, Hebei Provincial Ophthalmic Hospital, Hebei, China
| | - Wulin Zhang
- Department of Opthalmology, Hebei Provincial Ophthalmic Hospital, Hebei, China
| | - Zhiqiang Liu
- Department of Opthalmology, Hebei Provincial Ophthalmic Hospital, Hebei, China
| | - Jialiang Zhao
- Department of Opthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario. G3-GENES GENOMES GENETICS 2014; 4:1479-89. [PMID: 24906640 PMCID: PMC4132178 DOI: 10.1534/g3.114.012435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interlocus gene conversion is a major evolutionary force that drives the concerted evolution of duplicated genomic regions. Theoretical models successfully have addressed the effects of interlocus gene conversion and the importance of crossover in the evolutionary fate of gene families and duplications but have not considered complex recombination scenarios, such as the presence of hotspots. To study the interplay between interlocus gene conversion and crossover, we have developed a forward-time simulator that allows the exploration of a wide range of interlocus gene conversion rates under different crossover models. Using it, we have analyzed patterns of nucleotide variation and linkage disequilibrium within and between duplicate regions, focusing on a neutral scenario with constant population size and validating our results with the existing theoretical models. We show that the interaction of gene conversion and crossover is nontrivial and that the location of crossover junctions is a fundamental determinant of levels of variation and linkage disequilibrium in duplicated regions. We also show that if crossover activity between duplications is strong enough, recurrent interlocus gene conversion events can break linkage disequilibrium within duplicates. Given the complex nature of interlocus gene conversion and crossover, we provide a framework to explore their interplay to help increase knowledge on molecular evolution within segmental duplications under more complex scenarios, such as demographic changes or natural selection.
Collapse
|
11
|
Serebryany E, King JA. The βγ-crystallins: native state stability and pathways to aggregation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:32-41. [PMID: 24835736 DOI: 10.1016/j.pbiomolbio.2014.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/26/2023]
Abstract
The βγ-crystallins are among the most stable and long-lived proteins in the human body. With increasing age, however, they transform to high molecular weight light-scattering aggregates, resulting in cataracts. This occurs despite the presence in the lens of high concentrations of the a-crystallin chaperones. Aggregation of crystallins can be induced in vitro by a variety of stresses, including acidic pH, ultraviolet light, oxidative damage, heating or freezing, and specific amino acid substitutions. Accumulating evidence points to the existence of specific biochemical pathways of protein: protein interaction and polymerization. We review the methods used for studying crystallin stability and aggregation and discuss the sometimes counterintuitive relationships between factors that favor native state stability and those that favor non-native aggregation. We discuss the behavior of βγ-crystallins in mixtures and their chaperone ability; the consequences of missense mutations and covalent damage to the side-chains; and the evolutionary strategies that have shaped these proteins. Efforts are ongoing to reveal the nature of cataractous crystallin aggregates and understand the mechanisms of aggregation in the context of key models of protein polymerization: amyloid, native-state, and domain-swapped. Such mechanistic understanding is likely to be of value for the development of therapeutic interventions and draw attention to unanswered questions about the relationship between a protein's native state stability and its transformation to an aggregated state.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
12
|
Zhai Y, Li J, Zhu Y, Xia Y, Wang W, Yu Y, Yao K. A nonsense mutation of γD-crystallin associated with congenital nuclear and posterior polar cataract in a Chinese family. Int J Med Sci 2014; 11:158-63. [PMID: 24465161 PMCID: PMC3894400 DOI: 10.7150/ijms.7567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/17/2013] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The goal of this study was to characterize the disease-causing mutations in a Chinese family with congenital nuclear and posterior polar cataracts. METHODS Clinical data of patients in the family were recorded using slit-lamp photography and high definition video. Genomic DNA samples were extracted from the peripheral blood of the pedigree members and 100 healthy controls. Mutation screening was performed in the candidate genes by bi-directional sequencing of the amplified products. RESULTS The congenital cataract phenotype of the pedigree was identified by slit-lamp examinations and observation during surgery as nuclear and posterior polar cataracts. Through the sequencing of the candidate genes, a heterozygous c. 418C>T change was detected in the coding region of the γD-crystallin gene (CRYGD). As a result of this change, a highly conserved arginine residue was replaced by a stop codon (p. R140X). This change was discovered among all of the affected individuals with cataracts, but not among the unaffected family members or the 100 ethnically matched controls. CONCLUSIONS This study identified a novel congenital nuclear and posterior polar cataract phenotype caused by the recurrent mutation p. R140X in CRYGD.
