1
|
Xu J, Qian Q, Xia M, Wang X, Wang H. Trichlorocarban induces developmental and immune toxicity to zebrafish (Danio rerio) by targeting TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116479. [PMID: 33460871 DOI: 10.1016/j.envpol.2021.116479] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Trichlorocarban (TCC) is ubiquitously detected in environmental matrices, while there is a paucity of information regarding its systemic toxicity. In the present study, we observed that TCC exposure led to high embryo mortality, delayed hatching and yolk absorption, as well as increased malformations, such as closure of swim sac and yolk sac edema. Meanwhile, TCC affected the formation and branch of subintestinal veins (SIVs), intersegmental vessels and posterior cardinal veins. Especially, the SIVs were shrunk, and their branches were reduced or even broken along with reduced coverage area. TCC-induced oxidative stress and excessive apoptosis resulted from abnormal expression of the anti/pro-apoptotic genes. Significant reduction in the number and aggregation function of immune cells proved that TCC had prominent immunotoxicity to zebrafish. TCC-targeted TLR4 signaling pathway was demonstrated by abnormal expression of the marker genes (tlr4, MyD88 and nf-κb) and release of the downstream inflammatory factors (TNF-α, IL-6, etc.). Inhibition of TLR4/MyD88/NF-κB pathway by an inhibitor (CA-4948) rescued the decreasing trend of the immune cells induced by TCC. Molecular docking results demonstrated that TCC could stably bind to TLR4 receptor to form hydrogen bonds and hydrophobic interactions with amino acids. Overall, these findings reveal the underlying molecular mechanisms on TCC-induced developmental and immune toxicity to zebrafish.
Collapse
Affiliation(s)
- Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Burggren W, Rojas Antich M. Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. J Cardiovasc Dev Dis 2020; 7:jcdd7040056. [PMID: 33291457 PMCID: PMC7762154 DOI: 10.3390/jcdd7040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The chorioallantoic membrane (CAM) of the avian embryo is an intrinsically interesting gas exchange and osmoregulation organ. Beyond study by comparative biologists, however, the CAM vascular bed has been the focus of translational studies by cardiovascular life scientists interested in the CAM as a model for probing angiogenesis, heart development, and physiological functions. In this perspective article, we consider areas of cardiovascular research that have benefited from studies of the CAM, including the themes of investigation of the CAM's hemodynamic influence on heart and central vessel development, use of the CAM as a model vascular bed for studying angiogenesis, and the CAM as an assay tool. A case study on CAM vascularization effects of very low doses of crude oil as a toxicant is also presented that embraces some of these themes, showing the induction of subtle changes in the pattern of the CAM vasculature growth that are not readily observed by standard vascular assessment methodologies. We conclude by raising several questions in the area of CAM research, including the following: (1) Do changes in patterns of CAM growth, as opposed to absolute CAM growth, have biological significance?; (2) How does the relative amount of CAM vascularization compared to the embryo per se change during development?; and (3) Is the CAM actually representative of the mammalian systemic vascular beds that it is presumed to model?
Collapse
|
3
|
Nechaeva M, Alekseeva T, Dobretsov M, Kubasov I. Chicken embryos can maintain heart rate during hypoxia on day 4 of incubation. J Comp Physiol B 2020; 190:361-370. [PMID: 32198537 DOI: 10.1007/s00360-020-01274-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
Acute exposure to hypoxic conditions is a frequent natural event during the development of bird eggs. However, little is known about the effect of such exposure on the ability of young embryos in which cardiovascular regulation is not yet developed to maintain a normal heart rate (HR). To address this question, we studied the effect of 10-20 min of exposure to moderate or severe acute hypoxia (10% or 5% O2, respectively) on the HR of day 4 (D4) chicken embryos. In ovo, video recording of the beating embryo heart inside the egg revealed that severe, but not moderate, hypoxia resulted in significant HR changes. The HR response to severe hypoxia consisted of two phases: the first phase, consisting of an initial decrease in HR, was followed by a phase of partial HR recovery. Upon the restoration of normoxia, after an overshoot period of a few minutes, the HR completely recovered to its basal level. In vitro (isolated heart preparation), the first phase of the HR response to severe hypoxia was strengthened (nearly complete heart silencing) compared to that in ovo, and the HR recovery phase was greatly attenuated. Furthermore, neither an overshoot period nor complete HR recovery after hypoxia was observed. Thus, the D4 chicken embryo heart can partially maintain its rhythm during hypoxia in ovo, but not in vitro. Some factors from the egg, such as catecholamines, are likely to be critical for avian embryo responding to hypoxic condition and survival.
