1
|
Wang Z, Li LF, Yan YJ, Huang JY, Xi YF, Yuan MY, Dong JY, Wang MD, Dang K. Oxidative stress levels and antioxidant defense mechanisms (Nrf2-Keap1 signaling pathway) in the Harderian glands of hibernating Daurian ground squirrels. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111044. [PMID: 39515635 DOI: 10.1016/j.cbpb.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cyclic hibernation bouts in Daurian ground squirrels (Spermophilus dauricus) lead to repeated suppression and recovery of mitochondrial respiratory function across multiple organs, potentially impacting reactive oxygen species (ROS) dynamics. The Harderian gland (HG) plays an important role in endocrine regulation through porphyrin secretion. However, the influence of hibernation on oxidative pressure and associated antioxidant pathways in the HG remains inadequately understood. In the current study, we investigated the morphological changes, secretory activity, ROS levels, and underlying mechanisms in the HG of Daurian ground squirrels at distinct circannual stages of hibernation. Results indicated that: (1) Protoporphyrin levels in the HG increased during hibernation compared to the summer active (SA) phase, with a reduction in acinar lumen during torpor, potentially related to hibernation in a low-light environment. (2) Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content during hibernation and post-hibernation (POST) did not exceed the levels observed in SA, indicating that the HG effectively mitigated oxidative pressure and lipid peroxidation during these periods. (3) Superoxide dismutase (SOD) activity increased while glutathione peroxidase (GPx) activity decreased during Inter-bout arousal (IBA) compared to both SA and torpor, although total antioxidant capacity (T-AOC) remained stable across all stages. (4) Overall fluorescent intensity of nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) was significantly lower than in SA. These findings demonstrate that the HG in Daurian ground squirrels maintains a favorable oxidative status through the regulation of antioxidant enzyme activities during hibernation and even post-hibernation.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China.
| | - Lu-Fan Li
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Yu-Jing Yan
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Jun-Yao Huang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Yan-Fei Xi
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Ming-Yan Yuan
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Jie-Yao Dong
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Ming-Di Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Kai Dang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Duffy BM, Hayward L, Staples JF. Torpid 13-lined ground squirrel liver mitochondria resist anoxia-reoxygenation despite high levels of protein damage. J Comp Physiol B 2023; 193:715-728. [PMID: 37851102 DOI: 10.1007/s00360-023-01515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Hibernation confers resistance to ischemia-reperfusion injury in tissue, but the underlying mechanisms remain unclear. Suppression of mitochondrial respiration during torpor may contribute to this tolerance. To explore this concept, we subjected isolated liver mitochondria from torpid, interbout euthermic (IBE) and summer 13-lined ground squirrels (Ictidomys tridecemlineatus) to 5 min of anoxia, followed by reoxygenation (A/R). We also included rat liver mitochondria as a non-hibernating comparison group. Maximum respiration rates of mitochondria from torpid ground squirrels were not affected by A/R, but in IBE and summer, these rates decreased by 50% following A/R and in rats they decreased by 80%. Comparing net ROS production rates among groups, revealed seasonal differences; mitochondria from IBE and torpor produced 75% less ROS than summer ground squirrels and rats. Measurements of oxidative damage to these mitochondria, both freshly isolated, as well as pre- and post-A/R, demonstrated elevated damage to protein, but not lipids, in all groups. Hibernation likely generates oxidative stress, as freshly isolated mitochondria had greater protein damage in torpor and IBE than in summer and rats. When comparing markers of damage pre- and post-A/R, we found that when RET was active, rat macromolecules were more damaged than when RET is inhibited, but in TLGS markers of damage were similar. This result suggests that suppression of RET during hibernation, both in torpor and IBE, lessens oxidative stress produced during arousal. Taken together our study suggests that ischemia-reperfusion tolerance at the mitochondrial level is associated with metabolically suppressed oxidative phosphorylation during hibernation.
