1
|
Glazier DS, Gjoni V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220489. [PMID: 38186280 PMCID: PMC10772614 DOI: 10.1098/rstb.2022.0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional 'hub factors'. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
| | - Vojsava Gjoni
- Department of Biology, University of South Dakota, Vermillion, SD 57609, USA
| |
Collapse
|
2
|
Sandhu S, Mikheev V, Pasternak A, Taskinen J, Morozov A. Revisiting the role of behavior-mediated structuring in the survival of populations in hostile environments. Commun Biol 2024; 7:93. [PMID: 38216662 PMCID: PMC10786947 DOI: 10.1038/s42003-023-05731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Increasing the population density of target species is a major goal of ecosystem and agricultural management. This task is especially challenging in hazardous environments with a high abundance of natural enemies such as parasites and predators. Safe locations with lower mortality have been long considered a beneficial factor in enhancing population survival, being a promising tool in commercial fish farming and restoration of threatened species. Here we challenge this opinion and revisit the role of behavior structuring in a hostile environment in shaping the population density. We build a mathematical model, where individuals are structured according to their defensive tactics against natural enemies. The model predicts that although each safe zone enhances the survival of an individual, for an insufficient number of such zones, the entire population experiences a greater overall mortality. This is a result of the interplay of emergent dynamical behavioral structuring and strong intraspecific competition for safe zones. Non-plastic structuring in individuals' boldness reduces the mentioned negative effects. We demonstrate emergence of non-plastic behavioral structuring: the evolutionary branching of a monomorphic population into a dimorphic one with bold/shy strains. We apply our modelling approach to explore fish farming of salmonids in an environment infected by trematode parasites.
Collapse
Affiliation(s)
- Simran Sandhu
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, Leicester, UK
| | - Victor Mikheev
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pasternak
- Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Andrew Morozov
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, Leicester, UK.
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Britnell JA, Kerley GIH, Antwis R, Shultz S. A grazer's niche edge is associated with increasing diet diversity and poor population performance. Ecol Lett 2024; 27:e14357. [PMID: 38193626 DOI: 10.1111/ele.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
The core-periphery hypothesis predicts niche cores should be associated with greater survivorship, reproductive output and population performance rates than marginal habitats at niche edges. However, there is very little empirical evidence of whether niche centrality influences population trends in animals. Using the Cape mountain zebra (Equus zebra zebra) as a model system, we evaluated whether niche centrality is associated with population trends, resource availability and diet across a core-periphery gradient. Population growth rates and density progressively declined towards niche peripheries. Niche peripheries were resource-poor and Cape mountain zebra consumed more phylogenetically diverse diets dominated by non-grass families. In core habitats they consumed grass-rich diets and female reproductive success was higher. This combination of spatial niche modelling and functional ecology provides a novel evaluation of how bottom-up resource limitation can shape species distributions, population resilience and range change and can guide conservation management.
Collapse
Affiliation(s)
- J A Britnell
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
- North of England Zoological Society (Chester Zoo), Upton-by-Chester, UK
| | - G I H Kerley
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | | | - S Shultz
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Haave-Audet E, Martin JGA, Wijmenga JJ, Mathot KJ. Information Gathering Is Associated with Increased Survival: A Field Experiment in Black-Capped Chickadees ( Poecile atricapillus). Am Nat 2024; 203:109-123. [PMID: 38207133 DOI: 10.1086/727509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractSampling, investing time or energy to learn about the environment, allows organisms to track changes in resource distribution and quality. The use of sampling is predicted to change as a function of energy expenditure, food availability, and starvation risk, all of which can vary both within and among individuals. We studied sampling behavior in a field study with black-capped chickadees (Poecile atricapillus) and show that individuals adjust their use of sampling as a function of ambient temperature (a proxy for energy expenditure), the presence of an alternative food source (yes or no, a proxy for risk of energy shortfall), and their interaction, as predicted by models of optimal sampling. We also observed repeatable differences in sampling. Some individuals consistently sampled more, and individuals that sampled more overall also had a higher annual survival. These results are consistent with among-individual differences in resource acquisition (e.g., food caches or dominance-related differences in priority access to feeders), shaping among-individual differences in both sampling and survival, with greater resource acquisition leading to both higher sampling and higher survival. Although this explanation requires explicit testing, it is in line with several recent studies suggesting that variation in resource acquisition is a key mechanism underlying animal personality.