Collapse
Affiliation(s)
- Marina Nechaeva
- Institute of Developmental Biology RAS, Vavilov Str. 26, Moscow, 119334, Russia.
| | - Tatyana Alekseeva
- Institute of Developmental Biology RAS, Vavilov Str. 26, Moscow, 119334, Russia
| | - Maxim Dobretsov
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - Igor Kubasov
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| |
Collapse
|
4
|
Xie X, Lei D, Zhang Q, Wang Y, Wen L, Ye Z, Ud Din A, Jia D, Apicella A, Wang G. Effect of simulated microgravity induced PI3K-nos2b signalling on zebrafish cardiovascular plexus network formation. J Biomech 2019; 87:83-92. [PMID: 30850176 DOI: 10.1016/j.jbiomech.2019.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Local abnormal angiogenesis and cardiovascular system reorganization have been observed in embryos exposed to a simulated microgravity (SM) environment. In this study, changes in key molecular signals and pathways in cardiovascular development have been investigated under microgravity conditions. In particular, the caudal vein plexus (CVP) network, formed by sprouting angiogenesis has been chosen. Zebrafish embryos were exposed to SM using a ground-based microgravity bioreactor for 24 and 36 h. The SM was observed to have no effect on the zebrafish length, tail width and incubation time whereas it was observed to significantly reduce the heart rate frequency and to promote abnormal development of the CVP network in the embryos. Nitric oxide (NO) content demonstrated that the total proteins in zebrafish embryos were significantly higher in SM than in the control group grown under normal conditions. It was then preliminarily determined how NO signals were involved in SM regulated zebrafish CVP network formation. nos2b MO was injected and CVP network evolution was observed in 36 h post fertilization (hpf) under SM condition. The results showed that the CVP network formation was considerably decreased in the nos2b MO treated group. However, this inhibition of the CVP network development was not observed in control MO group, indicating that nos2b is involved in the SM-regulated vascular development process in zebrafish. Moreover, specific phosphoinositide 3-kinase (PI3K) inhibitors such as LY294002 were also tested on zebrafish embryos under SM condition. This treatment significantly inhibited the formation of zebrafish CVP network. Furthermore, overexpression of nos2b partly rescued the LY294002-caused CVP network failure. Therefore, it can be concluded that SM affects zebrafish CVP network remodeling by enhancing angiogenesis. Additionally, the PI3K-nos2b signaling pathway is involved in this process.
Collapse
Affiliation(s)
- Xiang Xie
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Daoxi Lei
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lin Wen
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ahmad Ud Din
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Antonio Apicella
- Advanced Materials Lab, Polytechnic and Base Science School of University of Campania, San Lorenzo, 81031, Italy
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018; 217:1571-1587. [PMID: 29467174 PMCID: PMC5940296 DOI: 10.1083/jcb.201701039] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Broders-Bondon et al. review the pathological mechanical properties of tumor tissues and how abnormal mechanical signals result in oncogenic biochemical signals during tumor progression. Cancer has been characterized as a genetic disease, associated with mutations that cause pathological alterations of the cell cycle, adhesion, or invasive motility. Recently, the importance of the anomalous mechanical properties of tumor tissues, which activate tumorigenic biochemical pathways, has become apparent. This mechanical induction in tumors appears to consist of the destabilization of adult tissue homeostasis as a result of the reactivation of embryonic developmental mechanosensitive pathways in response to pathological mechanical strains. These strains occur in many forms, for example, hypervascularization in late tumors leads to high static hydrodynamic pressure that can promote malignant progression through hypoxia or anomalous interstitial liquid and blood flow. The high stiffness of tumors directly induces the mechanical activation of biochemical pathways enhancing the cell cycle, epithelial–mesenchymal transition, and cell motility. Furthermore, increases in solid-stress pressure associated with cell hyperproliferation activate tumorigenic pathways in the healthy epithelial cells compressed by the neighboring tumor. The underlying molecular mechanisms of the translation of a mechanical signal into a tumor inducing biochemical signal are based on mechanically induced protein conformational changes that activate classical tumorigenic signaling pathways. Understanding these mechanisms will be important for the development of innovative treatments to target such mechanical anomalies in cancer.