Collapse
Affiliation(s)
- Brynne M Duffy
- University of Western Ontario, (Biology), London, ON, Canada.
| | - Leah Hayward
- University of Western Ontario, (Biology), London, ON, Canada
- McMaster University, (Hamilton Health Sciences), Hamilton, ON, Canada
| | - James F Staples
- University of Western Ontario, (Biology), London, ON, Canada
| |
Collapse
|
3
|
Hutchinson AJ, Duffy BM, Staples JF. Hibernation is super complex: distribution, dynamics, and stability of electron transport system supercomplexes in Ictidomys tridecemlineatus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R28-R42. [PMID: 35470710 DOI: 10.1152/ajpregu.00008.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complexes of the electron transport system can associate with each other to form supercomplexes (SCs) within mitochondrial membranes, perhaps increasing respiratory capacity or reducing reactive oxygen species production. In this study, we determined the abundance, composition, and stability of SCs in a mammalian hibernator, in which both whole-animal and mitochondria metabolism change greatly throughout winter. We isolated mitochondria from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) in different hibernation states, as well as from rats (Rattus norvegicus). We extracted mitochondrial proteins using two non-ionic detergents of different strengths, and quantified SC abundance using two-dimensional gel electrophoresis and immunoblotting. Rat heart and liver had fewer SCs than ground squirrels. Within ground squirrels, SCs are dynamic, changing among hibernation states within a matter of hours. In brown adipose tissue, Complex III composition in different SCs differed between the torpid and interbout euthermic phase of a hibernation bout. In heart and liver, complex III composition changed between winter and summer. We also evaluated the stability of liver SCs using a stronger detergent and found that the stability of SCs differed: torpor SCs were more stable than the SCs of ground squirrels in other states and rats. This study is the first report of SC changes during hibernation, and the first to demonstrate their dynamics on a short timescale.
Collapse
Affiliation(s)
| | - Brynne Morgan Duffy
- Department of biology, the University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of biology, the University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Longitudinal associations between blood lysophosphatidylcholines and skeletal muscle mitochondrial function. GeroScience 2022; 44:2213-2221. [PMID: 35389191 PMCID: PMC9616971 DOI: 10.1007/s11357-022-00548-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidylcholines (LPCs) are phospholipids critical in the synthesis of cardiolipin, an essential component of mitochondrial membranes. Lower plasma LPCs have been cross-sectionally associated with lower skeletal muscle mitochondrial function, but whether lower LPCs and their decline over time are longitudinally associated with an accelerated decline of mitochondria function is unknown. We analyzed data from 184 participants in the Baltimore Longitudinal Study of Aging (mean age: 74.5 years, 57% women, 25% black) who had repeated measures of plasma LPCs (16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:3, 20:4, 24:0, and 28:1) by liquid chromatography-tandem mass spectrometry and repeated measures of skeletal muscle oxidative capacity (kPCr) assessed by 31P magnetic resonance spectroscopy over an average of 2.4 years. Rates of change in kPCr and each LPC were first estimated using simple linear regression. In multivariable linear regression models adjusted for baseline demographics and PCr % depletion, lower baseline LPC 16:1 and faster rates of decline in LPC 16:1 and 18:1 were significantly associated with a faster rate of decline in kPCr (B = - 0.169, 95% CI: - 0.328, - 0.010, p = 0.038; B = 0.209, 95% CI: 0.065, 0.352, p = 0.005; B = 0.156, 95% CI: 0.011, 0.301, p = 0.035, respectively). Rates of change in other LPCs were not significantly associated with change in kPCr (all p > 0.05). Lower baseline concentrations and faster decline in selected plasma lysophosphatidylcholines over time are associated with faster decline in skeletal muscle mitochondrial function. Strategies to prevent the decline of plasma LPCs at an early stage may slow down mitochondrial function decline and impairment during aging.