Collapse
Affiliation(s)
- Yi Zhai
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Jinyu Li
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Yanan Zhu
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Yan Xia
- 3. Center for Structural Biology and Department of Chemistry and the Institute for Chemical Biology, Vanderbilt University Medical Center, USA
| | - Wei Wang
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Yinhui Yu
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Ke Yao
- 1. Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China ; 2. Key Laboratory of Ophthalmology of Zhejiang Province, China
| |
Collapse
|
13
|
Abstract
Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.
Collapse
Affiliation(s)
- Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA.
| |
Collapse
|
14
|
Gerrits L, Overheul GJ, Derks RC, Wieringa B, Hendriks WJ, Wansink DG. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. Eur J Cell Biol 2012; 91:629-39. [DOI: 10.1016/j.ejcb.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022] Open
|
15
|
Vanita V, Singh D. A missense mutation in CRYGD linked with autosomal dominant congenital cataract of aculeiform type. Mol Cell Biochem 2012; 368:167-72. [PMID: 22669729 DOI: 10.1007/s11010-012-1355-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/16/2012] [Indexed: 11/26/2022]
Abstract
To detect the underlying genetic defects in two autosomal dominant congenital cataract (ADCC) families, having respectively twenty and four members affected with bilateral congenital cataract. Detailed family history and clinical data were recorded. Mutation screening in twenty three candidate genes including crystallins (CRYAA, CRYAB, CRYBA1/A3, CRYBA2, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGA, CRYGB, CRYGC, CRYGD, and CRYGS), gap junctional channels; connexins (GJA8, GJA3), beaded filament chain proteins (BFSP1, BFSP2), major intrinsic protein (MIP), lens intrinsic membrane protein-2 (LIM2), transcriptional factor (MAF), and in genes encoding for membrane-associated proteins (TMEM114, CHMP4B, EPHA2) was performed by bi-directional sequence analysis of the amplified products. In family A twenty members in six generations were affected by bilateral aculeiform type cataract and in family B four affected members in three generations had granular nuclear cataract. Mutation screening in already known candidate genes by sequence analyses revealed proline to threonine substitution at codon 23 (p.Pro23Thr) in CRYGD for aculeiform type cataract in family A. The family B with four members affected by granular nuclear cataract, however, could not be linked with any of these analyzed 23 candidate genes. The present study describes identification of p.Pro23Thr mutation in CRYGD for aculeiform type cataract in an ADCC family of Indian origin. The identical mutation has previously been reported to be linked with different phenotypes; lamellar cataract, cerulean cataract, coralliform cataract, flaky silica-like nuclear cataract and fasciculiform type cataract in different ADCC families. Interestingly, a mutation of different codon, i.e., p.Arg58His in CRYGD has been reported to be linked with aculeiform cataract in four different families; two from Switzerland, one from Macedonia and in a Mexican family. The findings in present study thus expand the genetic heterogeneity for aculeiform type cataract. Further, exclusion of these twenty three known candidate genes in family B having ADCC of granular nuclear type indicates the role of some other gene apart from for crystallins, gap junction channels, beaded filaments and membrane-associated proteins, and MAF for this phenotype.
Collapse
Affiliation(s)
- Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | | |
Collapse
|
16
|
VanderVeen DK, Andrews C, Nihalani BR, Engle EC. Crystalline cataract caused by a heterozygous missense mutation in γD-crystallin (CRYGD). Mol Vis 2011; 17:3333-8. [PMID: 22219628 PMCID: PMC3247172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/14/2011] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To describe phenotypic characteristics of two pedigrees manifesting early onset crystalline cataract with mutations in the γD-crystallin gene (CRYGD). METHODS A detailed medical history was obtained from two Caucasian pedigrees manifesting autosomal dominant congenital cataracts. Genomic DNA was extracted from saliva (DNA Genotek). Single Nucleotide Polymorphism (SNP) based genome analysis of the larger pedigree revealed linkage to an 8.2 MB region on chromosome 2q33-q35 which encompassed the crystallin-gamma gene cluster (CRYG). Exons and flanking introns of CRYGA, CRYGB, CRYGC and CRYGD were amplified and sequenced to identify disease-causing mutations. RESULTS A morphologically unique cataract with extensive refractile "crystals" scattered throughout the nucleus and perinuclear cortex was found in the probands from both pedigrees. A heterozygous C→A mutation was identified at position 109 of the coding sequence (R36S of the processed protein) in exon 2 of CRYGD and this missense mutation was found to cosegregate with the disease in the larger family; this mutation was then identified in affected individuals of pedigree 2 as well. CONCLUSIONS The heterozygous 109C→A CRYGD missense mutation is associated with a distinct crystalline cataract in two US Caucasian pedigrees. This confirms crystalline cataract formation with this mutation, as previously reported in sporadic childhood case from the Czech Republic and in members of a Chinese family.
