1
|
Wos G, Palomar G, Marszałek M, Babik W, Sniegula S. The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: cross-latitude comparison. Front Zool 2023; 20:13. [PMID: 37032330 PMCID: PMC10084621 DOI: 10.1186/s12983-023-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
2
|
Scott R, Resetarits WJ. Spatially explicit habitat selection: Testing contagion and the ideal free distribution with Culex mosquitoes. Am Nat 2022; 200:675-690. [DOI: 10.1086/721009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Resetarits WJ, Pintar MR, Bohenek JR. Complex multi‐predator effects on demographic habitat selection and community assembly in colonizing aquatic insects. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- William J. Resetarits
- Department of Biology Centers for Water and Wetlands Resources, and Conservation and Biodiversity Research The University of Mississippi University Mississippi 38677‐1848 USA
| | - Matthew R. Pintar
- Department of Biology Centers for Water and Wetlands Resources, and Conservation and Biodiversity Research The University of Mississippi University Mississippi 38677‐1848 USA
| | - Jason R. Bohenek
- Department of Biology Centers for Water and Wetlands Resources, and Conservation and Biodiversity Research The University of Mississippi University Mississippi 38677‐1848 USA
| |
Collapse
|
4
|
Resetarits WJ. Between a rock and a hard place: Ovipositing treefrogs navigate complex trade‐offs in the landscape of patch quality. Ecosphere 2021. [DOI: 10.1002/ecs2.3524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- William J. Resetarits
- Department of Biology and Centers for Water and Wetlands Resources, and Biodiversity and Conservation Research University of Mississippi University Mississippi38677USA
| |
Collapse
|
5
|
Martin Y, Titeux N, Van Dyck H. Range expansion, habitat use, and choosiness in a butterfly under climate change: Marginality and tolerance of oviposition site selection. Ecol Evol 2021; 11:2336-2345. [PMID: 33717459 PMCID: PMC7920772 DOI: 10.1002/ece3.7202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022] Open
Abstract
Poleward range shifts under climate change involve the colonization of new sites and hence the foundation of new populations at the expanding edge. We studied oviposition site selection in a butterfly under range expansion (Lycaena dispar), a key process for the establishment of new populations. We described and compared the microhabitats used by the species for egg laying with those available across the study sites both in edge and in core populations. We carried out an ecological niche factor analysis (ENFA) to estimate (1) the variety of microhabitats used by the butterfly for egg laying (tolerance) and (2) the extent to which these selected microhabitats deviated from those available (marginality). Microhabitat availability was similar in edge and core populations. Ambient temperature recorded at the site level above the vegetation was on average lower at core populations. In contrast with what is often assumed, edge populations did not have narrower microhabitat use compared to core populations. Females in edge populations even showed a higher degree of generalism: They laid eggs under a wider range of microhabitats. We suggest that this pattern could be related to an overrepresentation of fast deciding personalities in edge populations. We also showed that the thermal time window for active female behavior was reduced in edge populations, which could significantly decrease the time budget for oviposition and decrease the threshold of acceptance during microhabitat selection for oviposition in recently established populations.