Collapse
|
5
|
Duffy BM, Staples JF. Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel ( Ictidomys tridecemlineatus). Physiol Biochem Zool 2022; 95:229-238. [DOI: 10.1086/719931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Cooper-Mullin C, Carter WA, Amato RS, Podlesak D, McWilliams SR. Dietary vitamin E reaches the mitochondria in the flight muscle of zebra finches but only if they exercise. PLoS One 2021; 16:e0253264. [PMID: 34181660 PMCID: PMC8238215 DOI: 10.1371/journal.pone.0253264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Whether dietary antioxidants are effective for alleviating oxidative costs associated with energy-demanding life events first requires they are successfully absorbed in the digestive tract and transported to sites associated with reactive species production (e.g. the mitochondria). Flying birds are under high energy and oxidative demands, and although birds commonly ingest dietary antioxidants in the wild, the bioavailability of these consumed antioxidants is poorly understood. We show for the first time that an ingested lipophilic antioxidant, α-tocopherol, reached the mitochondria in the flight muscles of a songbird but only if they regularly exercise (60 min of perch-to-perch flights two times in a day or 8.5 km day-1). Deuterated α-tocopherol was found in the blood of exercise-trained zebra finches within 6.5 hrs and in isolated mitochondria from pectoral muscle within 22.5 hrs, but never reached the mitochondria in caged sedentary control birds. This rapid pace (within a day) and extent of metabolic routing of a dietary antioxidant to muscle mitochondria means that daily consumption of such dietary sources can help to pay the inevitable oxidative costs of flight muscle metabolism, but only when combined with regular exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Wales A. Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ronald S. Amato
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David Podlesak
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
7
|
Zhao X, Gao W, Yin J, Fan W, Wang Z, Hu K, Mai Y, Luan A, Xu B, Jin Q. A high-precision thermometry microfluidic chip for real-time monitoring of the physiological process of live tumour cells. Talanta 2021; 226:122101. [PMID: 33676657 DOI: 10.1016/j.talanta.2021.122101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/28/2022]
Abstract
Temperature changes in cells are generally accompanied by physiological processes. Cellular temperature measurements can provide important information to fully understand cellular mechanisms. However, temperature measurements with conventional methods, such as fluorescent polymeric thermometers and thermocouples, have limitations of low sensitivity or cell state disturbance. We developed a microfluidic chip integrating a high-precision platinum (Pt) thermo-sensor that can culture cells and monitor the cellular temperature in situ. During detection, a constant temperature system with a stability of 0.015 °C was applied. The temperature coefficient of resistance of the Pt thermo-sensor was 2090 ppm/°C, giving a temperature resolution of the sensor of less than 0.008 °C. This microchip showed a good linear correlation between the temperature and resistance of the Pt sensor at 20-40 °C (R2 = 0.999). Lung and liver cancer cells on the microchip grew normally and continuously. The maximum temperature fluctuation of H1975 (0.924 °C) was larger than that of HepG2 (0.250 °C). However, the temperature of adherent HepG2 cells changed over time, showing susceptibility to the environment most of the time compared to H1975. Moreover, the temperature increment of non-cancerous cells, such as hepatic stellate cells, was monitored in response to the stimulus of paraformaldehyde, showing the process of cell death. Therefore, this thermometric microchip integrated with cell culture could be a non-disposable and label-free tool for monitoring cellular temperature applied to the study of physiology and pathology.
