1
|
Redondo González O, Martínez Ramírez NM, Alhama Blanco PJ. Non-touch treatment to solve the persistent contamination of culture plates with Aspergillus niger in a clinical microbiology laboratory of Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115734-115744. [PMID: 37889415 DOI: 10.1007/s11356-023-30433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A pseudo-outbreak of Aspergillus caused by false positive cultures can have a high sanitary impact. We determined the effectiveness (fungal load elimination) of a non-touch disinfection system, vs conventional disinfection methods, to solve steady contamination of culture plates with Aspergillus niger at a clinical microbiology laboratory. Routine cleaning-disinfection (RCD), intensive cleaning-disinfection (ICD), and terminal airborne disinfection (TAD) were employed in stages. Air sampling was carried out before and after each procedure. The effectiveness of TAD on contact surfaces was tested by surface sampling. After RCD, ICD, and TAD, there was a mean decrease of 5.4 (95% CI = 1.8-9.0), 19.2 (95% CI = 12.4-26.0), and 4.4 (95% CI = 2.5-6.3) CFU per tested area, and 46.2%, 21.7%, and 95.5% of contaminated areas became sterile, respectively. There was a mean decrease of 30.6 CFU per tested surface (p < 0.0007) and 50% of tested surfaces became sterile. Global effectiveness of RCD, ICD, and TAD was 68.8% (95% CI = 68.5-69.1), 82.2% (95% CI = 82.1-82.3), and 99.0% (95% CI = 98.8-99.2), respectively. The effectiveness was higher with TAD (4.1 CFU/cm2 less than with ICD; p = 0.0290). No further contamination has occurred since then. When construction and renovation activities are discarded and RCD and ICD practices are insufficient, non-touch disinfection remove residual dust contamination and avoid recurrence.
Collapse
Affiliation(s)
- Olga Redondo González
- Preventive Medicine Service, University Hospital of Guadalajara, C/ Donantes de Sangre S/N, 19002, Guadalajara, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid-Barcelona Highway 33,600, 28805, Alcalá de Henares (Madrid), Spain.
| | | | - Pablo J Alhama Blanco
- Electro-Medical Maintenance Service, University Hospital of Guadalajara, C/ Donantes de Sangre S/N, 19002, Guadalajara, Spain
| |
Collapse
|
2
|
Dancer SJ. Hospital cleaning: past, present, and future. Antimicrob Resist Infect Control 2023; 12:80. [PMID: 37608396 PMCID: PMC10464435 DOI: 10.1186/s13756-023-01275-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION The importance of hospital cleaning for controlling healthcare-associated infection (HAI) has taken years to acknowledge. This is mainly because the removal of dirt is inextricably entwined with gender and social status, along with lack of evidence and confusion over HAI definitions. Reducing so-called endogenous infection due to human carriage entails patient screening, decolonisation and/or prophylaxis, whereas adequate ventilation, plumbing and cleaning are needed to reduce exogenous infection. These infection types remain difficult to separate and quantitate. Patients themselves demonstrate wide-ranging vulnerability to infection, which further complicates attempted ranking of control interventions, including cleaning. There has been disproportionate attention towards endogenous infection with less interest in managing environmental reservoirs. QUANTIFYING CLEANING AND CLEANLINESS Finding evidence for cleaning is compromised by the fact that modelling HAI rates against arbitrary measurements of cleaning/cleanliness requires universal standards and these are not yet established. Furthermore, the distinction between cleaning (soil removal) and cleanliness (soil remaining) is usually overlooked. Tangible bench marking for both cleaning methods and all surface types within different units, with modification according to patient status, would be invaluable for domestic planning, monitoring and specification. AIMS AND OBJECTIVES This narrative review will focus on recent history and current status of cleaning in hospitals. While its importance is now generally accepted, cleaning practices still need attention in order to determine how, when and where to clean. Renewed interest in removal and monitoring of surface bioburden would help to embed risk-based practice in hospitals across the world.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, NHS Lanarkshire & School of Applied Sciences, Edinburgh Napier University, Scotland, UK.