Collapse
Affiliation(s)
- Florence Broders-Bondon
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Thanh Huong Nguyen Ho-Bouldoires
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| |
Collapse
|
6
|
Torres-Vargas J, Jiménez-Coello M, Guzmán-Marín E, Acosta-Viana KY, Yadon ZE, Gutiérrez-Blanco E, Guillermo-Cordero JL, Garg NJ, Ortega-Pacheco A. Quantitative and histological assessment of maternal-fetal transmission of Trypanosoma cruzi in guinea pigs: An experimental model of congenital Chagas disease. PLoS Negl Trop Dis 2018; 12:e0006222. [PMID: 29364882 PMCID: PMC5798842 DOI: 10.1371/journal.pntd.0006222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/05/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We evaluated the effect of Trypanosoma cruzi infection on fertility, gestation outcome, and maternal-fetal transmission in guinea pigs (Cavia porcellus). METHODS Animals were infected with T. cruzi H4 strain (TcI lineage) before gestation (IBG) or during gestation (IDG). Tissue and sera samples of dams and fetuses were obtained near parturition. RESULTS All IBG and IDG dams were seropositive by two tests, and exhibited blood parasite load of 1.62±2.2 and 50.1±62 parasites/μl, respectively, by quantitative PCR. Histological evaluation showed muscle fiber degeneration and cellular necrosis in all infected dams. Parasite nests were not detected in infected dams by histology. However, qPCR analysis detected parasites-eq/g heart tissue of 153±104.7 and 169.3±129.4 in IBG and IDG dams, respectively. All fetuses of infected dams were positive for anti-parasite IgG antibodies and tissue parasites by qPCR, but presented a low level of tissue inflammatory infiltrate. Fetuses of IDG (vs. IBG) dams exhibited higher degree of muscle fiber degeneration and cellular necrosis in the heart and skeletal tissues. The placental tissue exhibited no inflammatory lesions and amastigote nests, yet parasites-eq/g of 381.2±34.3 and 79.2±84.9 were detected in IDG and IBG placentas, respectively. Fetal development was compromised, and evidenced by a decline in weight, crow-rump length, and abdominal width in both groups. CONCLUSIONS T. cruzi TcI has a high capacity of congenital transmission even when it was inoculated at a very low dose before or during gestation. Tissue lesions, parasite load, and fetal under development provide evidence for high virulence of the parasite during pregnancy. Despite finding of high parasite burden by qPCR, placentas were protected from cellular damage. Our studies offer an experimental model to study the efficacy of vaccines and drugs against congenital transmission of T. cruzi. These results also call for T. cruzi screening in pregnant women and adequate follow up of the newborns in endemic areas.
Collapse
Affiliation(s)
- Jatziri Torres-Vargas
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Matilde Jiménez-Coello
- C.A. Biomedicina de Enfermedades Infecciosas y Parasitarias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Eugenia Guzmán-Marín
- C.A. Biomedicina de Enfermedades Infecciosas y Parasitarias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karla Y. Acosta-Viana
- C.A. Biomedicina de Enfermedades Infecciosas y Parasitarias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Zaida E. Yadon
- Health Surveillance, Disease Prevention and Control, Pan American Health Organization, Duque de Caxias, Rio de Janeiro, Brazil
| | - Eduardo Gutiérrez-Blanco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - José Leonardo Guillermo-Cordero
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Nisha J. Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (NJG); (AOP)
| | - Antonio Ortega-Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- * E-mail: (NJG); (AOP)
| |
Collapse
|
7
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Burggren W, Dubansky B, Roberts A, Alloy M. Deepwater Horizon Oil Spill as a Case Study for Interdisciplinary Cooperation within Developmental Biology, Environmental Sciences and Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjet.2015.34c002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014; 17:779-804. [PMID: 25138280 DOI: 10.1007/s10456-014-9440-7] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
Collapse
|
10
|
Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis. J Comp Physiol B 2012; 183:123-33. [PMID: 22752075 DOI: 10.1007/s00360-012-0686-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
The ontogeny of cardiac hypoxic responses, and how such responses may be modified by rearing environment, are poorly understood in amphibians. In this study, cardiac performance was investigated in Xenopus laevis from 2 to 25 days post-fertilization (dpf). Larvae were reared under either normoxia or moderate hypoxia (PO₂ = 110 mmHg), and each population was assessed in both normoxia and acute hypoxia. Heart rate (f(H)) of normoxic-reared larvae exhibited an early increase from 77 ± 1 beats min⁻¹ at 2 dpf to 153 ± 1 beats min⁻¹ at 4 dpf, followed by gradual decreases to 123 ± 3 beats min⁻¹ at 25 dpf. Stroke volume (SV), 6 ± 1 nl, and cardiac output (CO), 0.8 ± 0.1 μl min⁻¹, at 5 dpf both increased by more than 40-fold to 25 dpf with rapid larval growth (~30-fold increase in body mass). When exposed to acute hypoxia, normoxic-reared larvae increased f(H) and CO between 5 and 25 dpf. Increased SV in acute hypoxia, produced by increased end-diastolic volume (EDV), only occurred before 10 dpf. Hypoxic-reared larvae showed decreased acute hypoxic responses of EDV, SV and CO at 7 and 10 dpf. Over the period of 2-25 dpf, cardiac scaling with mass showed scaling coefficients of -0.04 (f(H)), 1.23 (SV) and 1.19 (CO), contrary to the cardiac scaling relationships described in birds and mammals. In addition, f(H) scaling in hypoxic-reared larvae was altered to a shallower slope of -0.01. Collectively, these results indicate that acute cardiac hypoxic responses develop before 5 dpf. Chronic hypoxia at a moderate level can not only modulate this cardiac reflex, but also changes cardiac scaling relationship with mass.
Collapse
|