Collapse
Affiliation(s)
- Xuefei Zhao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China; State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Jiawen Yin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Weihua Fan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Zhenyu Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Kaikai Hu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Yuliang Mai
- Guangdong Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou, 510665, PR China
| | - Anbo Luan
- Guangdong Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou, 510665, PR China
| | - Baojian Xu
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China; State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
8
|
Perepelkina NI, Fialkovskaya LA, Kolomiytseva IK. The effect of hibernation on lipids of the liver mitochondrial fraction in the Yakut ground squirrel Spermophilus undulatus. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
McFarlane SV, Mathers KE, Staples JF. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 312:R434-R442. [PMID: 28077390 DOI: 10.1152/ajpregu.00316.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
Although seasonal modifications of brown adipose tissue (BAT) in hibernators are well documented, we know little about functional regulation of BAT in different phases of hibernation. In the 13-lined ground squirrel, liver mitochondrial respiration is suppressed by up to 70% during torpor. This suppression is reversed during arousal and interbout euthermia (IBE), and corresponds with patterns of maximal activities of electron transport system (ETS) enzymes. Uncoupling of BAT mitochondria is controlled by free fatty acid release stimulated by sympathetic activation of adipocytes, so we hypothesized that further regulation at the level of the ETS would be of little advantage. As predicted, maximal ETS enzyme activities of isolated BAT mitochondria did not differ between torpor and IBE. In contrast to this pattern, respiration rates of mitochondria isolated from torpid individuals were suppressed by ~60% compared with rates from IBE individuals when measured at 37°C. At 10°C, however, mitochondrial respiration rates tended to be greater in torpor than IBE. As a result, the temperature sensitivity (Q10) of mitochondrial respiration was significantly lower in torpor (~1.4) than IBE (~2.4), perhaps facilitating energy savings during entrance into torpor and thermogenesis at low body temperatures. Despite the observed differences in isolated mitochondria, norepinephrine-stimulated respiration rates of isolated BAT adipocytes did not differ between torpor and IBE, perhaps because the adipocyte isolation requires lengthy incubation at 37°C, potentially reversing any changes that occur in torpor. Such changes may include remodeling of BAT mitochondrial membrane phospholipids, which could change in situ enzyme activities and temperature sensitivities.
Collapse
Affiliation(s)
- Sarah V McFarlane
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. J Comp Physiol B 2016; 187:227-234. [DOI: 10.1007/s00360-016-1022-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
|
11
|
Mürke E, Stoll S, Lendeckel U, Reinhold D, Schild L. The mitochondrial phospholipid cardiolipin is involved in the regulation of T-cell proliferation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:748-54. [PMID: 27163692 DOI: 10.1016/j.bbalip.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022]
Abstract
Challenge of the immune system with antigens induces a cascade of processes including activation of naïve T cells, induction of proliferation, differentiation into effector cells and finally contraction via apoptosis. To meet the dynamic requirements of an adequate immune response, T cells must metabolically adapt to actual situations by switching between catabolic and anabolic metabolism. In this context mitochondria are hubs of metabolic regulation. The phospholipid cardiolipin (CL) is crucial for the structural and functional integrity and, thus, the metabolism of mitochondria. The aim of this study was to verify a possible interrelationship between T cell proliferation and CL composition. For this purpose, we adjusted the proliferation of peripheral human T cells from volunteers by stimulation with different concentrations of the mitogen phytohaemagglutinin (PHA), inhibition with Cyclosporin A (CsA) and exposure of cells to different free fatty acids and subsequently analysed the composition of CL by LC/MS/MS spectroscopy. All of the treatments had significant effects on CL composition. Correlation analysis of the proliferation rate and CL composition revealed that only the amount of incorporated palmitoleic acid and the content of tetralinoleoyl-CL are significantly associated with the proliferation rate. This observation is strongly suggestive of a regulatory function of these particular CL components/species in the process of T cell proliferation. As CL is crucially involved in mitochondrial function one can speculate that changes in CL composition contribute to vital mitochondria-dependent adaptations of energy metabolism in T cells during immune response.