| |
Collapse
|
3
|
Barr KL, Sturdivant RX, Williams DN, Harris D. Bacteria Associated with Healthcare-Associated Infections on Environmental Samples Obtained from Two Fire Departments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211885. [PMID: 34831638 PMCID: PMC8621870 DOI: 10.3390/ijerph182211885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
(1) Background: Firefighters spend about 64% of their time responding to medical emergencies and providing medical care without a patient history, which can render them vulnerable to healthcare-associated infections (HAI). Infection prevention, control, and surveillance systems have been instituted at hospitals. However, the prevalence of firefighters’ exposure to HAI is unknown. The objective of this study was to document evidence of HAI on surfaces in fire stations and engines to inform disinfection procedures and identify which pathogens might contribute to occupational exposures. (2) Methods: High-touch or high-use surfaces of two fire departments were sampled during five separate occasions. One fire station from one fire department was sampled over a 4-week period, whereas four fire stations were sampled from a different fire department only once. Sampled surfaces included: entryway floor, washing machine, medical bag, back seat of engine, keyboard of reporting computer, engine console, and uniform pants. (3) Results: Multiple statistical models determined that bacterial contamination was similar between the two fire departments and their stations. Keyboards were the most contaminated surface for all fire stations and departments, E. coli was the most common bacteria detected, and C. difficile was the least detected bacteria. Adjustments for rates of contamination found that contamination rates varied between fire stations. (4) Conclusions: Comprehensive environmental sampling and clinical studies are needed to better understand occupational exposures of firefighters to HAI.
Collapse
Affiliation(s)
- Kelli L. Barr
- Center for Global Health Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL 10921, USA;
| | | | - Denise N. Williams
- Department of Human Sciences and Design, College of Health and Human Science, Baylor University, Waco, TX 76798, USA;
| | - Debra Harris
- Department of Human Sciences and Design, College of Health and Human Science, Baylor University, Waco, TX 76798, USA;
- Correspondence: ; Tel.: +1-254-710-7255
| |
Collapse
|
4
|
Christenson EC, Cronk R, Atkinson H, Bhatt A, Berdiel E, Cawley M, Cho G, Coleman CK, Harrington C, Heilferty K, Fejfar D, Grant EJ, Grigg K, Joshi T, Mohan S, Pelak G, Shu Y, Bartram J. Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11100. [PMID: 34769620 PMCID: PMC8582915 DOI: 10.3390/ijerph182111100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023]
Abstract
Healthcare-associated infections (HAIs) contribute to patient morbidity and mortality with an estimated 1.7 million infections and 99,000 deaths costing USD $28-34 billion annually in the United States alone. There is little understanding as to if current environmental surface disinfection practices reduce pathogen load, and subsequently HAIs, in critical care settings. This evidence map includes a systematic review on the efficacy of disinfecting environmental surfaces in healthcare facilities. We screened 17,064 abstracts, 635 full texts, and included 181 articles for data extraction and study quality assessment. We reviewed ten disinfectant types and compared disinfectants with respect to study design, outcome organism, and fourteen indictors of study quality. We found important areas for improvement and gaps in the research related to study design, implementation, and analysis. Implementation of disinfection, a determinant of disinfection outcomes, was not measured in most studies and few studies assessed fungi or viruses. Assessing and comparing disinfection efficacy was impeded by study heterogeneity; however, we catalogued the outcomes and results for each disinfection type. We concluded that guidelines for disinfectant use are primarily based on laboratory data rather than a systematic review of in situ disinfection efficacy. It is critically important for practitioners and researchers to consider system-level efficacy and not just the efficacy of the disinfectant.
Collapse
Affiliation(s)
- Elizabeth C. Christenson
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Ryan Cronk
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
- ICF, Durham, NC 27713, USA
| | - Helen Atkinson
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Aayush Bhatt
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Emilio Berdiel
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Michelle Cawley
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Grace Cho
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Collin Knox Coleman
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Cailee Harrington
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Kylie Heilferty
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Don Fejfar
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Emily J. Grant
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Karen Grigg
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Tanmay Joshi
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Suniti Mohan
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Grace Pelak
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Yuhong Shu
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Jamie Bartram
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
- School of Civil Engineering, University of Leeds, Leeds LS2 9DY, UK
| |
Collapse
|
5
|
Health Care Environmental Hygiene: New Insights and Centers for Disease Control and Prevention Guidance. Infect Dis Clin North Am 2021; 35:609-629. [PMID: 34362536 DOI: 10.1016/j.idc.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent research has significantly clarified the impact of optimizing patient-zone environmental hygiene. New insights into the environmental microbial epidemiology of many hospital-associated pathogens, especially Clostridioides difficile, have clarified and quantified the role of ongoing occult pathogen transmission from the near-patient environment. The recent development of safe, broadly effective surface chemical disinfectants has led to new opportunities to broadly enhance environmental hygiene in all health care settings. The Centers for Disease Control and Prevention has recently developed a detailed guidance to assist all health care settings in implementing optimized programs to mitigate health care-associated pathogen transmission from the near-patient surfaces.