Collapse
Affiliation(s)
- Deborah K. VanderVeen
- Department of Ophthalmology, Children's Hospital Boston, Harvard Medical School, Boston MA
| | - Caroline Andrews
- Department of Neurology, M Kirby Neurobiology Center, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Harvard Medical School, Boston, MA,Howard Hughes Medical Institute, Chevy Chase MD
| | - Bharti R. Nihalani
- Department of Ophthalmology, Children's Hospital Boston, Harvard Medical School, Boston MA
| | - Elizabeth C. Engle
- Department of Ophthalmology, Children's Hospital Boston, Harvard Medical School, Boston MA,Department of Neurology, M Kirby Neurobiology Center, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Harvard Medical School, Boston, MA,Howard Hughes Medical Institute, Chevy Chase MD
| |
Collapse
|
17
|
Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics 2011; 11:M111.010199. [PMID: 22186716 DOI: 10.1074/mcp.m111.010199] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel "multi-blind" spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data.
Collapse
Affiliation(s)
- Seungjin Na
- Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | | | | |
Collapse
|
18
|
Wang B, Yu C, Xi YB, Cai HC, Wang J, Zhou S, Zhou S, Wu Y, Yan YB, Ma X, Xie L. A novel CRYGD mutation (p.Trp43Arg) causing autosomal dominant congenital cataract in a Chinese family. Hum Mutat 2011; 32:E1939-47. [PMID: 21031598 PMCID: PMC3035819 DOI: 10.1002/humu.21386] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To identify the genetic defect associated with autosomal dominant congenital nuclear cataract in a Chinese family, molecular genetic investigation via haplotype analysis and direct sequencing were performed Sequencing of the CRYGD gene revealed a c.127T>C transition, which resulted in a substitution of a highly conserved tryptophan with arginine at codon 43 (p.Trp43Arg). This mutation co-segregated with all affected individuals and was not observed in either unaffected family members or in 200 normal unrelated individuals. Biophysical studies indicated that the p.Trp43Arg mutation resulted in significant tertiary structural changes. The mutant protein was much less stable than the wild-type protein, and was more prone to aggregate when subjected to environmental stresses such as heat and UV irradiation. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Binbin Wang
- Shandong Eye Institute, Qingdao University Eye College, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lehner B. Molecular mechanisms of epistasis within and between genes. Trends Genet 2011; 27:323-31. [PMID: 21684621 DOI: 10.1016/j.tig.2011.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022]
Abstract
'Disease-causing' mutations do not cause disease in all individuals. One possible important reason for this is that the outcome of a mutation can depend upon other genetic variants in a genome. These epistatic interactions between mutations occur both within and between molecules, and studies in model organisms show that they are extremely prevalent. However, epistatic interactions are still poorly understood at the molecular level, and consequently difficult to predict de novo. Here I provide an overview of our current understanding of the molecular mechanisms that can cause epistasis, and areas where more research is needed. A more complete understanding of epistasis will be vital for making accurate predictions about the phenotypes of individuals.
Collapse
Affiliation(s)
- Ben Lehner
- European Molecular Biology Laboratory-Centre for Genomic Regulation (EMBL-CRG) Systems Biology, the Catalan Institute of Research and Advanced Studies (ICREA), Centre for Genomic Regulation and the Pompeu Fabra University (UPF), c / Dr Aiguader 88, Barcelona 08003, Spain.