Collapse
Affiliation(s)
- Youri Martin
- Behavioural Ecology and Conservation GroupEarth and Life InstituteUCLouvain (Université Catholique de Louvain)Louvain‐la‐NeuveBelgium
- Observatory for ClimateEnvironment and BiodiversityEnvironmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyBelvauxLuxembourg
| | - Nicolas Titeux
- Behavioural Ecology and Conservation GroupEarth and Life InstituteUCLouvain (Université Catholique de Louvain)Louvain‐la‐NeuveBelgium
- Observatory for ClimateEnvironment and BiodiversityEnvironmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyBelvauxLuxembourg
| | - Hans Van Dyck
- Behavioural Ecology and Conservation GroupEarth and Life InstituteUCLouvain (Université Catholique de Louvain)Louvain‐la‐NeuveBelgium
| |
Collapse
|
6
|
Petrén H, Gloder G, Posledovich D, Wiklund C, Friberg M. Innate preference hierarchies coupled with adult experience, rather than larval imprinting or transgenerational acclimation, determine host plant use in Pieris rapae. Ecol Evol 2021; 11:242-251. [PMID: 33437426 PMCID: PMC7790653 DOI: 10.1002/ece3.7018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 01/17/2023] Open
Abstract
The evolution of host range drives diversification in phytophagous insects, and understanding the female oviposition choices is pivotal for understanding host specialization. One controversial mechanism for female host choice is Hopkins' host selection principle, where females are predicted to increase their preference for the host species they were feeding upon as larvae. A recent hypothesis posits that such larval imprinting is especially adaptive in combination with anticipatory transgenerational acclimation, so that females both allocate and adapt their offspring to their future host. We study the butterfly Pieris rapae, for which previous evidence suggests that females prefer to oviposit on host individuals of similar nitrogen content as the plant they were feeding upon as larvae, and where the offspring show higher performance on the mother's host type. We test the hypothesis that larval experience and anticipatory transgenerational effects influence female host plant acceptance (no-choice) and preference (choice) of two host plant species (Barbarea vulgaris and Berteroa incana) of varying nitrogen content. We then test the offspring performance on these hosts. We found no evidence of larval imprinting affecting female decision-making during oviposition, but that an adult female experience of egg laying in no-choice trials on the less-preferred host Be. incana slightly increased the P. rapae propensity to oviposit on Be. incana in subsequent choice trials. We found no transgenerational effects on female host acceptance or preference, but negative transgenerational effects on larval performance, because the offspring of P. rapae females that had developed on Be. incana as larvae grew slower on both hosts, and especially on Be. incana. Our results suggest that among host species, preferences are guided by hard-wired preference hierarchies linked to species-specific host traits and less affected by larval experience or transgenerational effects, which may be more important for females evaluating different host individuals of the same species.
Collapse
Affiliation(s)
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenLeuvenBelgium
| | | | | | | |
Collapse
|
7
|
Kral-O’Brien KC, Hovick TJ, Limb RF, Harmon JP, Gillam EH. Incorporating field behaviors into monarch surveys to promote informed conservation actions. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2019.125761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Martinossi‐Allibert I, Thilliez E, Arnqvist G, Berger D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: A test using experimental evolution in seed beetles. Evol Appl 2019; 12:1371-1384. [PMID: 31417621 PMCID: PMC6691221 DOI: 10.1111/eva.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023] Open
Abstract
Whether sexual selection impedes or aids adaptation has become an outstanding question in times of rapid environmental change and parallels the debate about how the evolution of individual traits impacts on population dynamics. The net effect of sexual selection on population viability results from a balance between genetic benefits of "good-genes" effects and costs of sexual conflict. Depending on how these facets of sexual selection are affected under environmental change, extinction of maladapted populations could be either avoided or accelerated. Here, we evolved seed beetles under three alternative mating regimes to disentangle the contributions of sexual selection, fecundity selection, and male-female coevolution to individual reproductive success and population fitness. We compared these contributions between the ancestral environment and two stressful environments (elevated temperature and a host plant shift). We found evidence that sexual selection on males had positive genetic effects on female fitness components across environments, supporting good-genes sexual selection. Interestingly, however, when males evolved under sexual selection with fecundity selection removed, they became more robust to both temperature and host plant stress compared to their conspecific females and males from the other evolution regimes that applied fecundity selection. We quantified the population-level consequences of this sex-specific adaptation and found evidence that the cost of sociosexual interactions in terms of reduced offspring production was higher in the regime applying only sexual selection to males. Moreover, the cost tended to be more pronounced at the elevated temperature to which males from the regime were more robust compared to their conspecific females. These results illustrate the tension between individual-level adaptation and population-level viability in sexually reproducing species and suggest that the relative efficacies of sexual selection and fecundity selection can cause inherent sex differences in environmental robustness that may impact demography of maladapted populations.
Collapse
Affiliation(s)
| | - Emma Thilliez
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
9
|
Wiklund C, Norén K, Ryman N, Friberg M. Local monophagy and between-site diversity in host use in the European swallowtail butterfly, Papilio machaon. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Schäpers A, Petrén H, Wheat CW, Wiklund C, Friberg M. Female fecundity variation affects reproducibility of experiments on host plant preference and acceptance in a phytophagous insect. Proc Biol Sci 2017; 284:20162643. [PMID: 28202813 PMCID: PMC5326532 DOI: 10.1098/rspb.2016.2643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 11/12/2022] Open
Abstract
Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment-that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on low-ranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions.