Collapse
|
6
|
Boyce JM. A review of wipes used to disinfect hard surfaces in health care facilities. Am J Infect Control 2021; 49:104-114. [PMID: 32569612 DOI: 10.1016/j.ajic.2020.06.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite a plethora of wipes available for use in health care facilities, there is a paucity of articles describing wipe composition, potential interactions between wipes and disinfectants, the manner in which wipes are used, and their relative efficacy. The purpose of this article is to provide an in-depth review of wipes used for disinfection of hard surfaces in health care settings. METHODS Comprehensive searches of the Pubmed database and Internet were conducted, and articles published from 1953 through September 2019 and pertinent on-line documents were reviewed. Bibliographies of relevant articles were reviewed. RESULTS Wipes vary considerably in their composition, and the disinfectants with which they are used. With reusable dry wipes, the ratio of wipe material to disinfectant and the amount of disinfectant absorbed by the wipe and delivered to surfaces is difficult to standardize, which may affect their efficacy. The manner in which wipes are used by health care personnel is highly variable, due in part to insufficient instructions for use and inadequate education of relevant personnel. CONCLUSIONS Additional research is needed regarding the best practices for using different types of wipes, improved methods for educating staff, and establishing the relative efficacy of wipes in reducing environmental contamination and health care-associated infections.
Collapse
|
7
|
No-Touch Automated Disinfection System for Decontamination of Surfaces in Hospitals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145131. [PMID: 32708608 PMCID: PMC7399829 DOI: 10.3390/ijerph17145131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Background: Hospital-acquired infections (HAIs) remain a common problem, which suggests that standard decontamination procedures are insufficient. Thus, new methods of decontamination are needed in hospitals. Methods: We assessed the effectiveness of a no-touch automated disinfection (NTD) system in the decontamination of 50 surfaces in 10 hospital rooms. Contamination of surfaces was assessed with a microbiological assay and an ATP bioluminescence assay. Unacceptable contamination was defined as > 100 colony forming units/100 cm2 in the microbiological assay, and as ≥ 250 relative light units in the ATP assay. Results: When measured with the microbiological assay, 11 of 50 surfaces had unacceptable contamination before NTD, and none of the surfaces had unacceptable contamination after NTD (p < 0.001). On the ATP bioluminescence assay, NTD decreased the number of surfaces with unacceptable contamination from 28 to 13, but this effect was non-significant (p = 0.176). On the microbiological assay taken before NTD, the greatest contamination exceeded the acceptable level by more than 11-fold (lamp holder, 1150 CFU/100 cm2). On the ATP bioluminescence assay taken before NTD, the greatest contamination exceeded the acceptable level by more than 43-fold (Ambu bag, 10,874 RLU). Conclusion: NTD effectively reduced microbiological contamination in all hospital rooms. However, when measured with the ATP bioluminescence assay, the reduction of contamination was not significant.
Collapse
|
8
|
Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens 2020; 9:pathogens9050408. [PMID: 32456303 PMCID: PMC7281489 DOI: 10.3390/pathogens9050408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of multiresistant bacterial strains as agents of healthcare-related infection in hospitals has prompted a review of the control techniques, with an added emphasis on preventive measures, namely good clinical practices, antimicrobial stewardship, and appropriate environmental cleaning. The latter item is about the choice of an appropriate disinfectant as a critical role due to the difficulties often encountered in obtaining a complete eradication of environmental contaminations and reservoirs of pathogens. The present review is focused on the effectiveness of hydrogen peroxide vapor, among the new environmental disinfectants that have been adopted. The method is based on a critical review of the available literature on this topic.