Collapse
|
5
|
Stamps JA, Biro PA. Time-specific convergence and divergence in individual differences in behavior: Theory, protocols and analyzes. Ecol Evol 2023; 13:e10615. [PMID: 38034332 PMCID: PMC10682899 DOI: 10.1002/ece3.10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Over the years, theoreticians and empiricists working in a wide range of disciplines, including physiology, ethology, psychology, and behavioral ecology, have suggested a variety of reasons why individual differences in behavior might change over time, such that different individuals become more similar (convergence) or less similar (divergence) to one another. Virtually none of these investigators have suggested that convergence or divergence will continue forever, instead proposing that these patterns will be restricted to particular periods over the course of a longer study. However, to date, few empiricists have documented time-specific convergence or divergence, in part because the experimental designs and statistical methods suitable for describing these patterns are not widely known. Here, we begin by reviewing an array of influential hypotheses that predict convergence or divergence in individual differences over timescales ranging from minutes to years, and that suggest how and why such patterns are likely to change over time (e.g., divergence followed by maintenance). Then, we describe experimental designs and statistical methods that can be used to determine if (and when) individual differences converged, diverged, or were maintained at the same level at specific periods during a longitudinal study. Finally, we describe why the concepts described herein help explain the discrepancy between what theoreticians and empiricists mean when they describe the "emergence" of individual differences or personality, how they might be used to study situations in which convergence and divergence patterns alternate over time, and how they might be used to study time-specific changes in other attributes of behavior, including individual differences in intraindividual variability (predictability), or genotypic differences in behavior.
Collapse
Affiliation(s)
- Judy A. Stamps
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | - Peter A. Biro
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
6
|
Walker RH, Hutchinson MC, Potter AB, Becker JA, Long RA, Pringle RM. Mechanisms of individual variation in large herbivore diets: Roles of spatial heterogeneity and state-dependent foraging. Ecology 2023; 104:e3921. [PMID: 36415899 PMCID: PMC10078531 DOI: 10.1002/ecy.3921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.
Collapse
Affiliation(s)
- Reena H Walker
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Matthew C Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Arjun B Potter
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Justine A Becker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
7
|
Broggi J, Nilsson JÅ. Individual response in body mass and basal metabolism to the risks of predation and starvation in passerines. J Exp Biol 2023; 226:286531. [PMID: 36628936 PMCID: PMC10086538 DOI: 10.1242/jeb.244744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Wintering energy management in small passerines has focused on the adaptive regulation of the daily acquisition of energy reserves within a starvation-predation trade-off framework. However, the possibility that the energetic cost of living, i.e. basal metabolic rate (BMR), is being modulated as part of the management energy strategy has been largely neglected. Here, we addressed this possibility by experimentally exposing captive great tits (Parus major) during winter to two consecutive treatments of increased starvation and predation risk for each individual bird. Body mass and BMR were measured prior to and after each week-long treatment. We predicted that birds should be lighter but with a higher metabolic capacity (higher BMR) as a response to increased predation risk, and that birds should increase internal reserves while reducing their cost of living (lower BMR) when exposed to increased starvation risk. Wintering great tits kept a constant body mass independently of a week-long predation or starvation treatment. However, great tits reduced the cost of living (lower BMR) when exposed to the starvation treatment, while BMR remained unaffected by the predation treatment. Energy management in wintering small birds partly relies on BMR regulation, which challenges the current theoretical framework based on body mass regulation.
Collapse
Affiliation(s)
- Juli Broggi
- Department of Biology, Section of Evolutionary Ecology, University of Lund, S-223 62 Lund, Sweden.,Estación Biológica de Doñana (CSIC), Av. Américo Vespucio 26, 41092 Sevilla, Spain.,Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, University of Lund, S-223 62 Lund, Sweden
| |
Collapse
|
8
|
Horváth G, Jiménez‐Robles O, Martín J, López P, De la Riva I, Herczeg G. Linking behavioral thermoregulation, boldness, and individual state in male Carpetan rock lizards. Ecol Evol 2020; 10:10230-10241. [PMID: 33005378 PMCID: PMC7520217 DOI: 10.1002/ece3.6685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023] Open
Abstract
Mechanisms affecting consistent interindividual behavioral variation (i.e., animal personality) are of wide scientific interest. In poikilotherms, ambient temperature is one of the most important environmental factors with a direct link to a variety of fitness-related traits. Recent empirical evidence suggests that individual differences in boldness are linked to behavioral thermoregulation strategy in heliothermic species, as individuals are regularly exposed to predators during basking. Here, we tested for links between behavioral thermoregulation strategy, boldness, and individual state in adult males of the high-mountain Carpetan rock lizard (Iberolacerta cyreni). Principal component analysis revealed the following latent links in our data: (i) a positive relationship of activity with relative limb length and color brightness (PC1, 23% variation explained), (ii) a negative relationship of thermoregulatory precision with parasite load and risk-taking (PC2, 20.98% variation explained), and (iii) a negative relationship between preferred body temperature and relative limb length (PC3, 19.23% variation explained). We conclude that differences in boldness and behavioral thermoregulatory strategy could be explained by both stable and labile state variables. The moderate link between behavioral thermoregulatory strategy and risk-taking personality in our system is plausibly the result of differences in reproductive state of individuals or variation in ecological conditions during the breeding season.