Collapse
Affiliation(s)
| | - Hampus Petrén
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, EBC, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | | | - Christer Wiklund
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Magne Friberg
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, EBC, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| |
Collapse
|
11
|
Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 2015; 180:421-7. [DOI: 10.1007/s00442-015-3492-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
|
12
|
Rhainds M. Size-Dependent Realized Fecundity in Two Lepidopteran Capital Breeders. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1193-200. [PMID: 26314065 DOI: 10.1093/ee/nvv075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/20/2015] [Indexed: 05/27/2023]
Abstract
Body size is correlated with potential fecundity in capital breeders, but size-dependent functions of realized fecundity may be impacted by reproductive losses due to mating failure or oviposition time limitations (number of eggs remaining in the abdomen of females at death). Post-mortem assessment of adults collected in the field after natural death represents a sound approach to quantify how body size affects realized fecundity. This approach is used here for two Lepidoptera for which replicated field data are available, the spruce budworm Choristoneura fumiferana Clemens (Tortricidae) and bagworm Metisa plana Walker (Psychidae). Dead female budworms were collected on drop trays placed beneath tree canopies at four locations. Most females had mated during their lifetime (presence of a spermatophore in spermatheca), and body size did not influence mating failure. Oviposition time limitation was the major factor restricting realized fecundity of females, and its incidence was independent of body size at three of the four locations. Both realized and potential fecundity of female budworms increased linearly with body size. Female bagworms are neotenous and reproduce within a bag; hence, parameters related to realized fecundity are unusually tractable. For each of five consecutive generations of bagworms, mating probability increased with body size, so that virgin-dead females were predominantly small, least fecund individuals. The implication of size-dependent reproductive losses are compared for the two organisms in terms of life history theory and population dynamics, with an emphasis on how differential female motility affects the evolutionary and ecological consequences of size-dependent realized fecundity.
Collapse
Affiliation(s)
- Marc Rhainds
- Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick E3B 5P7, Canada.
| |
Collapse
|
13
|
Friberg M, Posledovich D, Wiklund C. Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies. Oecologia 2015; 178:1181-92. [PMID: 25783488 DOI: 10.1007/s00442-015-3286-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
The preference-performance hypothesis posits that the host plant range of plant-feeding insects is ultimately limited by larval costs associated with feeding on multiple resources, and that female egg-laying preferences evolve in response to these costs. The trade-off of either using few host plant species and being a strong competitor on them due to effective utilization or using a wide host plant range but being a poor competitor is further predicted to result in host plant specialization. This follows under the hypothesis that both females and offspring are ultimately favoured by utilizing only the most suitable host(s). We develop an experimental approach to identify such trade-offs, i.e. larval costs associated with being a host generalist, and apply a suite of experiments to two sympatric and syntopic populations of the closely related butterflies Pieris napi and Pieris rapae. These butterflies show variation in their level of host specialization, which allowed comparisons between more and less specialized species and between families within species. Our results show that, first, the link between female host preference and offspring performance was not significantly stronger in the specialist compared to the generalist species. Second, the offspring of the host plant specialist did not outperform the offspring of the generalist on the former's most preferred host plant species. Finally, the more generalized species, or families within species, did not show higher survival or consistently higher growth rates than the specialists on the less preferred plants. Thus, the preference and performance traits appear to evolve as largely separated units.
Collapse
Affiliation(s)
- M Friberg
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, EBC, Norbyvägen 18D, 752 36, Uppsala, Sweden,
| | | | | |
Collapse
|
14
|
Haeler E, Fiedler K, Grill A. What prolongs a butterfly's life?: Trade-offs between dormancy, fecundity and body size. PLoS One 2014; 9:e111955. [PMID: 25390334 PMCID: PMC4229126 DOI: 10.1371/journal.pone.0111955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022] Open
Abstract
In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies’ life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h), thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13). Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels.