Collapse
|
9
|
Hung IC, Chang HY, Cheng A, Chen MW, Chen AC, Ting L, Lai YH, Wang JT, Chen YC, Sheng WH. Implementation of human factors engineering approach to improve environmental cleaning and disinfection in a medical center. Antimicrob Resist Infect Control 2020; 9:17. [PMID: 31988745 PMCID: PMC6966902 DOI: 10.1186/s13756-020-0677-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Inadequate hospital cleaning may contribute to cross-transmission of pathogens. It is important to implement effective cleaning for the safe hospital environment. We conducted a three-phase study using human factors engineering (HFE) approach to enhance environmental cleanliness. Methods This study was conducted using a prospective interventional trial, and 28 (33.3%) of 84 wards in a medical center were sampled. The three-phases included pre-intervention analysis (Phase 1), implementing interventions by HFE principles (Phase 2), and programmatic analysis (Phase 3). The evaluations of terminal cleaning and disinfection were performed using the fluorescent marker, the adenosine triphosphate bioluminescence assay, and the aerobic colony count method simultaneously in all phases. Effective terminal cleaning and disinfection was qualified with the aggregate outcome of the same 10 high-touch surfaces per room. A score for each high-touch surface was recorded, with 0 denoting a fail and 10 denoting a pass by the benchmark of the evaluation method, and the total terminal cleaning and disinfection score (TCD score) was a score out of 100. Results In each phase, 840 high-touch surfaces were collected from 84 rooms after terminal cleaning and disinfection. After the interventions, the TCD score by the three evaluation methods all showed significant improved. The carriage incidence of multidrug-resistant organism (MDRO) decreased significantly from 4.1 per 1000 patient-days to 3.6 per 1000 patient-days (P = .03). Conclusion The HFE approach can improve the thoroughness and the effectiveness of terminal cleaning and disinfection, and resulted in a reduction of patient carriage of MDRO at hospitals. Larger studies are necessary to establish whether such efforts of cleanliness can reduce the incidence of healthcare-associated infection.
Collapse
Affiliation(s)
- I-Chen Hung
- 1Center for Infection Control, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan
| | - Hao-Yuan Chang
- 2School of Nursing, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100 Taiwan.,3Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Aristine Cheng
- 4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Wen Chen
- 3Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - An-Chi Chen
- 1Center for Infection Control, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan
| | - Ling Ting
- 1Center for Infection Control, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan
| | - Yeur-Hur Lai
- 2School of Nursing, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100 Taiwan.,5Department of Nursing, National Taiwan University Cancer Center, No.57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, 106 Taiwan
| | - Jann-Tay Wang
- 1Center for Infection Control, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan.,4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yee-Chun Chen
- 1Center for Infection Control, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan.,4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- 4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,6Department of Medical Education, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City, 100 Taiwan
| |
Collapse
|
10
|
Langdon G, Hoet AE, Stull JW. Fluorescent tagging for environmental surface cleaning surveillance in a veterinary hospital. J Small Anim Pract 2019; 61:121-126. [PMID: 31777093 DOI: 10.1111/jsap.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/19/2019] [Accepted: 10/17/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the use of fluorescent tagging for environmental surface cleaning surveillance in a small animal veterinary hospital and identify factors associated with tag removal. MATERIALS AND METHODS Over 5.5 weeks, a commercial fluorescent dye (Glo Germ) was used to tag (mark) surfaces in a small animal veterinary teaching hospital. Twenty-four hours after tagging, cleaning was assessed with a black light (UV-A source). Surfaces were recorded as cleaned based on complete removal of fluorescent tagging at assessment. Proportions cleaned were calculated overall and by predictors (i.e. surface location/type, primary nature of surface contact - animal/human, week of study). RESULTS A total of 4984 surfaces were tagged and assessed. Overall cleaning was 50%. Cleaning varied by surface/object (range: 2 to 100%) and hospital location (4 to 78%). Surfaces designated as having primarily animal contact were cleaned more frequently than those with primarily human contact (75%, 42%; P<0.001). Cleaning varied over the study period (range by week: 45 to 54%;); a significant trend was not identified. CLINICAL SIGNIFICANCE Key surfaces in the small animal veterinary practice environment are unlikely to be adequately cleaned, posing a concern for animal and human health. Commercial products can be effectively used to asses environmental cleaning with findings used to target clinic-specific barriers to improve cleaning and reduce hospital-associated infections.