Collapse
Affiliation(s)
- Gergely Horváth
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | - Octavio Jiménez‐Robles
- Department of Ecology and EvolutionResearch School of BiologyAustralian National UniversityCanberraAustralia
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Pilar López
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Gábor Herczeg
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
9
|
Fenneman J, Frankenhuis WE. Is impulsive behavior adaptive in harsh and unpredictable environments? A formal model. EVOL HUM BEHAV 2020. [DOI: 10.1016/j.evolhumbehav.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Do different food amounts gradually promote personality variation throughout the life stage in a clonal gecko species? Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Barclay P, Mishra S, Sparks AM. State-dependent risk-taking. Proc Biol Sci 2019; 285:rspb.2018.0180. [PMID: 29925612 DOI: 10.1098/rspb.2018.0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/30/2018] [Indexed: 02/02/2023] Open
Abstract
Who takes risks, and when? The relative state model proposes two non-independent selection pressures governing risk-taking: need-based and ability-based. The need-based account suggests that actors take risks when they cannot reach target states with low-risk options (consistent with risk-sensitivity theory). The ability-based account suggests that actors engage in risk-taking when they possess traits or abilities that increase the expected value of risk-taking (by increasing the probability of success, enhancing payoffs for success or buffering against failure). Adaptive risk-taking involves integrating both considerations. Risk-takers compute the expected value of risk-taking based on their state-the interaction of embodied capital relative to one's situation, to the same individual in other circumstances or to other individuals. We provide mathematical support for this dual pathway model, and show that it can predict who will take the most risks and when (e.g. when risk-taking will be performed by those in good, poor, intermediate or extreme state only). Results confirm and elaborate on the initial verbal model of state-dependent risk-taking: selection favours agents who calibrate risk-taking based on implicit computations of condition and/or competitive (dis)advantage, which in turn drives patterned individual differences in risk-taking behaviour.
Collapse
Affiliation(s)
- Pat Barclay
- Department of Psychology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada N1G 2W1
| | - Sandeep Mishra
- Faculty of Business Administration, University of Regina, Regina, Canada
| | - Adam Maxwell Sparks
- Center for Behavior, Evolution and Culture and Department of Anthropology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Laskowski KL, Doran C, Bierbach D, Krause J, Wolf M. Naturally clonal vertebrates are an untapped resource in ecology and evolution research. Nat Ecol Evol 2019; 3:161-169. [PMID: 30692622 DOI: 10.1038/s41559-018-0775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Science requires replication. The development of many cloned or isogenic model organisms is a testament to this. But researchers are reluctant to use these traditional animal model systems for certain questions in evolution or ecology research, because of concerns over relevance or inbreeding. It has largely been overlooked that there are a substantial number of vertebrate species that reproduce clonally in nature. Here we highlight how use of these naturally evolved, phenotypically complex animals can push the boundaries of traditional experimental design and contribute to answering fundamental questions in the fields of ecology and evolution.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.