| |
Collapse
|
20
|
Wang L, Chen X, Lu Y, Wu J, Yang B, Sun X. A novel mutation in γD-crystallin associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis 2011; 17:804-9. [PMID: 21527994 PMCID: PMC3081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To identify the pathogenic gene mutation in a Chinese family with autosomal dominant congenital nuclear cataract. METHODS After obtaining informed consent, detailed ophthalmic examinations were performed and genomic DNAs were obtained from eleven family members in a three-generation Chinese family with five affected. All exons of candidate genes associated with congenital nuclear cataract were amplified by polymerase chain reaction (PCR) and the PCR products were sequenced in both directions. The hydrophobic property of the mutant protein was analyzed with bioinformatics program ProtScale. The structure homology modeling of the mutant protein was based on Swiss-Model Serve, and its structure was displayed and compared with native γD-crystallin (CRYGD) using the RasMol software. RESULTS By sequencing the encoding regions of the candidate genes, a novel mutation (c.110G>C) was detected in exon 2 of CRYGD, which resulted in the substitution of a highly conserved arginine by proline at codon 36 (p.R36P). The mutation co-segregated with all patients and was absent in 100 normal Chinese controls. Bioinformatics analysis showed an obvious increase of the local hydrophilicity of the R36P mutant γD-crystallin. The homology modeling showed that the structure of the mutant protein was similar with that of native human γD-crystallin. CONCLUSIONS The study identified a novel mutation (c. 110G>C) in CRYGD associated with autosomal dominant congenital cataract in a Chinese family. It expands the mutation spectrum of CRYGD in association with congenital cataract.
Collapse
|
21
|
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis 2010; 16:2007-15. [PMID: 21042563 PMCID: PMC2965572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/04/2010] [Indexed: 11/07/2022] Open
Abstract
Lens opacities, or cataract(s), may be inherited as a classic Mendelian disorder usually with early-onset or, more commonly, acquired with age as a multi-factorial or complex trait. Many genetic forms of cataract have been described in mice and other animal models. Considerable progress has been made in mapping and identifying the genes and mutations responsible for inherited forms of cataract, and genetic determinants of age-related cataract are beginning to be discovered. To provide a convenient and accurate summary of current information focused on the increasing genetic complexity of Mendelian and age-related cataract we have created an online chromosome map and reference database for cataract in humans and mice (Cat-Map).
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
22
|
Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 2010; 53:347-57. [PMID: 20624502 DOI: 10.1016/j.ejmg.2010.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023]
Abstract
Congenital cataracts are a major cause of induced blindness in children, and inherited cataracts are the major cause of congenital cataracts. Inherited congenital cataracts have been associated with mutations in specific genes, including those of crystallins, gap junction proteins, membrane transport and channel proteins, the cytoskeleton, and growth and transcription factors. Locating and identifying the genes and mutations involved in cataractogenesis are essential to gaining an understanding of the molecular defects and pathophysiologic characteristics of inherited congenital cataracts. In this review, we summarize the current research in this field.
Collapse
Affiliation(s)
- Bingyu Huang
- Medical Genetics Laboratory, Department of Obstetrics and Gynecology, Second Teaching Hospital, Jilin University, 218 Zhiqiang, Changchun, 130041, China.
| | | |
Collapse
|
23
|
Gong B, Zhang LY, Lam DSC, Pang CP, Yam GHF. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells. Mol Vis 2010; 16:997-1003. [PMID: 20577655 PMCID: PMC2890554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/01/2010] [Indexed: 10/25/2022] Open
Abstract
PURPOSE gammaD-Crystallin (CRYGD) is a major structural lens crystallin and its mutations result in congenital cataract formation. In this study, we attempted to correct the altered protein features of G165fsX8 CRYGD protein with small chemical molecules. METHODS Recombinant FLAG-tagged mutants (R15C, R15S, P24T, R61C, and G165fsX8) of CRYGD were expressed in COS-7 cells and treated with small chemical molecules with reported protein chaperoning properties (sodium 4-phenylbutyrate [4-PBA], trimethylamine N-oxide [TMAO], and glycerol and DMSO [DMSO]). Protein solubility in 0.5% Triton X-100 and subcellular distribution was examined by western blotting and immunofluorescence, respectively. Apoptosis was assayed as the percentage of fragmented nuclei in transfected cells. Expression of heat-shock proteins (Hsp70 and Hsp90) was examined by reverse transcription-polymerase chain reaction analysis. RESULTS Unlike WT and most mutants (R15C, R15S, P24T, and R61C) of CRYGD, G165fsX8 CRYGD was significantly insoluble in 0.5% Triton X-100. This insolubility was alleviated by dose-dependent 4-PBA treatment. The treatment relieved the mislocalization of G165fsX8 CRYGD from the nuclear envelope. Also, 4-PBA treatment reduced cell apoptosis and caused an upregulation of Hsp70. CONCLUSIONS 4-PBA treatment reduced the defective phenotype of mutant G165fsX8 CRYGD and rescued the affected cells from apoptosis. This could be a potential treatment for lens structural protein and prevent lens opacity in cataract formation.
