1
|
Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P, Bailey LD, Boutin S, Brekke P, Brent LJN, Camenisch G, Charmantier A, Clutton-Brock TH, Cockburn A, Coltman DW, Courtiol A, Davidian E, Evans SR, Ewen JG, Festa-Bianchet M, de Franceschi C, Gustafsson L, Höner OP, Houslay TM, Keller LF, Manser M, McAdam AG, McLean E, Nietlisbach P, Osmond HL, Pemberton JM, Postma E, Reid JM, Rutschmann A, Santure AW, Sheldon BC, Slate J, Teplitsky C, Visser ME, Wachter B, Kruuk LEB. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 2022; 376:1012-1016. [PMID: 35617403 DOI: 10.1126/science.abk0853] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
Collapse
Affiliation(s)
- Timothée Bonnet
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Susan C Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Peter Arcese
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam D Bailey
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Penryn, UK
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew Cockburn
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandre Courtiol
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Eve Davidian
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simon R Evans
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | | | - Christophe de Franceschi
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lars Gustafsson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oliver P Höner
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich,, Zurich, Switzerland
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Emily McLean
- Biology Department, Oxford College, Emory University, Oxford, GA, USA
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Helen L Osmond
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Erik Postma
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jane M Reid
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexis Rutschmann
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Jon Slate
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Céline Teplitsky
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Bettina Wachter
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Loeske E B Kruuk
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Dickel L, Arcese P, Nietlisbach P, Keller LF, Jensen H, Reid JM. Are immigrants outbred and unrelated? Testing standard assumptions in a wild metapopulation. Mol Ecol 2021; 30:5674-5686. [PMID: 34516687 DOI: 10.1111/mec.16173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Immigration into small recipient populations is expected to alleviate inbreeding and increase genetic variation, and hence facilitate population persistence through genetic and/or evolutionary rescue. Such expectations depend on three standard assumptions: that immigrants are outbred, unrelated to existing natives at arrival, and unrelated to each other. These assumptions are rarely explicitly verified, including in key field systems in evolutionary ecology. Yet, they could be violated due to non-random or repeated immigration from adjacent small populations. We combined molecular genetic marker data for 150-160 microsatellite loci with comprehensive pedigree data to test the three assumptions for a song sparrow (Melospiza melodia) population that is a model system for quantifying effects of inbreeding and immigration in the wild. Immigrants were less homozygous than existing natives on average, with mean homozygosity that closely resembled outbred natives. Immigrants can therefore be considered outbred on the focal population scale. Comparisons of homozygosity of real or hypothetical offspring of immigrant-native, native-native and immigrant-immigrant pairings implied that immigrants were typically unrelated to existing natives and to each other. Indeed, immigrants' offspring would be even less homozygous than outbred individuals on the focal population scale. The three standard assumptions of population genetic and evolutionary theory were consequently largely validated. Yet, our analyses revealed some deviations that should be accounted for in future analyses of heterosis and inbreeding depression, implying that the three assumptions should be verified in other systems to probe patterns of non-random or repeated dispersal and facilitate precise and unbiased estimation of key evolutionary parameters.
Collapse
Affiliation(s)
- Lisa Dickel
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter Arcese
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lukas F Keller
- Department of Evolutionary Biology & Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich, Zurich, Switzerland
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jane M Reid
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Lichtenauer W, van de Pol M, Cockburn A, Brouwer L. Indirect fitness benefits through extra-pair mating are large for an inbred minority, but cannot explain widespread infidelity among red-winged fairy-wrens. Evolution 2019; 73:467-480. [PMID: 30666623 PMCID: PMC7172280 DOI: 10.1111/evo.13684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/30/2022]
Abstract
Extra‐pair paternity (EPP) has been suggested to improve the genetic quality of offspring, but evidence has been equivocal. Benefits of EPP may be only available to specific individuals or under certain conditions. Red‐winged fairy‐wrens have extremely high levels of EPP, suggesting fitness benefits might be large and available to most individuals. Furthermore, extreme philopatry commonly leads to incestuous social pairings, so inbreeding avoidance may be an important selection pressure. Here, we quantified the fitness benefits of EPP under varying conditions and across life‐stages. Extra‐pair offspring (EPO) did not appear to have higher fitness than within‐pair offspring (WPO), neither in poor years nor in the absence of helpers‐at‐the‐nest. However, EPP was beneficial for closely related social pairs, because inbred WPO suffered an overall 75% reduction in fitness. Inbreeding depression was nonlinear and reduced nestling body condition, first year survival and reproductive success. Our comprehensive study indicates that EPP should be favored for the 17% of females paired incestuously, but cannot explain the widespread infidelity in this species. Furthermore, our finding that fitness benefits of EPP only become apparent for a small part of the population could potentially explain the apparent absence of fitness differences in population wide comparisons of EPO and WPO.
Collapse
Affiliation(s)
- Wendy Lichtenauer
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Martijn van de Pol
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Andrew Cockburn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Lyanne Brouwer
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|