Collapse
Affiliation(s)
- G Langdon
- College of Public Health, The Ohio State University, Columbus, Ohio, 43210, USA
| | - A E Hoet
- College of Public Health, The Ohio State University, Columbus, Ohio, 43210, USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - J W Stull
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
11
|
Boyce JM, Guercia KA, Sullivan L, Havill NL, Fekieta R, Kozakiewicz J, Goffman D. Prospective cluster controlled crossover trial to compare the impact of an improved hydrogen peroxide disinfectant and a quaternary ammonium-based disinfectant on surface contamination and health care outcomes. Am J Infect Control 2017; 45:1006-1010. [PMID: 28431849 DOI: 10.1016/j.ajic.2017.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/11/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Quaternary ammonium-based (Quat) disinfectants are widely used, but they have disadvantages. METHODS This was a 12-month prospective cluster controlled crossover trial. On 4 wards, housekeepers performed daily cleaning using a disinfectant containing either 0.5% improved hydrogen peroxide (IHP) or Quat. Each month, 5-8 high-touch surfaces in several patient rooms on each ward were tagged with a fluorescent marker and cultured before and after cleaning. Hand hygiene compliance rates and antimicrobial usage on study wards were obtained from hospital records. Outcomes included aerobic colony counts (ACCs), percent of wiped surfaces yielding no growth after cleaning, and a composite outcome of incidence densities of nosocomial acquisition and infection caused by vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, and Clostridium difficile infection. Statistical analysis was performed using χ2 test, Fisher exact test, Welch test, and logistic regression methods. RESULTS Mean ACCs per surface after cleaning were significantly lower with IHP (14.0) than with Quat (22.2) (P = .003). The proportion of surfaces yielding no growth after cleaning was significantly greater with IHP (240/500; 48%) than with Quat (182/517; 35.2%) (P < .0001). Composite incidence density of nosocomial colonization or infection with IHP (8.0) was lower than with Quat (10.3) (incidence rate ratio, 0.77; P = .068; 95% confidence interval, 0.579-1.029). CONCLUSIONS Compared with a Quat disinfectant, the IHP disinfectant significantly reduced surface contamination and reduced a composite colonization or infection outcome.
Collapse
Affiliation(s)
- John M Boyce
- Quality Improvement Support Services, Yale New-Haven Hospital, New Haven, CT.
| | - Kerri A Guercia
- Department of Laboratory Medicine, Yale New-Haven Hospital, New Haven, CT
| | - Linda Sullivan
- Quality Improvement Support Services, Yale New-Haven Hospital, New Haven, CT
| | - Nancy L Havill
- Accreditation, Safety and Regulatory Affairs, Yale New-Haven Hospital, New Haven, CT
| | - Renee Fekieta
- Quality Improvement Support Services, Yale New-Haven Hospital, New Haven, CT
| | | | - David Goffman
- Pharmacy Services, Yale-New Haven Hospital, New Haven, CT
| |
Collapse
|
12
|
Affiliation(s)
- Philip C Carling
- Department of Infectious Diseases, Carney Hospital, 2100 Dorchester Avenue, Boston, MA 02124, USA.
| |
Collapse
|
13
|
Cobrado L, Silva-Dias A, Azevedo MM, Rodrigues AG. High-touch surfaces: microbial neighbours at hand. Eur J Clin Microbiol Infect Dis 2017. [PMID: 28647859 PMCID: PMC7087772 DOI: 10.1007/s10096-017-3042-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.
Collapse
Affiliation(s)
- L Cobrado
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal. .,Burn Unit, Department of Plastic and Reconstructive Surgery, Centro Hospitalar São João, Porto, Portugal. .,CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - A Silva-Dias
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - M M Azevedo
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,Burn Unit, Department of Plastic and Reconstructive Surgery, Centro Hospitalar São João, Porto, Portugal.,CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Bloomfield SF, Carling PC, Exner M. A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS HYGIENE AND INFECTION CONTROL 2017; 12:Doc08. [PMID: 28670508 PMCID: PMC5476842 DOI: 10.3205/dgkh000293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hygiene procedures for hands, surfaces and fabrics are central to preventing spread of infection in settings including healthcare, food production, catering, agriculture, public settings, and home and everyday life. They are used in situations including hand hygiene, clinical procedures, decontamination of environmental surfaces, respiratory hygiene, food handling, laundry hygiene, toilet hygiene and so on. Although the principles are common to all, approaches currently used in different settings are inconsistent. A concern is the use of inconsistent terminology which is misleading, especially to people we need to communicate with such as the public or cleaning professionals. This paper reviews the data on current approaches, alongside new insights to developing hygiene procedures. Using this data, we propose a more scientifically-grounded framework for developing procedures that maximize protection against infection, based on consistent principles and terminology, and applicable across all settings. A key feature is use of test models which assess the state of surfaces after treatment rather than product performance alone. This allows procedures that rely on removal of microbes to be compared with those employing chemical or thermal inactivation. This makes it possible to ensure that a consistent "safety target level" is achieved regardless of the type of procedure used, and allows us deliver maximum health benefit whilst ensuring prudent usage of antimicrobial agents, detergents, water and energy.