Collapse
|
24
|
Jung J, Byeon IJL, Wang Y, King J, Gronenborn AM. The structure of the cataract-causing P23T mutant of human gammaD-crystallin exhibits distinctive local conformational and dynamic changes. Biochemistry 2009; 48:2597-609. [PMID: 19216553 PMCID: PMC2722838 DOI: 10.1021/bi802292q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Crystallins are major proteins of the eye lens and essential for lens transparency. Mutations and aging of crystallins cause cataracts, the predominant cause of blindness in the world. In human γD-crystallin, the P23T mutant is associated with congenital cataracts. Until now, no atomic structural information has been available for this variant. Biophysical analyses of this mutant protein have revealed dramatically reduced solubility compared to that of the wild-type protein due to self-association into higher-molecular weight clusters and aggregates that retain a nativelike conformation within the monomers [Pande, A., et al. (2005) Biochemistry 44, 2491−2500]. To elucidate the structure and local conformation around the mutation site, we have determined the solution structure and characterized the protein’s dynamic behavior by NMR. Although the global structure is very similar to the X-ray structure of wild-type γD-crystallin, pivotal local conformational and dynamic differences are caused by the threonine substitution. In particular, in the P23T mutant, the imidazole ring of His22 switches from the predominant Nε2 tautomer in the wild-type protein to the Nδ1 tautomer, and an altered motional behavior of the associated region in the protein is observed. The data support structural changes that may initiate aggregation or polymerization by the mutant protein.
Collapse
Affiliation(s)
- Jinwon Jung
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
25
|
Zhang LY, Gong B, Tong JP, Fan DSP, Chiang SWY, Lou D, Lam DSC, Yam GHF, Pang CP. A novel gammaD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract. Mol Vis 2009; 15:1521-9. [PMID: 19668596 PMCID: PMC2722711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/03/2009] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify the genetic lesions for congenital coralliform cataract. METHODS Two Chinese families with autosomal dominant coralliform cataract, 12 affected and 14 unaffected individuals, were recruited. Fifteen known genes associated with autosomal dominant congenital cataract were screened by two-point linkage analysis with gene based single nucleotide polymorphisms and microsatellite markers. Sequence variations were identified. Recombinant FLAG-tagged wild type or mutant gammaD-crystallin was expressed in human lens epithelial cells and COS-7 cells. Protein solubility and intracellular distribution were analyzed by western blotting and immunofluorescence, respectively. RESULTS A novel heterozygous change, c.43C>A (R15S) of gammaD-crystallin (CRYGD) co-segregated with coralliform cataract in one family and a known substitution, c.70C>A (P24T), in the other family. Unaffected family members and 103 unrelated control subjects did not carry these mutations. Similar to the wild type protein, R15S gammaD-crystallin was detergent soluble and was located in the cytoplasm. ProtScale and ScanProsite analyses revealed raised local hydrophobicity and the creation of a hypothetical casein kinase II phosphorylation site. CONCLUSIONS A novel R15S mutation caused congenital coralliform cataract in a Chinese family. R15S possessed similar properties to the wild type gammaD-crystallin, but its predicted increase of hydrophobicity and putative phosphorylation site could lead to protein aggregation, subsequently causing opacification in lens.
Collapse
Affiliation(s)
- Li-Yun Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Gong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Ping Tong
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dorothy Shu-Ping Fan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sylvia Wai-Yee Chiang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinghua Lou
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dennis Shun-Chiu Lam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Hin-Fai Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Khan AO, Aldahmesh MA, Ghadhfan FE, Al-Mesfer S, Alkuraya FS. Founder heterozygous P23T CRYGD mutation associated with cerulean (and coralliform) cataract in 2 Saudi families. Mol Vis 2009; 15:1407-11. [PMID: 19633732 PMCID: PMC2714775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 07/20/2009] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To assess for gammaD-crystallin (CRYGD) mutation in 2 Saudi patients with cerulean cataract and in a brother of one of the patients who had coralliform cataract. METHODS Patients and all of their available relatives underwent ophthalmic examination and subsequent sequencing of the candidate gene CRYGD. RESULTS In the first family, a 4-year-old boy with bilateral cerulean cataract and his 6-year-old brother with similar bluish lens discoloration but in a coralliform pattern were heterozygous for the p.P23T CRYGD mutation. Their father and 2 older brothers, all of whom underwent childhood cataract surgery, also harbored the mutation while the 2 asymptomatic immediate family members did not. In the second family, a 7-year-old girl with bilateral cerulean cataract was heterozygous for the same CRYGD mutation. Details of her family history were limited. The patients in the two families shared a common disease haplotype. CONCLUSIONS This first report of p.P23T CRYGD mutation underlying cerulean cataract in the Saudi population strongly supports the mutation's relation with the phenotype. Coralliform cataract can represent variable expressivity for the same mutation rather than a distinct entity.