Collapse
Affiliation(s)
- Eik Mürke
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Steffan Stoll
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, Ernst-Moritz-Arndt-University, D-17475 Greifswald, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University, D-39120 Magdeburg, Germany.
| |
Collapse
|
12
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Lipidomics Reveals Mitochondrial Membrane Remodeling Associated with Acute Thermoregulation in a Rodent with a Wide Thermoneutral Zone. Lipids 2014; 49:715-30. [DOI: 10.1007/s11745-014-3900-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
|
14
|
Cooper AN, Brown JCL, Staples JF. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels? Comp Biochem Physiol B Biochem Mol Biol 2014; 170:50-7. [PMID: 24561259 DOI: 10.1016/j.cbpb.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
Hibernation in 13-lined ground squirrels (Ictidomys tridecemlineatus) is associated with a substantial suppression of whole-animal metabolism. We compared the metabolism of liver mitochondria isolated from torpid ground squirrels with those from interbout euthermic (IBE; recently aroused from torpor) and summer euthermic conspecifics. Succinate-fuelled state 3 respiration, calculated relative to mitochondrial protein, was suppressed in torpor by 48% and 44% compared with IBE and summer, respectively. This suppression remains when respiration is expressed relative to cytochrome c oxidase activity. We hypothesized that this suppression was caused by inhibition of succinate transport at the dicarboxylate transporter (DCT) by long-chain fatty acyl CoAs that may accumulate during torpor. We predicted, therefore, that exogenous palmitoyl CoA would inhibit respiration in IBE more than in torpor. Palmitoyl CoA inhibited respiration ~70%, in both torpor and IBE. The addition of carnitine, predicted to reverse palmitoyl CoA suppression by facilitating its transport into the mitochondrial matrix, did not rescue the respiration rates in IBE or torpor. Liver mitochondrial activities of carnitine palmitoyl transferase did not differ among IBE, torpor and summer animals. Although palmitoyl CoA inhibits succinate-fuelled respiration, this suppression is likely not related exclusively to inhibition of the DCT, and may involve additional mitochondrial transporters such as the adenine-nucleotide transporter.
Collapse
Affiliation(s)
- Alex N Cooper
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - Jason C L Brown
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada.
| |
Collapse
|
15
|
Chung DJ, Szyszka B, Brown JCL, Hüner NPA, Staples JF. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genomics 2013; 45:389-99. [PMID: 23572536 DOI: 10.1152/physiolgenomics.00171.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian hibernation involves periods of substantial suppression of metabolic rate (torpor) allowing energy conservation during winter. In thirteen-lined ground squirrels (Ictidomys tridecemlineatus), suppression of liver mitochondrial respiration during entrance into torpor occurs rapidly (within 2 h) before core body temperature falls below 30°C, whereas reversal of this suppression occurs slowly during arousal from torpor. We hypothesized that this pattern of rapid suppression in entrance and slow reversal during arousal was related to changes in the phosphorylation state of mitochondrial enzymes during torpor catalyzed by temperature-dependent kinases and phosphatases. We compared mitochondrial protein phosphorylation among hibernation metabolic states using immunoblot analyses and assessed how phosphorylation related to mitochondrial respiration rates. No proteins showed torpor-specific changes in phosphorylation, nor did phosphorylation state correlate with mitochondrial respiration. However, several proteins showed seasonal (summer vs. winter) differences in phosphorylation of threonine or serine residues. Using matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry, we identified three of these proteins: F1-ATPase α-chain, long chain-specific acyl-CoA dehydrogenase, and ornithine transcarbamylase. Therefore, we conclude that protein phosphorylation is likely a mechanism involved in bringing about seasonal changes in mitochondrial metabolism in hibernating ground squirrels, but it seems unlikely to play any role in acute suppression of mitochondrial metabolism during torpor.
Collapse
Affiliation(s)
- Dillon J Chung
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
16
|
Kolomiytseva IK, Perepelkina NI, Fesenko EE. Lipids of liver membrane structures during hibernation of the arctic ground squirrel Spermophilus undulatus. DOKL BIOCHEM BIOPHYS 2013; 448:15-8. [PMID: 23478979 DOI: 10.1134/s1607672913010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 11/23/2022]
Affiliation(s)
- I K Kolomiytseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
| | | | | |
Collapse
|