1
|
Weaver AK, Hood GR, Foster M, Egan SP. Trade-off between fecundity and survival generates stabilizing selection on gall size. Ecol Evol 2020; 10:10207-10218. [PMID: 33005376 PMCID: PMC7520187 DOI: 10.1002/ece3.6682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Complex interactions within multitrophic communities are fundamental to the evolution of individual species that reside within them. One common outcome of species interactions are fitness trade-offs, where traits adaptive in some circumstances are maladaptive in others. Here, we identify a fitness trade-off between fecundity and survival in the cynipid wasp Callirhytis quercusbatatoides that induces multichambered galls on the stem of its host plant Quercus virginiana. We first quantified this trade-off in natural populations by documenting two relationships: a positive association between the trait gall size and fecundity, as larger galls contain more offspring, and a negative association between gall size and survival, as larger galls are attacked by birds at a higher rate. Next, we performed a field-based experimental evolution study where birds were excluded from the entire canopy of 11 large host trees for five years. As a result of the five-year release from avian predators, we observed a significant shift to larger galls per tree. Overall, our study demonstrates how two opposing forces of selection can generate stabilizing selection on a critical phenotypic trait in wild populations, and how traits can evolve rapidly in the predicted direction when conditions change.
Collapse
Affiliation(s)
| | - Glen Ray Hood
- Department of BioSciencesRice UniversityHoustonTXUSA
- Department of Biological SciencesWayne State UniversityDetroitMIUSA
| | | | - Scott P. Egan
- Department of BioSciencesRice UniversityHoustonTXUSA
| |
Collapse
|
2
|
Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol Lett 2020; 4:266-277. [PMID: 32547786 PMCID: PMC7293086 DOI: 10.1002/evl3.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a “black box.” Here, we integrate ecological networks and fitness landscapes to examine how changes in food‐web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Christopher J Greyson-Gaito
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Arezoo Sotoodeh
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Brendan Locke
- Department of Biological Sciences Humboldt State University Arcata California 95521
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland
| |
Collapse
|
3
|
Wang D, Shi X, Liu D, Yang Y, Shang Z. Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China. INSECTS 2020; 11:E117. [PMID: 32054103 PMCID: PMC7073604 DOI: 10.3390/insects11020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Host plant affinity and geographic distance can play critical roles in the genetic divergence of insect herbivores and evolution of insect biotypes, but their relative importance in the divergence of insect populations is still poorly understood. We used microsatellite markers to test the effects of host plant species and geographic distance on divergence of two biotypes of the English grain aphid, Sitobion avenae (Fabricius). We found that clones of S. avenae from western provinces (i.e., Xinjiang, Gansu, Qinghai and Shaanxi) had significantly higher genetic diversity than those from eastern provinces (i.e., Anhui, Henan, Hubei, Zhejiang and Jiangsu), suggesting their differentiation between both areas. Based on genetic diversity and distance estimates, biotype 1 clones of eastern provinces showed high genetic divergence from those of western provinces in many cases. Western clones of S. avenae also showed higher genetic divergence among themselves than eastern clones. The Mantel test identified a significant isolation-by-distance (IBD) effect among different geographic populations of S. avenae, providing additional evidence for a critical role of geography in the genetic structure of both S. avenae biotypes. Genetic differentiation (i.e., FST) between the two biotypes was low in all provinces except Shaanxi. Surprisingly, in our analyses of molecular variance, non-significant genetic differentiation between both biotypes or between barley and wheat clones of S. avenae was identified, showing little contribution of host-plant associated differentiation to the divergence of both biotypes in this aphid. Thus, it is highly likely that the divergence of the two S. avenae biotypes involved more geographic isolation and selection of some form than host plant affinity. Our study can provide insights into understanding of genetic structure of insect populations and the divergence of insect biotypes.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqin Shi
- Department of Foreign Languages, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
5
|
Vidal MC, Quinn TW, Stireman JO, Tinghitella RM, Murphy SM. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol Ecol 2019; 28:4317-4334. [PMID: 31483075 DOI: 10.1111/mec.15218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Population divergence can occur due to mechanisms associated with geographic isolation and/or due to selection associated with different ecological niches. Much of the evidence for selection-driven speciation has come from studies of specialist insect herbivores that use different host plant species; however, the influence of host plant use on population divergence of generalist herbivores remains poorly understood. We tested how diet breadth, host plant species and geographic distance influence population divergence of the fall webworm (Hyphantria cunea; FW). FW is a broadly distributed, extreme generalist herbivore consisting of two morphotypes that have been argued to represent two different species: black-headed and red-headed. We characterized the differentiation of FW populations at two geographic scales. We first analysed the influence of host plant and geographic distance on genetic divergence across a broad continental scale for both colour types. We further analysed the influence of host plant, diet breadth and geographic distance on divergence at a finer geographic scale focusing on red-headed FW in Colorado. We found clear genetic and morphological distinction between red- and black-headed FW, and Colorado FW formed a genetic cluster distinct from other locations. Although both geographic distance and host plant use were correlated with genetic distance, geographic distance accounted for up to 3× more variation in genetic distance than did host plant use. As a rare study investigating the genetic structure of a widespread generalist herbivore over a broad geographic range (up to 3,000 km), our study supports a strong role for geographic isolation in divergence in this system.
Collapse
Affiliation(s)
- Mayra C Vidal
- Department of Biological Sciences, University of Denver, Denver, CO, USA.,Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Tom W Quinn
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | | | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|