Collapse
Affiliation(s)
- Arif O. Khan
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia,Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohammed A. Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Faisal E. Ghadhfan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saleh Al-Mesfer
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia,Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Zhang L, Fu S, Ou Y, Zhao T, Su Y, Liu P. A novel nonsense mutation in CRYGC is associated with autosomal dominant congenital nuclear cataracts and microcornea. Mol Vis 2009; 15:276-82. [PMID: 19204787 PMCID: PMC2635849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/29/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To report the identification of a novel nonsense mutation in CRYGC in a Chinese family with autosomal dominant congenital nuclear cataracts and microcornea. METHODS We investigated a four-generation Chinese family with six members affected with nuclear cataracts and microcornea. The family resides in a relatively isolated region of northern China. Genomic DNA was isolated from blood leucocytes, genotyping was performed using more than 100 microsatellite markers for the known cataract candidate gene loci, and LOD scores were calculated using the LINKAGE programs. Mutations were detected by DNA sequence analysis of the candidate genes. RESULTS Evidence for linkage was detected at marker D2S325 (LOD score [Z]=2.29, recombination fraction [theta]=0.0), which closely flanks the gamma-crystallin gene cluster (CRYGA-CRYGD) on chromosome 2q32.3-q35. Direct sequencing of the candidate CRYGA-CRYGD gene cluster revealed a c.470G>A transversion in exon 3 of CRYGC, which cosegregated with cataracts in the family and was not observed in 100 normal controls. This single nucleotide change was predicted to introduce a translation stop codon at tryptophan 157 (W157X). CONCLUSIONS The present study has identified a novel nonsense mutation in CRYGC associated with autosomal dominant cataracts and microcornea in a Chinese family. Our finding expands the spectrum of CRYGC mutations associated with congenital cataract and confirms the role of gamma-crystallin in the pathogenesis of congenital nuclear cataracts.
Collapse
Affiliation(s)
- Lu Zhang
- Eye hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yangshan Ou
- Eye hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tingting Zhao
- Eye hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yunjuan Su
- Eye hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ping Liu
- Eye hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Graw J. Genetics of crystallins: Cataract and beyond. Exp Eye Res 2009; 88:173-89. [DOI: 10.1016/j.exer.2008.10.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 01/10/2023]
|
29
|
Liquid-chromatographic and mass-spectrometric identification of lens proteins using microwave-assisted digestion with trypsin-immobilized magnetic nanoparticles. Biochem Biophys Res Commun 2009; 380:603-8. [PMID: 19285008 DOI: 10.1016/j.bbrc.2009.01.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/23/2009] [Indexed: 11/21/2022]
Abstract
We used a newly developed method combining trypsin-immobilized magnetic nanoparticles (TIMNs) and microwave-assisted protein digestion to study the proteins of human lens tissue. The digested proteins were identified by liquid chromatography and mass spectrometry. The lens proteins were digested under optimized conditions (digestion time 1 min, microwave power 400 W, trypsin-to-protein ratio 1:5) determined using bovine serum albumin as the standard protein, before liquid-chromatographic and mass-spectrometric analysis. Twenty-six proteins were identified with the new digestion method compared with 11 proteins identified with traditional in-solution digestion (12h). gamma-Crystallin, beta-crystallin, and superoxide dismutase 1 proteins, identified with the microwave-assisted method but not the traditional method, are related to cataract development according to some studies. The TIMNs were easily separated from the digestion products. This new digestion method could prove extremely useful for large-scale proteomic analyses.