Collapse
Affiliation(s)
- Elena Haeler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Konrad Fiedler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Andrea Grill
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
15
|
Dieckhoff C, Theobald JC, Wäckers FL, Heimpel GE. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field. Ecol Evol 2014; 4:1739-50. [PMID: 24963373 PMCID: PMC4063472 DOI: 10.1002/ece3.1023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022] Open
Abstract
Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limitation are mediated by oviposition and egg maturation rates as well as by starvation risk and other determinants of adult lifespan. Here, we assessed egg load and nutritional state in the soybean aphid parasitoid Binodoxys communis under field conditions to estimate its risk of becoming either egg- or time-limited. The majority of female B. communis showed no signs of egg limitation. Experimental field manipulations of B. communis females suggested that an average of 4-8 eggs were matured per hour over the course of a day. Regardless, egg loads remained constant over the course of the day at approximately 80 eggs, suggesting that egg maturation compensates for oviposition. This is the first case of such "egg load buffering" documented for a parasitoid in the field. Despite this buffering, egg loads dropped slightly with increasing host (aphid) density. This suggests that egg limitation could occur at very high host densities as experienced in outbreak years in some locations in the Midwestern USA. Biochemical analyses of sugar profiles showed that parasitoids fed upon sugar in the field at a remarkably high rate. Time limitation through starvation thus seems to be very low and aphid honeydew is most likely a source of dietary sugar for these parasitoids. This latter supposition is supported by the fact that body sugar levels increase with host (aphid) density. Together, these results suggest that fecundity of B. communis benefits from both dynamic egg maturation strategies and sugar-feeding.
Collapse
Affiliation(s)
- Christine Dieckhoff
- Department of Entomology & Wildlife Ecology, University of Delaware Newark, Delaware, 19716
| | - Julian C Theobald
- Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University Lancaster, LA1 4YQ, UK
| | - Felix L Wäckers
- Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University Lancaster, LA1 4YQ, UK
| | - George E Heimpel
- Department of Entomology, University of Minnesota St Paul, Minnesota, 55108
| |
Collapse
|
16
|
Rogell B, Widegren W, Hallsson LR, Berger D, Björklund M, Maklakov AA. Sex-dependent evolution of life-history traits following adaptation to climate warming. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Björn Rogell
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
- Shool of Biological Sciences; Monash University; Clayton 3800 Australia
| | - William Widegren
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
| | - Lára R. Hallsson
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences, University of New South Wales; Sydney New South Wales 2052 Australia
| | - David Berger
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
| | - Mats Björklund
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
| | - Alexei A. Maklakov
- Department of Animal Ecology; Evolutionary Biology Center, Uppsala University; Uppsala SE-752 36 Sweden
| |
Collapse
|
17
|
Kivelä SM, Välimäki P, Gotthard K. SEASONALITY MAINTAINS ALTERNATIVE LIFE-HISTORY PHENOTYPES. Evolution 2013; 67:3145-60. [DOI: 10.1111/evo.12181] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/31/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Sami M. Kivelä
- Department of Biology; University of Oulu; PO Box 3000 90014 University of Oulu Finland
- Current address: Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| | - Panu Välimäki
- Department of Biology; University of Oulu; PO Box 3000 90014 University of Oulu Finland
| | - Karl Gotthard
- Department of Zoology; Stockholm University; SE-10691 Stockholm Sweden
| |
Collapse
|
18
|
Friberg M, Leimar O, Wiklund C. Heterospecific courtship, minority effects and niche separation between cryptic butterfly species. J Evol Biol 2013; 26:971-9. [PMID: 23480828 DOI: 10.1111/jeb.12106] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/14/2012] [Accepted: 12/15/2012] [Indexed: 11/28/2022]
Abstract
Species interacting in varied ecological conditions often evolve in different directions in different local populations. The butterflies of the cryptic Leptidea complex are sympatrically distributed in different combinations across their Eurasian range. Interestingly, the same species is a habitat generalist in some regions and a habitat specialist in others, where a sibling species has the habitat generalist role. Previous studies suggest that this geographically variable niche divergence is generated by local processes in different contact zones. By varying the absolute and relative densities of Leptidea sinapis and Leptidea juvernica in large outdoor cages, we show that female mating success is unaffected by conspecific density, but strongly negatively affected by the density of the other species. Whereas 80% of the females mated when a conspecific couple was alone in a cage, less than 10% mated when the single couple shared the cage with five pairs of the other species. The heterospecific courtships can thus affect the population fitness, and for the species in the local minority, the suitability of a habitat is likely to depend on the presence or absence of the locally interacting species. If the local relative abundance of the different species depends on the colonization order, priority effects might determine the ecological roles of interacting species in this system.
Collapse
Affiliation(s)
- M Friberg
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|