| | - Carolina Doran
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - Jens Krause
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Wolf
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| |
Collapse
|
14
|
Mathot KJ, Dingemanse NJ, Nakagawa S. The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta‐analytic insights. Biol Rev Camb Philos Soc 2018; 94:1056-1074. [DOI: 10.1111/brv.12491] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Kimberley J. Mathot
- Canada Research Chair in Integrative Ecology, Department of Biological SciencesUniversity of Alberta CW405 Biological Sciences Building, T6G 2E9 Edmonton Alberta Canada
- NIOZ Royal Netherlands Institute for Sea ResearchDepartment of Coastal Systems and Utrecht University 1790 AB, den Burg, Texel The Netherlands
| | - Niels J. Dingemanse
- Behavioural Ecology, Department Biology IILudwig‐Maximilians University of Munich Grosshadener Strasse 2, DE‐82152, Planegg‐Martinsried, Munich Germany
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South Wales Sydney New South Wales 2052 Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research 384 Victoria Street, Darlinghurst, Sydney New South Wales 2010 Australia
| |
Collapse
|
15
|
|
16
|
Niemelä PT, Dingemanse NJ. Meta-analysis reveals weak associations between intrinsic state and personality. Proc Biol Sci 2018; 285:20172823. [PMID: 29491175 PMCID: PMC5832713 DOI: 10.1098/rspb.2017.2823] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Individual differences in behaviour characterize humans and animals alike. A hot field in behavioural ecology asks why this variation in 'personality' evolved. Theory posits that selection favours the integration of 'intrinsic state' and behaviour. Metabolism, hormones, energetic reserves and structural size have particularly been proposed as states covarying with behaviour among-individuals, either genetically or through plasticity integration. We conducted a meta-analysis estimating the amount of among-individual variation in behaviour attributable to variation in state. Our literature search showed that only 22% of the studies claiming to estimate individual-level associations between state and behaviour actually did so. Our meta-analysis revealed that relatively aggressive, bold, explorative and/or active individuals had relatively high metabolic rates, hormone levels, body weights and/or body sizes. The proportion of among-individual variation common to state and behaviour was nevertheless small (approx. 5%). This means that (i) adaptive explanations involving intrinsic states fail to explain much individual variation in behaviour, (ii) empiricists should consider nonlinear, additive or interactive effects of (multiple) intrinsic states, (iii) explanations not involving intrinsic states might be important, or (iv) empirical tests of state-dependent personality theory were inappropriate. Our meta-analysis highlights the importance of feedback between empiricists and theoreticians in the study of adaptive behavioural variation.
Collapse
Affiliation(s)
- Petri T Niemelä
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Abstract
Addressing the obesity epidemic depends on a holistic understanding of the reasons that people become and maintain excessive fat. Theories about the causes of obesity usually focus proximately or evoke evolutionary mismatches, with minimal clinical value. There is potential for substantial progress by adapting strategic body mass regulation models from evolutionary ecology to human obesity by assessing the role of information.
Collapse
|
18
|
Kendall BE, Fox GA, Stover JP. Boldness-aggression syndromes can reduce population density: behavior and demographic heterogeneity. Behav Ecol 2017. [DOI: 10.1093/beheco/arx068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bruce E Kendall
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Joseph P Stover
- Department of Mathematics, Lyon College, Batesville, AR, USA
| |
Collapse
|
19
|
Abstract
Parasites can evolve phenotypically plastic strategies for transmission such that a single genotype can give rise to a range of phenotypes depending on the environmental condition. State-dependent plasticity in particular can arise from individual differences in the parasite's internal state or the condition of the host. Facultative parasites serve as ideal model systems for investigating state-dependent plasticity because individuals can exhibit two life history strategies (free-living or parasitic) depending on the environment. Here, we experimentally show that the ectoparasitic mite Macrocheles subbadius is more likely to parasitize a fruit fly host if the female mite is mated; furthermore, the propensity to infect increased with the level of starvation experienced by the mite. Host condition also played an important role; hosts infected with moderate mite loads were more likely to gain additional infections in pairwise choice tests than uninfected flies. We also found that mites preferentially infected flies subjected to mechanical injury over uninjured flies. These results suggest that a facultative parasite's propensity to infect a host (i.e. switch from a free-living strategy) depends on both the parasite's internal state and host condition. Parasites often live in highly variable and changing environments, an infection strategy that is plastic is likely to be adaptive.