Collapse
Affiliation(s)
- Sally F. Bloomfield
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- International Scientific Forum on Home Hygiene, Montacute, Somerset, United Kingdom
| | - Philip C. Carling
- Department of Infectious Diseases, Carney Hospital and Boston University School of Medicine, Boston, USA
| | - Martin Exner
- Institute of Hygiene and Public Health, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Assessment of the Overall and Multidrug-Resistant Organism Bioburden on Environmental Surfaces in Healthcare Facilities. Infect Control Hosp Epidemiol 2016; 37:1426-1432. [PMID: 27619507 DOI: 10.1017/ice.2016.198] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine the typical microbial bioburden (overall bacterial and multidrug-resistant organisms [MDROs]) on high-touch healthcare environmental surfaces after routine or terminal cleaning. DESIGN Prospective 2.5-year microbiological survey of large surface areas (>1,000 cm2). SETTING MDRO contact-precaution rooms from 9 acute-care hospitals and 2 long-term care facilities in 4 states. PARTICIPANTS Samples from 166 rooms (113 routine cleaned and 53 terminal cleaned rooms). METHODS Using a standard sponge-wipe sampling protocol, 2 composite samples were collected from each room; a third sample was collected from each Clostridium difficile room. Composite 1 included the TV remote, telephone, call button, and bed rails. Composite 2 included the room door handle, IV pole, and overbed table. Composite 3 included toileting surfaces. Total bacteria and MDROs (ie, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci [VRE], Acinetobacter baumannii, Klebsiella pneumoniae, and C. difficile) were quantified, confirmed, and tested for drug resistance. RESULTS The mean microbial bioburden and range from routine cleaned room composites were higher (2,700 colony-forming units [CFU]/100 cm2; ≤1-130,000 CFU/100 cm2) than from terminal cleaned room composites (353 CFU/100 cm2; ≤1-4,300 CFU/100 cm2). MDROs were recovered from 34% of routine cleaned room composites (range ≤1-13,000 CFU/100 cm2) and 17% of terminal cleaned room composites (≤1-524 CFU/100 cm2). MDROs were recovered from 40% of rooms; VRE was the most common (19%). CONCLUSIONS This multicenter bioburden summary provides a first step to determining microbial bioburden on healthcare surfaces, which may help provide a basis for developing standards to evaluate cleaning and disinfection as well as a framework for studies using an evidentiary hierarchy for environmental infection control. Infect Control Hosp Epidemiol 2016;1426-1432.
Collapse
|
16
|
|
17
|
Clifford R, Sparks M, Hosford E, Ong A, Richesson D, Fraser S, Kwak Y, Miller S, Julius M, McGann P, Lesho E. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned? PLoS One 2016; 11:e0155779. [PMID: 27196635 PMCID: PMC4873012 DOI: 10.1371/journal.pone.0155779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.
Collapse
Affiliation(s)
- Robert Clifford
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Sparks
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Eve Hosford
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Ana Ong
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Douglas Richesson
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Susan Fraser
- Department of Infectious Diseases and Infection Control, Fort Belvoir Community Hospital, Fort Belvoir, Virginia, United States of America
| | - Yoon Kwak
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sonia Miller
- Department of Infectious Diseases and Infection Control, Fort Belvoir Community Hospital, Fort Belvoir, Virginia, United States of America
| | - Michael Julius
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patrick McGann
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Emil Lesho
- Multidrug-resistant organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Rutala WA, Weber DJ. Monitoring and improving the effectiveness of surface cleaning and disinfection. Am J Infect Control 2016; 44:e69-76. [PMID: 27131138 DOI: 10.1016/j.ajic.2015.10.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023]
Abstract
Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean).
Collapse
|
19
|
Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 2016; 5:10. [PMID: 27069623 PMCID: PMC4827199 DOI: 10.1186/s13756-016-0111-x] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer’s recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating “self-disinfecting” surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer “no-touch” (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These “no-touch” technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to improve traditional manual disinfection of surfaces are needed. In addition, Environmental Services departments should consider the use of newer disinfectants and no-touch decontamination technologies to improve disinfection of surfaces in healthcare.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 62 Sonoma Lane, Middletown, CT 06457 USA
| |
Collapse
|
20
|
Pitfalls in microbiological sampling of the healthcare environment. a response to "evaluating a new paradigm for comparing surface disinfection in clinical practice". Infect Control Hosp Epidemiol 2015; 36:849-50. [PMID: 25903285 DOI: 10.1017/ice.2015.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
|