Collapse
|
30
|
Biro JC. Discovery of proteomic code with mRNA assisted protein folding. Int J Mol Sci 2008; 9:2424-2446. [PMID: 19330085 PMCID: PMC2635648 DOI: 10.3390/ijms9122424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 12/02/2008] [Indexed: 01/18/2023] Open
Abstract
The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions) in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding.
Collapse
Affiliation(s)
- Jan C Biro
- Homulus Foundation, 612 S Flower St, Los Angeles, 90 017 CA, USA. E-Mail:
; Tel. +1-213-627-6134
| |
Collapse
|
31
|
Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 2008; 19:134-49. [PMID: 18035564 PMCID: PMC2288487 DOI: 10.1016/j.semcdb.2007.10.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
Cataract can be defined as any opacity of the crystalline lens. Congenital cataract is particularly serious because it has the potential for inhibiting visual development, resulting in permanent blindness. Inherited cataracts represent a major contribution to congenital cataracts, especially in developed countries. While cataract represents a common end stage of mutations in a potentially large number of genes acting through varied mechanisms in practice most inherited cataracts have been associated with a subgroup of genes encoding proteins of particular importance for the maintenance of lens transparency and homeostasis. The increasing availability of more detailed information about these proteins and their functions and is making it possible to understand the pathophysiology of cataracts and the biology of the lens in general.
Collapse
|
32
|
Li F, Wang S, Gao C, Liu S, Zhao B, Zhang M, Huang S, Zhu S, Ma X. Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts. Mol Vis 2008; 14:378-86. [PMID: 18334953 PMCID: PMC2268897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/30/2008] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We sought to identify the genetic defect in a four-generation Chinese family with autosomal dominant congenital coralliform cataracts and demonstrate the functional analysis of a candidate gene in the family. METHODS Family history data were recorded. Clinical and ophthalmologic examinations were performed on affected and unaffected family members. All the members were genotyped with microsatellite markers at loci considered to be associated with cataracts. Two-point LOD scores were calculated using the Linkage software after genotyping. A mutation was detected by direct sequencing, using gene-specific primers. Wild-type and mutant proteins were analyzed with online software. RESULTS Affected members of this family had coralliform cataracts. Linkage analysis was obtained at markers, D2S72 (LOD score [Z]=3.31, recombination fraction [theta]=0.0) and D2S1782 (Z=3.01, theta=0.0). Haplotype analysis indicated that the cataract gene was closely linked to these two markers. Sequencing the gammaD-crystallin gene (CRYGD) revealed a G>T transversion in exon 2, which caused a conservative substitution of Gly to Cys at codon 61 (P.G61C). This mutation co-segregated with the disease phenotype in all affected individuals and was not observed in any of the unaffected or 100 normal, unrelated individuals. Bioinformatic analyses showed that a highly conserved region was located around Gly61. Data generated with online software revealed that the mutation altered the protein's stability, solvent-accessibility, and interactions with other proteins. CONCLUSIONS This is the first reported case of a congenital coralliform cataract phenotype associated with the mutation of Gly61Cys (P.G61C) in the CRYGD gene; it demonstrates a possible mechanism of action for the mutant gene.
Collapse
Affiliation(s)
- Feifeng Li
- Graduate School, Peking Union Medical College,Department of Genetics, National Research Institute for Family Planning
| | - Shuzhen Wang
- Beijing Tongren Eye Center, Capital Medical University
| | - Chang Gao
- Graduate School, Peking Union Medical College,Department of Genetics, National Research Institute for Family Planning
| | - Shiguo Liu
- Graduate School, Peking Union Medical College,Department of Genetics, National Research Institute for Family Planning
| | - Baojian Zhao
- Graduate School, Peking Union Medical College,Department of Genetics, National Research Institute for Family Planning
| | - Meng Zhang
- Department of Genetics, National Research Institute for Family Planning
| | - Shangzhi Huang
- Department of Genetics, National Research Institute for Family Planning
| | - Siquan Zhu
- Beijing Tongren Eye Center, Capital Medical University
| | - Xu Ma
- Graduate School, Peking Union Medical College,Department of Genetics, National Research Institute for Family Planning,WHO Collaborative Center for Research in Human Reproduction, Beijing, China
| |
Collapse
|
33
|
Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 2007; 8:762-75. [PMID: 17846636 DOI: 10.1038/nrg2193] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about how gene conversion occurs, explore the key part it has played in fashioning extant human genes, and carry out a meta-analysis of gene-conversion events that are known to have caused human genetic disease.
Collapse
|