Collapse
|
20
|
Mathot KJ, Abbey-Lee RN, Kempenaers B, Dingemanse NJ. Do great tits (Parus major) suppress basal metabolic rate in response to increased perceived predation danger? A field experiment. Physiol Behav 2016; 164:400-6. [PMID: 27342428 DOI: 10.1016/j.physbeh.2016.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
Abstract
Several studies have shown that individuals with higher metabolic rates (MRs) feed at higher rates and are more willing to forage in the presence of predators. This increases the acquisition of resources, which in turn, may help to sustain a higher MR. Elevated predation danger may be expected to result in reduced MRs, either as a means of allowing for reduced feeding and risk-taking, or as a consequence of adaptively reducing intake rates via reduced feeding and/or risk-taking. We tested this prediction in free-living great tits (Parus major) using a playback experiment to manipulate perceived predation danger. There was evidence that changes in body mass and BMR differed as a function of treatment. In predator treatment plots, great tits tended to reduce their body mass, a commonly observed response in birds to increased predation danger. In contrast, birds from control treatment plots showed no overall changes in body mass. There was also evidence that great tits from control treatment plots increased their basal metabolic rate (BMR) over the course of the experiment, presumably due to decreasing ambient temperatures over the study period. However, there was no evidence for changes in BMR for birds from predator treatment plots. Although the directions of these results are consistent with the predicted directions of effects, the effects sizes and confidence intervals yield inconclusive support for the hypothesis that great tits would adaptively suppress BMR in response to increased perceived predation risk. The effect size observed in the present study was small (~1%) and would not be expected to result in substantive reductions in feeding rate and/or risk-taking. Whether or not ecological conditions that generate greater energetic stress (e.g. lower food availability, lower ambient temperatures) could produce an effect that produces biologically meaningful reductions in feeding activity and/or risk-taking remains an open question.
Collapse
Affiliation(s)
- Kimberley J Mathot
- Evolutionary Ecology of Variation Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Robin N Abbey-Lee
- Evolutionary Ecology of Variation Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Niels J Dingemanse
- Evolutionary Ecology of Variation Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany; Section of Behavioral Ecology, Department of Biology, Ludwig Maximilians University of Munich, Munich, Germany
| |
Collapse
|
21
|
Arvidsson LK, Matthysen E. Individual differences in foraging decisions: information-gathering strategies or flexibility? Behav Ecol 2016. [DOI: 10.1093/beheco/arw054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Andrews C, Viviani J, Egan E, Bedford T, Brilot B, Nettle D, Bateson M. Early life adversity increases foraging and information gathering in European starlings, Sturnus vulgaris. Anim Behav 2015; 109:123-132. [PMID: 26566292 PMCID: PMC4615135 DOI: 10.1016/j.anbehav.2015.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Animals can insure themselves against the risk of starvation associated with unpredictable food availability by storing energy reserves or gathering information about alternative food sources. The former strategy carries costs in terms of mass-dependent predation risk, while the latter trades off against foraging for food; both trade-offs may be influenced by an individual's developmental history. Here, we consider a possible role of early developmental experience in inducing different mass regulation and foraging strategies in European starlings. We measured the body mass, body condition, foraging effort, food consumption and contrafreeloading (foraging for food hidden in sand when equivalent food is freely available) of adult birds (≥10 months old) that had previously undergone a subtle early life manipulation of food competition (cross-fostering into the highest or lowest ranks in the brood size hierarchy when 2–12 days of age). We found that developmentally disadvantaged birds were fatter in adulthood and differed in foraging behaviour compared with their advantaged siblings. Disadvantaged birds were hyperphagic compared with advantaged birds, but only following a period of food deprivation, and also spent more time contrafreeloading. Advantaged birds experienced a trade-off between foraging success and time spent contrafreeloading, whereas disadvantaged birds faced no such trade-off, owing to their greater foraging efficiency. Thus, developmentally disadvantaged birds appeared to retain a phenotypic memory of increased nestling food competition, employing both energy storage and information-gathering insurance strategies to a greater extent than their advantaged siblings. Our results suggest that subtle early life disadvantage in the form of psychosocial stress and/or food insecurity can leave a lasting legacy on foraging behaviour and mass regulation even in the absence of food insufficiency during development or adulthood. Starvation may be avoided by storing energy reserves or gathering information. Developmental history could impact these foraging decisions. Starlings disadvantaged in nestling competition were fatter in adulthood. Developmentally disadvantaged birds foraged faster and contrafreeloaded more. Early life stress has a lasting legacy on foraging behaviour and mass regulation.
Collapse
Affiliation(s)
- Clare Andrews
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Jérémie Viviani
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K. ; Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Emily Egan
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Thomas Bedford
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Ben Brilot
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K. ; School of Biological Sciences, Plymouth University, Plymouth, U.K
| | - Daniel Nettle
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Melissa Bateson
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
23
|
Öst M, Jaatinen K. Smart and safe? Antipredator behavior and breeding success are related to head size in a wild bird. Behav Ecol 2015. [DOI: 10.1093/beheco/arv093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Seasonal metabolic variation over two years in an Afrotropical passerine bird. J Therm Biol 2015; 52:58-66. [PMID: 26267499 DOI: 10.1016/j.jtherbio.2015.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 11/21/2022]
Abstract
Seasonal trends in metabolic parameters are well established in avian populations from highly seasonal environments, however, seasonal trends in metabolism of birds from lower latitudes (and of Afrotropical birds in particular) are not well understood. We investigated seasonal trends in metabolism for a small (10-12g) Afrotropical bird, the Cape White-eye (Zosterops virens), using flow-through respirometry in two summers and two winters. There was no seasonal difference in body mass between consecutive seasons. The lower critical limit of thermoneutrality was lower in winter (23°C) than in summer (28°C), as expected for a small Afrotropical bird. In the first year of the study, mean whole animal basal metabolic rate (BMR) of Cape White-eyes was significantly lower in winter than in summer, while in the second year of the study this trend was reversed, and in the middle two seasons there was no significant difference in BMR. Differences in mean temperature and mean rainfall between seasons could not account for the seasonal trends in BMR. We conclude that seasonal trends in avian BMR may vary between years, within a population.
Collapse
|
25
|
Mathot KJ, Dingemanse NJ. Energetics and behavior: unrequited needs and new directions. Trends Ecol Evol 2015; 30:199-206. [DOI: 10.1016/j.tree.2015.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
26
|
Briffa M, Sneddon LU, Wilson AJ. Animal personality as a cause and consequence of contest behaviour. Biol Lett 2015; 11:rsbl.2014.1007. [PMID: 25808004 DOI: 10.1098/rsbl.2014.1007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the evidence for a link between consistent among-individual variation in behaviour (animal personality) and the ability to win contests over limited resources. Explorative and bold behaviours often covary with contest behaviour and outcome, although there is evidence that the structure of these 'behavioural syndromes' can change across situations. Aggression itself is typically repeatable, but also subject to high within-individual variation as a consequence of plastic responses to previous fight outcomes and opponent traits. Common proximate mechanisms (gene expression, endocrine control and metabolic rates) may underpin variation in both contest behaviour and general personality traits. Given the theoretical links between the evolution of fighting and of personality, we suggest that longitudinal studies of contest behaviour, combining behavioural and physiological data, would be a useful context for the study of animal personalities.
Collapse
Affiliation(s)
- Mark Briffa
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth PL3 8AA, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, BioScience Building, Liverpool L69 7ZB, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
27
|
Animal personality and state-behaviour feedbacks: a review and guide for empiricists. Trends Ecol Evol 2014; 30:50-60. [PMID: 25498413 DOI: 10.1016/j.tree.2014.11.004] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/22/2023]
Abstract
An exciting area in behavioural ecology focuses on understanding why animals exhibit consistent among-individual differences in behaviour (animal personalities). Animal personality has been proposed to emerge as an adaptation to individual differences in state variables, leading to the question of why individuals differ consistently in state. Recent theory emphasizes the role that positive feedbacks between state and behaviour can play in producing consistent among-individual covariance between state and behaviour, hence state-dependent personality. We review the role of feedbacks in recent models of adaptive personalities, and provide guidelines for empirical testing of model assumptions and predictions. We discuss the importance of the mediating effects of ecology on these feedbacks, and provide a roadmap for including state-behaviour feedbacks in behavioural ecology research.
Collapse
|
28
|
Mathot KJ, Nicolaus M, Araya‐Ajoy YG, Dingemanse NJ, Kempenaers B. Does metabolic rate predict risk‐taking behaviour? A field experiment in a wild passerine bird. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12318] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kimberley J. Mathot
- Evolutionary Ecology of Variation Group Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
| | - Marion Nicolaus
- Evolutionary Ecology of Variation Group Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
| | - Yimen G. Araya‐Ajoy
- Evolutionary Ecology of Variation Group Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
| | - Niels J. Dingemanse
- Evolutionary Ecology of Variation Group Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
- Behavioural Ecology Department Biology II Ludwig‐Maximilians University of Munich Groβhadener Straβe 2 DE‐ 82152 Planegg‐Martinsried Munich Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard Gwinner Straβe DE‐82319 Seewiesen Germany
| |
Collapse
|
29
|
Glazier DS. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev Camb Philos Soc 2014; 90:377-407. [DOI: 10.1111/brv.12115] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
|
30
|
Lienart GD, Mitchell MD, Ferrari MC, McCormick MI. Temperature and food availability affect risk assessment in an ectotherm. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|